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Abstract:

Ensuring compliance with urban planning regulations requires both semantic precision and fully interpretable

decision processes. In this paper, we present a semi-automated methodology that combines the flexibility of
large language models with the rigour of Semantic Web technologies to develop an urban planning ontology
from regulatory texts. First, the paper presents a systematic evaluation of eight state-of-the-art large lan-
guage models on the WebNLG dataset for semantic triple extraction task, using few-shot and chain-of-thought
prompting. It then discusses the engineering of a domain-adapted prompt. The resulting triples are partially
validated through a two-step procedure that takes into account the topological properties of an underlying
graph (corresponding to a raw version of a knowledge graph) and the assessment of Human domain experts.

1 INTRODUCTION

Recent advances in artificial intelligence and large
language models (LLMs) have significantly improved
Al-driven systems for automation. Such systems pro-
cess large datasets and handle tasks such as summa-
rization, translation, code generation, and question
answering (Li et al., 2024). Their use spans from
general content generation and chatbots to specialized
fields, such as medical diagnosis and legal or tech-
nical document analysis (Chattoraj and Joshi, 2024).
However, domain-specific tasks require high preci-
sion, structured data, and verifiable outputs. Regu-
latory compliance verification exemplifies this need
and can benefit from semantic web (SW) technolo-
gies such as knowledge graphs (KGs) and ontologies
(Vanapalli et al., 2025). Indeed, these technologies
offer formal semantic representations enabling infer-
ence, consistency checks, and transparent decision
paths, while constraining facts to schemas and sup-
porting neuro-symbolic fact checking by combining
neural flexibility with symbolic rigour. LLMs, ex-
celling in language processing tasks and adapting to
domains, may complement KGs and ontologies for
effectively performing compliance verification, pro-
ducing evolvable and complete systems.

According to this key idea, we develop a system to
verify building permit (BP) applications against the
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Local Urban Planning (LUP) regulations of Rennes
Métropole (RM), France. The system assists instruc-
tors in reviewing BPs efficiently while preserving
statutory precision. The pipeline ingests an ontology
representing both the LUP and the BPs, built semi-
automatically using one LLM. The LLM provides
suggestions for ontological relationships and concepts
or instances in the form of triples (subjet, predicate,
objet). Interested readers are invited to consult the
figure illustrating the overall architecture via this link.

This paper presents the ontology generation pro-
cess from the LUP. The main contributions are:

1. An evaluation of eight state-of-the-art (SOTA)
LLMs on the triple extraction (TE) task with the
WebNLG+2020 (Gardent et al., 2017) dataset,
using few-shot prompting and Chain-of-Thought
(CoT);

2. A domain-adapted prompt and CoT method with
context augmentation, improving triples accuracy
and graph connectivity.

The paper is organised as follows: Section 2 re-
views the SOTA in TE. Section 3 presents our ap-
proach and Section 4 describes the datasets. Section
5 presents the LLM evaluation methodology and re-
sults. Section 6 details ontology generation, Section
6.2 covers graph analysis, and Section 7 concludes.

Graphs and prompts are available in the GitHub
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repository : Triples-Driven-ontology-construction-
with-LLMs-for-Urban-Planning-compliance.

2 RELATED WORKS

Traditional methods for constructing KGs and ontolo-
gies typically follow a structured pipeline involving
data identification, ontology creation, knowledge ex-
traction, refinement, and maintenance (TamaSauskaité
and Groth, 2023). In the SOTA, knowledge extrac-
tion is commonly framed as named entity recognition,
classification, relation prediction, and entity disam-
biguation. However, with the rise of generative lan-
guage models, this multistep approach has evolved
into a more direct TE task, where information is cap-
tured as (subject, predicate, object) relationships.

Two main classical TE approaches include : Open
Information Extraction (OpenlE) (Kolluru et al.,
2020) and Claused Information Extraction (CIE).
OpenlE offers a flexible framework capable of ex-
tracting information from diverse data sources, with-
out relying on predefined schemas. By contrast, CIE
operates within fixed constraints on pre-established
schemas. Hybrid approaches that combine schema-
free extraction with clause-based constraints have
also been proposed to balance flexibility (Del Corro
and Gemulla, 2013).

The emergence of LLMs has improved TE capa-
bilities by demonstrating strong natural language un-
derstanding and generation abilities. (Petroni et al.,
2019) showed that LLMs can act as implicit KBs,
retrieving factual information from learned param-
eters without fine-tuning. However, as noted by
(Razniewski et al., 2021), they lack explicit schemas,
consistency, and update mechanisms, making them
better suited to augment rather than replace KBs.

The use of LLMs for KG and ontology genera-
tion is nowadays quite common. Among the works
addressing this direction, (Ghanem and Cruz, 2025a)
study TE in order to structure extracted facts into
KG, comparing fine-tuning and prompting strategies.
Other studies, such as (Kommineni et al., 2024) pro-
pose a pipeline guided by competency questions with
minimal human intervention.

3 GLOBAL APPROACH

The proposed ontology construction process relies on
the identification and extraction of semantic triples
from LUP. As explained in the Introduction, the de-
signed process benefits from the extensive usage of
LLMs. In this sense, to maximize automation, we

must carefully select the best performing model. Be-
cause no LUP specific annotated dataset exists for
evaluating extracted triples, we employ the public
WebNLG+2020 dataset, which provides reference
sentences annotated with ground truth triples. We
then provide a comprehensive LLM evaluation strat-
egy to continuously assess performance of current and
future models(5).

The LLM-centred ontology construction process
encompasses 4 interconnected components (6):

— Text processing module, segmenting documents
into semantically coherent chunks, as defined in
section 6.1 and performing preprocessing.

— Knowledge extraction engine, extracting triples
with the selected LLM and ensuring a terminolog-
ical coherence.

— Validator, assessing semantic quality of extracted
triples against expert annotations.

— Graph construction module, assembling vali-
dated triples into one consistent knowledge struc-
ture.

Two design points can be highlighted. First,
some triples are explicit in the given text. For
instance, the sentence “The total area of building
named le soleil is about 2330 m?”, may suggest triple
(“le_soleil", “has_total_area", “2330 m?2"). Other im-
plicit relations must be inferred and named by the
extraction engine, e.g. (“le_soleil", “is_a", “build-
ing"), (“2330 m?", “has_unit", “m>") and (“2330 m?",
“has_value", “2330").

Secondly, assembling a coherent (and consistent)
ontology requires deciding whether triple elements
are concepts or instances, clustering synonymous
terms (e.g., “construction” vs. “building"), normal-
ising relation variants (e.g., “in” vs. “includes’), and
carefully identifying “is-a” links to build hierarchies.

4 DATA

In the next subsections, WebNLG dataset and LUP
document are briefly presented.

WebNLG is an English corpus that pairs RDF
triples from DBpedia with crowdsourced reference
texts (sets up to seven triples) and, in its 2020 re-
lease, spans 16 DBpedia categories (e.g., Airport,
Astronaut, Building, City). It can be accessed
through Hugging Face’s GEM/WebNLG. Each com-
plete WebNLG dataset entry, consisting of structured
triples and their corresponding natural language text,
constitutes a sample identified by a unique identifier
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named gem_id. The WebNLG challenge targets two
tasks: RDF — text generation and text — RDF se-
mantic parsing. An example of what dataset entry
looks like can be found below.

Sample WebNLG: text — triples.

Input:
{’gem_id’: "web_nlg_en—test—864",
’input’: *Akeem Ayers, who started his career in 2011,
debuted for the Tennessee Titans.’ }

Output:

{’gem_id’: "web_nlg_en—test—864’, "target’: [’
Akeem_Ayers | debutTeam | Tennessee_Titans’,
Akeem_Ayers | activeYearsStartYear | 2011°]}

Analysis of the SOTA reveals the relevance
of WebNLG’s for KG and ontology generation.
Text2KGBench assessed fact extraction, ontology
conformance, and hallucination rates over a DB-
pedia—WebNLG subset of 4,860 sentences across
19 ontologies (Mihindukulasooriya et al., 2023).
More recently, (Ghanem and Cruz, 2025b) sys-
tematically used WebNLG to compare Zero-Shot-
Learning (ZSL), One-Shot-Learning (OSL), Few-
Shot-Learning (FSL) and fine-tuning for TE, to gen-
erate a KG.

LUP is aregulatory document drafted by the Urban
Planning Department in RM, available in both Word
and PDF formats. It comprises 240 pages and 83,790
words. It is characterized by the specialized adminis-
trative language employed in the urban planning do-
main, which requires specific expertise for proper in-
terpretation. This language manifests through for-
mal terminology, detailed regulatory provisions and
constraints. However, the application of regulations
exhibits some flexibility through deontic modality,
where “must” expresses obligation, “may” expresses
possibility and “shall” expresses obligation or per-
mission. This paper focuses on two LUP chapters
with quite different content. The first, “Présentation
du reglement" (Regulation Overview), contains the
main taxonomy, presenting the classification of urban
zones and sub-zones alongside with their characteris-
tics and denominations. The second, "Parking" chap-
ter, was selected for its complexity and its coverage of
diverse cases and regulations. Additionally, parking
compliance requirements are required for the major-
ity of BPs, making this chapter central for compliance
checks. A PDF version of the document is available
online via link.
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S LLM EVALUATION

In this section, we provide the strategy used for eval-
uating the eigth relevant LLMs and the metrics used
for summarizing the results.

5.1 Evaluation Strategy

An efficient sampling strategy has been adopted for
working efficiently. A subset of data in WebNLG has
been identified (N = 150 distinct identifiers gem_id)
by randomly selecting from each categorical subset
while ensuring all categories ( (e.g., sports, geogra-
phy, movies) being represented and maintaining their
associated triple structures. To enhance model perfor-
mance and output consistency, we have deliberately
diversified our sample selection to include various re-
lation types, and incorporated examples containing
temporal information (dates) and other specific for-
mats. This diversification strategy has been designed
to expose the model to the expected output patterns,
thereby facilitating improved normalization of the ex-
tracted triples.

We have designed the prompt to specify the sys-
tem task and its role as an expert in information ex-
traction. The task is decomposed in sequential steps
to guide the model through the extraction process.
The input format using dictionary structures contain-
ing gem_id input and target keys, along with the ex-
pected output format for RDF triples are also covered
by the prompt. Finally, the prompt is enriched with
diverse examples, including unit measurements, date
formats, and other complex data structures.

The following LLMs: Claude 3.5 Sonnet, Copi-
lot (version 14 February 2025), Gemini 2.0 Flash,
GPT-40, Grok2, Meta LLlama3.3 70B Instruct, Mis-
tral Nemo Instruct 2407 and Qwen2.5 72B Instruct
have been evaluated in two distinct ways: strict or ex-
act matching (i.e. extracted triples are compared as
they are), and similarity-based matching using multi-
ple metrics over extracted triples (Section 5.2). The
detailed results are presented in Table 1.

5.2 Similarity Metrics

This section describes the similarity matching met-
rics used to evaluate extracted triples against expected
triples. For each selected gem_id (i) the correspond-
ing sentence and gold triple set R; were paired. Each
model then processed the 150 selected samples in
batches of 20 and produced for each sample i a pre-
dicted triple set S;.

To reduce surface mismatches between terms, ev-
ery R; and S; are normalized by lower-casing, remov-
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ing non-alphanumeric characters, standardising nu-
meric and temporal formats, and trimming whites-
paces.

We have implemented two lexical/string similar-
ity metrics. First, the Levenshtein distance (Leven-
shtein, 1966) is computed and converted to a normal-
ized Levenshtein ratio (Lev). Secondly, a suffix-tree
similarity (Stree) is also computed (Marteau, 2018).
In both cases, the scores across the sets R; and S; have
been calculated as:

Score(R;,S;) = R rgleeg(M(r, s), M € {Lev,Stree}
Ll reR; > =1

To overcome more complex differences beyond
lexical differences, we have used a pre-trained BERT
model (Devlin et al., 2019) to generate semantic em-
beddings. For each triple t = (s,p,0), we indepen-
dently extract the embeddings of the “subject”, “pred-
icate” and “object” of the four final hidden states of
BERT (producing vectors e, e,, e, € RY). Let a ref-
erence triple be r = (s,, pr,0,) and a predicted triple
s = (8¢, pr,0;). We define the semantic similarity be-
tween r and ¢ as the average cosine similarity of the
corresponding components:

1
SiMgem (1,5) = g(cos(esr,e‘yx)

+ cos(ep,, ep,)
+ cos(e,, , €, ))

For each predicted triple s € S;, the best match
score m is defined as:
m(s) = max simgem (1, 5),
reR;

and the set of accepted predicted triples at threshold T
is defined as:

Ai(t) = {s €S |m(s) >t}

where a threshold. T = 0.84 has been fixed to guaran-
tee an acceptable level of similarity.

Precision (Pre), recall (Rec) and Fiscore (F1) for
sample 7 are then computed as:

A; A;
Pre;(t) = |Si||’ Rec;(t) = :Ri:,
_ 2Pre;(t)Rec;(7)
Pre;(t) + Rec;(T)
|A;| number of predicted triples whose maximum
similarity to any reference triple is > 7.

F ,'(‘C)

|S;| total number of predicted triples for sample i.

|R;| total number of reference triples for sample i.

Finally, we compute macro and micro-averaged
precision and recall over all the N extractions. Let’s
consider the all retrieved triples as the best matching
triples (Ta), the predicted triples (S) and the reference
(expected) triples (R) and the corresponding cardinal-
1ties:

N N N
Ta=Y |Ai(D)], S=) IS, R=Y|Ril.
i=1 i=1 i=1

Then, the global (micro-averaged) Pre, Rec and F] are
defined as:

Ty T,

Ev Rnglobal ("C) = F’

Fl lob I(T) — ZPreglobal(T) Recglobal(r)
globa Preglobal (T) +Recglobal (’C)

Macro-averaged metrics are then computed as the
arithmetic mean over samples:

Pregiopal (T) =

1 N

Premacro(T) = ¥ Y Pre;(7)
i=1
1 N

ReCmacro (T) = N Z Rec;(7)

Il
—_

1
Fl,macro(r) = N ZFIJ(T)
i=1

Table 1 summarises the comparative performance
of the eight evaluated LLMs on TE task. Each row
reports overall scores and individual results for strict
matching, semantic similarity, suffix-tree and Leven-
shtein metrics. Notably, Claude 3.5 Sonnet shows the
best results across all metrics.

6 APPLICATION TO LUP
CORPUS

Following quite satisfactory preliminary results ob-
tained with Claude Sonnet 3.5, we have upgraded to
Claude Sonnet 4 for the TE task on the LUP. This
decision has been motivated by several key improve-
ments documented in the literature. Claude Sonnet
4 represents a significant upgrade over its predeces-
sor, delivering superior reasoning capabilities while
responding more precisely to complex instructions.
These enhancements are quite relevant for sophisti-
cated natural language processing tasks such as triple
extraction, where understanding contextual relation-
ships between entities is crucial for accurate knowl-
edge representation.

Claude 4’s context window has also been ex-
panded to 200k tokens, making it ideally suited for
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lengthy documents, generating triples without trun-
cation or ever cutting off part of the output. Even
if specific benchmarks for French triple extraction
are not available in the current literature, Claude
4 demonstrates slight improvements in multilingual
Q&A tasks, making it relevant for our French regula-
tory text processing task.

6.1 LUP Segmentation and Shots
Preparation

The LUP is structured in chapters, sections, sub-
sections, and sub-subsections. Content appears in
paragraphs, lists, and cross-references. This inter-
connected structure makes sentence-level triple ex-
traction ineffective because of the usage of several
implicit or explicit references within or across dis-
tant sections. For instance, the subsection “Areas to
be Urbanized: AU zones" states that “Two types of
AU zones are distinguished" without naming them,
while the next subsection “Zone 1AU" gives details
but never mentions its implicit inclusion within AU
zones. Processing isolated sentences or subsections
thus breaks logical links (e.g., (“Zone_AU”, “con-
tains”, “sub_Zone_AU1")), weakening coherence and
connectivity. Conversely, processing the entire docu-
ment at once leads to a quite limited number of triples.
Thus, a balance is needed between the maximum text
size an LLM can process and the minimum size re-
quired to preserve completeness.

To address this key point, we have implemented
an iterative segmentation strategy to maintain seman-
tic coherence while ensuring model efficiency. The
document is divided in sections, with titles included;
images are excluded, and tables are set aside. Using
Claude’s tokenizer, sections exceeding the token limit
are divided in balanced chunks. If a chunk exceeded
500 tokens, it is further split starting from capital let-
ters to the first occurrence of a colon (“:”), as natural
boundaries.

The first extraction has covered the seven initial
chunks (chapter 1), introducing key terms, acronyms,
and general guidelines. While some irrelevant triples
have been generated, the extraction provided:

— Fundamental entities and relations forming the on-
tology’s top layer;

— A high-level taxonomy of the urban planning do-
main.

In order to maximize the quality of the extracted
triples, we selected sentences from the “Parking”
chapter. Subsequently, these sentences were manu-
ally annotated by a domain expert. The annotations
encompassed implicit-to-explicit relations, quantita-
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tive constraints (e.g., distance or height), and vague
formulations (e.g., “immediate surroundings”), which
are unsuitable for precise representation. To improve
FSL, examples containing such vague formulations
were deliberately included in the prompt set, with the
objective of providing guidance to the model. The
domain expert also normalised vocabulary and added
implicit predicates where necessary to ensure con-
sistency and accuracy. The resulting sentence—triple
pairs served as shots for prompting. Figure 1 illus-
trates one such annotated example.

6.2 Prompt Engineering

We have defined two distinct methods for processing
text chunks to extract triples. In the first method, each
chunk has been treated independently: the model re-
ceives one chunk at a time and extracts triples based
only on the content within that chunk. In the second
method, the chunks are still processed individually,
but the model is made aware of triples extracted from
all previously processed chunks. This setup allows us
to compare the impact of providing contextual infor-
mation such as the previously extracted triples.

Both methods employ an almost identical prompt,
with one key difference: the context-aware method
comprises a dedicated section injecting the previously
extracted triples. This contextual information is ac-
companied by specific instructions guiding the model
to maintain terminological consistency and to ensure
connections with previously identified or generated
terms whenever possible.

We have adopted a FSL with five shots as de-
scribed in subsection 6.1. However, rather than sim-
ply asking the model to extract triples, we have de-
veloped an enhanced CoT approach breaking down
the task into well-defined sequential steps. This struc-
tured strategy has emerged from extensive experimen-
tation where we iteratively refined the instructions to
better guide the model.

The model has been configured with a temper-
ature setting of 1, which is mandatory for activat-
ing Claude’s reasoning capabilities. The reasoning
budget has been set to 5000 tokens, providing the
model with sufficient resources for the complex mul-
tiple step analysis. Finally, we have used XML tags
(e.g., <triple> ... </triple>) to delimit portions and
structure the prompt. This strategy, recommended in
Anthropic’s guidelines, creates clear boundaries be-
tween prompt sections, reduces ambiguity, and im-
proves parsing of responses. The full prompt is pro-
vided in both English and French via this link.



Table 1: Performance metrics.
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Model Strict matching Semantic similarity STree | Levenshtein
P R F1 P R F1
claude_3.5 sonnet 58,91 | 58,84 | 58,88 | 88,70 | 90,98 | 89,36 | 92,92 90,12
Gemini 2.0 Flash 49,97 | 49,58 | 49,77 | 87,95 | 91,57 | 89,30 | 88,04 87,17
Grok 2 42,80 | 42,80 | 42,80 | 80,14 | 86,33 | 82,34 | 86,51 84,79
GPT 40 42,33 | 41,67 | 42,00 | 78,30 | 84,81 | 80,57 | 85,68 84,04
meta-llamal_lama-3.3-70B-Instruct | 40,85 | 40,71 | 40,78 | 77,53 | 85,42 | 80,11 | 85,33 83,02
copilot 39,84 | 39,54 | 39,69 | 73,71 | 81,39 | 76,65 | 84,03 82,18
Qwen2.5-72B-Instruct 35,52 | 35,79 | 35,66 | 59,63 | 64,30 | 61,04 | 84,78 82,47
Mistral-Nemo-Instruct-2407 30,57 | 30,29 | 30,43 | 71,18 | 78,99 | 73,87 | 81,00 80,10

Text :

Triples:

Accessibility requirements : (moyen_accés, a_type, a_pied)

“Les emplacements de stationnement exigés doivent étre réalisés sur le terrain d’assiette de la construction ou dans son environnement immédiat. Dans ce
cas, ils doivent étre facilement accessibles a pied et situés a moins de 300 m du terrain de la construction pour la destination Habitation"

Location constraints : (emplacement_stationnement, situé_sur, terrain_assiette_construction)

Distance limitations : (emplacement_stationnement, a_distance_de, terrain_construction)

Figure 1: Example of annotated text in RDF triples.

6.3 Triple Validator

The process of constructing a coherent ontology de-
pends on the quality of extracted triples. Since we
lacked reference triples for the LUP corpus (unlike
(Debattista et al., 2016) and (Ghanem and Cruz,
2025b)), the validator component operates in two dis-
tinct and complementary ways, presented below.

6.3.1 Graph Based Method Validator

We first compare the two extraction methods (context-
less and context-aware) by constructing graphs from
the extracted triples and analysing their topological
properties using NetworkX (Hagberg et al., 2008). In-
deed, graphs underlying the extracted triples represent
the raw ontology and therefore should exhibit desir-
able topological properties, highlighted by:

Connectivity Analysis: identification of weak and
strong connectivity and isolated knowledge clusters;

Structural Quality: detection of isolated terms, mea-
surement of graph density and compactness;

Centrality Analysis: identification of important or
highly connected nodes, revealing terms that corre-
spond to potential key domain entities.

The results are presented in subsection 6.4.
Triples produced by the method generating the graph
with the best topological properties have then been
submitted to the expert validator described below.

6.3.2 Expert Validator

A qualitative assessment has been performed by ask-
ing two domain experts to validate the extracted
triples. Following precise guidelines and examples,
they have been asked to classify each extracted triple
in one or more of the following categories:

Category 0: incorrect triples that do not appear in the
reference chunk or any previously extracted triples, or
that are semantically meaningless (e.g., those relying
on vague notions such as “immediate surroundings”
or “in close proximity” without precise context);

Category 1: correctly formulated triples whose infor-
mation is directly sourced from the input text;

Rule Category: triples expressing regulatory rules
that contain numeric constraints;

Correction Category: triples violating normaliza-
tion rules defined in the prompt’s CoT steps, such
as predicates not formulated affirmatively or those in-

cluding deontic terms (“must”, “may”, “requires”);

Pertinence: noisy triples that are not relevant for ver-
ifying the validity of a BP.

It should be noted that, even with a great insightful
knowledge and experience, domain experts can still
be biased and their understanding of triples may be
partial. Consequently, additional validation methods
should be developed. However, the graph method val-
idator can be reapplied to assess the global impact of
expert validator.
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6.4 Graph Validator Results

Table 2 presents the evaluation of topological prop-
erties for the two graphs under consideration: Graph
1 corresponds to the context-less extraction method,
and Graph 2 corresponds to the context-aware extrac-
tion method.

Table 2: Comparison.

Graph
@P\ Graph 1 | Graph 2
Cleaned triples 278 331
Nodes 266 257
Edges 278 331
Disconnected triples True False
Density 0.0039 0.0050
Connected components 23 1
Main connectivity component 0.33 1

Graph 2 comprised 257 nodes and 331 edges,
whereas Graph 1 comprised 266 nodes and 278 edges.
Although Graph 1 exhibited a slightly higher node
count (+3.5%), Graph 2 showed a greater number of
edges (+19%), reflecting enhanced concept intercon-
nectivity.

Notably, neither graph contained isolated nodes
(i.e., nodes with degree zero): every node partici-
pated in at least one edge. The improvement in in-
terlinking is further reflected by graph density: Graph
2 achieved a density of 0.00503 compared to 0.00394
for Graph 1, indicating a richer interconnection be-
tween potential concepts and instances. The graphs
are available online (see Figure 2 and Figure 3).

Also, when edge direction was ignored (i.e., con-
sidering the graphs as undirected), Graph 2 formed a
single cohesive component: it was fully weakly con-
nected with a largest_component_ratio of 1, en-
suring that all potential concepts/instances and pred-
icates are reachable across the entire graph. Con-
versely, Graph 1 is split into 23 disconnected sub-
graphs, with the main component covering only 33%
(88 out of 266) of nodes. This fragmentation degrades
inference, SPARQL queries, and global reasoning, as
many entities exist in isolated ““semantic silos”.

6.5 Graph Validation after Expert
Validation

As noted above, the processed introductory LUP
chapter contained a large amount of information
that was not relevant for BP compliance verification.
In particular, experts judged the first 111 extracted
triples as irrelevant; some triples were also corrected.
We therefore recomputed the topological metrics to
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assess the impact after expert validation. The most
important results concern graph connectivity and are
shown in Table 3.

It can be noted that, despite extensive triple re-
moval and modification, the majority of the validated
triples fall into two large, coherent subgraphs: Com-
ponent 1 contains 91 triples (41.7%) spanning 85
nodes, and Component 2 contains 122 triples (56.0%)
spanning 95 nodes. Together, these two components
account for 97.7% of all generated triples in the graph.
Components 3 and 4 represent residual fragments.
The presence of these minor components suggests
residual “semantic silos” — isolated facts or edge
cases that are not connected to the core graph and
which therefore require further analysis and more ex-
tractions of triples from the next chunks in this chap-
ter.

Table 3: Distribution of triples on connected components.

Components Triples % of Total Nodes
1 91 41,7% 85
2 122 56,0% 95
3 1 0,5% 2
4 4 1,8% 5

7 CONCLUSIONS

This paper describes a comprehensive method for
semi-automatic domain ontology construction from
regulatory documents using LLMs. A system-
atic evaluation of eight SOTA LLM platforms on
the WebNLG dataset leads to a triple extraction
performance-driven selection of the LLM.

The proposed domain-adapted prompt engineer-
ing strategy, combined with optimized document seg-
mentation, preserves both semantic coherence and
terminological consistency. Additionally, the exper-
imented context-augmentation is promising even if
facing scalability issues as the number of extracted
triples increases, and specifically whenever document
chunks contain diverse themes that introduce irrele-
vant information for subsequent chunks.

To partially address this limitation, future work
will implement triple selection mechanisms using se-
mantic similarity measures to determine which previ-
ously extracted triples are relevant to include as con-
text for the chunk being processed (Papaluca et al.,
2024). The next phase of the work will focus on
extracting triples from all document segments and
organizing them in a hierarchical ontology. Given
that the LUP contains several normative rules and
constraints, future development will integrate deontic
logic modelling capabilities. We will employ OWL-
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DL for expressing basic constraint definitions and tax-
onomic relationships, while leveraging the Semantic
Web Rule Language (Lawan and Rakib, 2019) for
encoding complex regulatory rule patterns exceed-
ing OWL’s expressivity. This will be complemented
by Shapes Constraint Language rules for automated
compliance validation. The integration of these for-
mal logic frameworks will enable the ontology to sys-
tematically verify whether BPs satisfy regulatory re-
quirements by encoding both structural and semantic
constraints.

Finally, incorporating provenance metadata will
ensure traceability of each ontology element back to
its originating text segment in the source document.
This provenance will facilitate precise updates when
regulations evolve and ensure long-term reliability for
automated compliance verification applications.
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