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Abstract: Unmanned Aerial Vehicles (UAVs) have become invaluable in high-stakes search and rescue operations in 
fire-prone and fire-damaged environments due to their capabilities in victim locating and situation analysis. 
This paper describes the design, simulation, and realization of a fire-resistant, wall-climbing UAV with a 
human alive detection system powered by AI. The UAV includes a custom-designed H-frame made out of 
PLA which is thrust vectoring EDFs attached to a tilt-rotor system permitting vertical hovering and traversing. 
Structural and aerodynamic aspects were verified with FEA and CFD simulations performed on SimScale. 
To allow for autonomous victim detection, the UAV system includes a real-time human detector based on 
YOLOv8 with and optical flow and MediaPipe-based eye tracking to classify people as conscious, 
unconscious, dead, or blocked out. The UAV's mission computer, which comprises a Raspberry Pi with ROS, 
records would-detect status and location, and outputs tagged geo-coordinates for mission planning in real-
time. Simulation and ground testing would confirm the system’s viability in heat-intensive, debris-laden 
environments, advancing the development of autonomous aerial platforms for disaster response, firefighting, 
and urban search and rescue (USAR) operations. 

1 INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) have emerged as 
crucial instruments in a variety of fields over the past 
ten years, such as search and rescue, surveillance, and 
disaster response (Mulgaonkar et al., 2016), (Dudek 
& Jenkin, 2010).  UAVs that can withstand high-risk 
situations like industrial settings, collapsed 
structures, and fire-prone areas are becoming more 
and more necessary for these applications. 

Despite their proficiency in aerial reconnaissance, 
traditional multirotor platforms are constrained by 
their poor wall traversal capabilities, heat sensitivity, 
and incapacity to identify incapacitated victims 
(Murphy, 2004).  Researchers have developed 
fireproof UAVs with thermal insulation layers, such 
as Nomex, ceramic coatings, or silica aerogels, to get 
around these limitations. These layers protect 
electronic systems from high ambient temperatures 
(Zhang et al., 2021), (Lee et al., 2020), (Tan et al., 
2021). Wall-climbing UAVs that draw inspiration 
from biological systems like geckos, insects, and bats 
have been developed as a result of parallel 
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developments in surface adhesion and locomotion 
(Kim et al., 2018), (Li et al., 2017). These systems 
scale vertical or inverted surfaces using suction 
mechanisms (Sun et al., 2021), electro-adhesion 
(Spenko et al., 2012), or magnet-based gripping 
(Wang et al., 2021).  Most are less effective in multi-
hazard environments because they lack integration 
with fire survivability or robust perception systems, 
despite being effective in confined spaces. 

UAVs can now accurately identify human targets 
on their own thanks to recent advancements in real-
time computer vision, especially in object detection 
using deep learning models like YOLO (You Only 
Look Once) (Redmon et al., 2018).  But YOLO by 
itself is unable to distinguish between people who are 
conscious, unconscious, or deceased.  In order to 
close this gap, scientists have integrated optical flow 
to identify subtle thoracic movements that are 
suggestive of breathing (Akhloufi et al., 2020), 
(Sharma & Mahapatra, 2021).  In our work, we 
evaluate breathing using the Farneback method on 
grayscale frame differences, which enables the 
system to classify victims into subtle states. 
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We use MediaPipe FaceMesh, a landmark 
detection framework created by Google, to further 
evaluate consciousness. This framework allows for 
accurate measurement of Eye Aspect Ratio (EAR), 
which infers blink rates and eye closure (Zhang et al., 
2020).  A complete "alive detection" pipeline that can 
classify data in real time into four different states—
Alive & Conscious, Alive but Unconscious, Dead, 
and Obstructed/Not Visible—is made possible by the 
combination of YOLOv8, optical flow, and 
MediaPipe. This system would be powered by a small 
Raspberry Pi 4B onboard computer that runs ROS 
and connects via MAVLink to a flight controller that 
is compatible with Pixhawk.  The UAV would be 
equipped with an MTF-01P optical flow sensor for 
indoor navigation and Intel RealSense cameras for 
depth and odometry, making it ready for both 
controlled and unpredictably changing field 
conditions. 

To ensure stable control during wall contact, 
transition, and flight, we would implement a Model 
Predictive Control (MPC) architecture. This control 
strategy adapts across three behavioural modes—
sticking, tilting, and climbing—with specific 
optimisations for wheel torque, gear actuation, and 
thrust modulation. The UAV’s dynamic model is 
simulated using ROS2 and Gazebo, ensuring that the 
control algorithm respects physical constraints and 
delivers energy-efficient performance. 

Our work therefore unifies fireproofing, surface 
adhesion, advanced vision-based perception, and 
predictive control into a single hybrid UAV platform, 
addressing multiple gaps in current USAR (Urban 
Search and Rescue) technologies. The integration of 
resilient materials, sensor-rich electronics, and deep 
learning allows this system to operate autonomously 
in highly dynamic and hazardous environments. 

2 DESIGN STRATEGY 

The proposed UAV is inspired by the tilt-rotor wall-
climbing concept introduced by Myeong and Myung 
(Myeong & Myung, 2020), where thrust vectoring 
and surface traction enable stable vertical attachment. 
This design incorporates fire-resistant structural 
elements and an AI-based alive detection system 
tailored for disaster zones. The UAV uses a modified 
H-frame made of PLA and carbon fibre rods for 
optimal strength-to-weight performance. Developed 
in SolidWorks and analysed in ANSYS, the frame 
withstands perching and wall-impact loads. Four 
EDFs (two front, two rear) are mounted on servo-

actuated tilting arms, enabling transitions between 
horizontal flight and vertical climbing. MG995 servos 
drive a 1:1 gear system for smooth tilt control, with a 
selected angle of 59.2° optimised for wall adhesion 
(friction coefficient = 0.5). Passive wheels assist 
vertical mobility post-attachment. CFD simulations 
in SimScale confirm stable aerodynamics near walls; 
FEA validates joint and strut integrity. For victim 
detection, a Raspberry Pi runs YOLOv8 with optical 
flow analysis to monitor thoracic motion, 
distinguishing live victims. On detection, GPS 
coordinates are transmitted to responders. This builds 
on approaches by Patel et al. (Patel et al., 2020) and 
Li et al. (Li et al., 2021), highlighting deep learning's 
role in disaster-zone reconnaissance. Upon detection, 
the drone transmits GPS coordinates to responders. 
This builds on approaches by Patel et al. (Patel et al., 
2020) and Li et al. (Li et al., 2021), who demonstrated 
deep learning’s value in disaster-zone 
reconnaissance. 
 
 

 

Figure 1: Final SolidWorks model of the wall-climbing 
UAV; isometric view of the UAV showing the tilt-rotor H-
frame layout with EDFs and passive wall-contact wheels; 
Front view illustrating vertical alignment of ducted fans and 
the symmetric gear-driven shaft for tilt control. 

2.1 Drone Frame 

The UAV uses a compact H-frame designed in 
SolidWorks, optimised for structural rigidity and 
balanced load distribution. The main frame is 3D 
printed in PLA and laterally reinforced with carbon 
fibre rods supporting the rotating EDF modules. A 
165 mm-wide central platform includes precise 
cutouts for mounting the servo-tilt system, 
NxtPX4V2 flight controller (sandwiched for 
vibration damping), Raspberry Pi, battery, and 
passive wheels aiding wall climbing and stability.  
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Figure 2: SolidWorks sketch of the PLA frame with key 
dimensions and cut-outs for mounting components. Top 
view of the UAV assembly showing component placement 
and symmetric EDF-wheel layout. 

2.2 Tilt Rotor Mechanism 

The UAV employs four EDF motors (two front, two 
rear) housed in custom PLA cases that function as 
both enclosures and supports for the wall-climbing 
mechanism. These cases are mounted on a 16 mm 
carbon fibre shaft driven by a 1:1 spur gear system 
coupled to an MG995 high-torque servo, enabling 
symmetric tilting of the EDFs. Following the tilt-rotor 
approach of Myeong and Myung (Myeong & Myung, 
2020), this design allows smooth transitions between 
horizontal flight and wall adhesion. Each EDF case 
also integrates a secondary mount for wall-contact 
wheels, redesigned with ball bearings for low-friction 
movement along vertical surfaces. The wheels, 
fabricated from ABS for impact resistance and low 
weight, support wall climbing, while the required tilt 
angle (θ) is determined using equation (1). 

tan(θ) = mg/μT                          (1) 

Where m is UAV mass, g is gravity, T is thrust per 
motor, and μ is the friction coefficient. For a UAV 
mass of 2 kg, EDF thrust of 1.25 kgf per unit, and μ = 
0.5, the calculated optimal tilt angle is approximately 
59.2°, aligning with the previous research findings 
(Myeong & Myung, 2020). This mechanism allows 
the UAV to redirect thrust perpendicularly during 
perching and revert for free flight, enabling hybrid 
aerial-wall locomotion.  
 

 
Figure 3: Top view of the servo-driven spur gear 
mechanism enabling symmetric EDF tilt via a carbon fibre 
shaft. Isometric view of the tilt-rotor gear assembly 
integrated into the UAV frame. 

2.3 Electronics 

The UAV is equipped with electronics tailored for 
high-thrust propulsion, autonomous wall-climbing, 
and onboard human detection. At its core is the 
NxtPX4V2 flight controller, handling motor control, 
sensor fusion, and stabilisation. Propulsion is 
delivered via four Powerfun 70 mm EDF motors 
(2.2 kgf thrust each), driven by a Hobbywing XRotor 
G2 4-in-1 65A ESC with 6S input and DShot1200 
protocol for low-latency response. A Pro-Range 
13000mAh 6S 25C LiPo battery (1.56 kg) powers the 
system, offering ~8.5 minutes of flight and a 1.67 
thrust-to-weight ratio, enabling stable lift and 
climbing. Power is split via XT90 connectors, with 
two UBECs (5V and 12V) providing isolated supply 
to MG995 servos (for tilt-rotor actuation) and the 
onboard compute unit. 

Flight Time (minutes) = ( C × V × η / P ) × 60 
 

Using the values: 
 

(Battery Capacity) C = 13 Ah, (Battery Voltage) V = 
22.2 V, (Discharge Efficiency) η = 0.85, (Average 
Power Consumption) P = 1450 W 
 

Flight Time ≈ 8.5 minutes 
 

This estimated value is based on moderate hover and 
cruise conditions. Final validation will be done using 
telemetry logs and stopwatch measurements during 
prototype testing. For perception and positioning, the 
UAV uses the MTF-01P optical flow and range 
sensor, NEO-M8N GPS with compass, and SiK 
Telemetry Radio V3 for long-range communication. 
Two Intel RealSense cameras D435i (depth) and 
T265 (odometry) enable indoor navigation and visual 
detection. These feed into a Raspberry Pi 4B running 
ROS for onboard AI inference, including a YOLOv5-
tiny model for real-time human detection and optical 
flow-based breathing analysis. The Pi communicates 
with the flight controller via MAVLink for decision-
making. The system is manually operable through a 
TX16S Mark II radio with fail-safe support via SiK 
link. 

To meet power and endurance requirements 
within a 1.5 kg battery limit, a Tattu 6S 12000 mAh 
25C LiPo battery was selected. Delivering 22.2 V 
nominal voltage and up to 300 A continuous 
discharge, it comfortably supports the combined 
260 A draw of four EDFs rated at 65 A each. 
Weighing ~1.43 kg, the battery keeps the UAV’s all-
up weight (AUW) at 4.5 kg, as confirmed by the 
integrated mass breakdown. Flight time is estimated 
at ~8.5 minutes under high-load conditions. The four 

Fire-Resistant Wall-Climbing UAV for Victim Detection in Urban Search and Rescue Missions

419



EDFs generate a total of 8.8 kgf static thrust. At a 60° 
tilt, the vertical thrust component reaches ~7.5 kg, 
yielding a thrust-to-weight ratio of 1.67, which 
ensures stable vertical lift and wall-climbing. The 
horizontal thrust (~4.6 kg) supports wall traction and 
transition control. 

Figure 4: Power and control architecture of the UAV, 
illustrating the integration of the propulsion, perception, 
computation, and communication subsystems 

2.4 Fireproofing 

To enhance survivability in fire-prone environments, 
the UAV’s base frame is 3D printed in lightweight 
PLA, ideal for rapid prototyping. However, due to 
PLA’s low thermal resistance (~60 °C), it is coated 
with Nomex a flame-retardant aramid fibre known for 
high thermal stability and low weight. Widely used in 
aerospace and firefighting gear, Nomex withstands 
temperatures up to 370 °C without melting or 
dripping, while maintaining structural integrity. With 
a density of just 1.38 g/cm³, it adds minimal weight to 
the drone.  

2.5 Mathematical Model  

The system is defined using three coordinate frames: 
the world frame, body frame, and individual rotor 
frames. The world frame (Xw, Yw, Zw) is a fixed 
inertial reference, while the body frame (Xb, Yb, Zb) 
is centered at the UAV’s center of gravity and used 
for dynamic modelling and control. Each rotor (R1–
R4) has a local frame initially aligned with the body 
frame but can rotate around the yaw axis and tilt as 
actuated. The UAV uses four Electric Ducted Fan 
(EDF) rotors, each capable of dual-axis tilting (pitch 
and roll). Two servomotors per side enable paired 
tilting: R1 with R4, and R2 with R3.  

Thrust Vector in Rotor Frame 

𝑇ሬ⃗ ௥ = ൥00𝑇൩   (Thrust acts along the rotor's local Z-axis) 

Rotation Due to Dual-Axis Tilt 𝑅୲୧୪୲ = 𝑅௫ሺ𝛼ሻ ⋅ 𝑅௬ሺ𝛽ሻ𝑅௫ሺ𝛼ሻ = ൥1 0 00 cos 𝛼 −sin 𝛼0 sin 𝛼 cos 𝛼 ൩
𝑅௬ሺ𝛽ሻ = ൥ cos 𝛽 0 sin 𝛽0 1 0−sin 𝛽 0 cos 𝛽൩𝑇ሬ⃗ ୲୧୪୲ୣୢ = 𝑅௫ሺ𝛼ሻ ⋅ 𝑅௬ሺ𝛽ሻ ⋅ 𝑇ሬ⃗ ௥

 

Rotor Orientation w.r.t. Body Frame (Yaw Offset): 

𝑅௭ሺ𝜓௜ሻ = ൥cos 𝜓௜ −sin 𝜓௜ 0sin 𝜓௜ cos 𝜓௜ 00 0 1൩ 

Thrust in Body Frame: 

𝑇ሬ⃗ body = 𝑅௭ሺ𝜓௜ሻ ⋅ 𝑅௫ሺ𝛼ሻ ⋅ 𝑅௬ሺ𝛽ሻ ⋅ ൥00𝑇൩ 
UAV Orientation in World Frame (Euler ZYX) 𝑅୵୭୰୪ୢୠ୭ୢ୷ = 𝑅௭ሺ𝜓ሻ ⋅ 𝑅௬ሺ𝜃ሻ ⋅ 𝑅௫ሺ𝜙ሻ 
The rotation matrix from the body frame to the world 
frame using the ZYX Euler angle convention (yaw 𝜓, 
pitch 𝜃, roll 𝜙 ) is given by: 

𝑅world 
body = 𝑅௭ሺ𝜓ሻ ⋅ 𝑅௬ሺ𝜃ሻ ⋅ 𝑅௫ሺ𝜙ሻ

𝑅 = ቎𝑐ట𝑐ఏ 𝑐ట𝑠ఏ𝑠థ − 𝑠ట𝑐థ 𝑐ట𝑠ఏ𝑐థ + 𝑠ట𝑠థ𝑠ట𝑐ఏ 𝑠ట𝑠ఏ𝑠థ + 𝑐ట𝑐థ 𝑠ట𝑠ఏ𝑐థ − 𝑐ట𝑠థ−𝑠ఏ 𝑐ఏ𝑠థ 𝑐ఏ𝑐థ ቏ 

 

Figure 5: Reference frames of the UAV. The world frame 
(Xw,Yw,Zw) is a fixed inertial frame. The body frame 
(Xb,Yb,Zb) is attached to the UAV’s center of gravity 
(CG).  

Final Thrust Vector in World Frame is: 

𝑇ሬ⃗ world = 𝑅world 
body ⋅ 𝑇ሬ⃗ body 𝑇ሬ⃗ world = 𝑅௭ሺ𝜓ሻ ⋅ 𝑅௬ሺ𝜃ሻ ⋅ 𝑅௫ሺ𝜙ሻ ⋅ 𝑅௭ሺ𝜓௜ሻ ⋅ 𝑅௫ሺ𝛼ሻ ⋅ 𝑅௬ሺ𝛽ሻ ⋅ ൥00𝑇൩ 

Where: 𝜓௜  : Yaw position of the rotor relative to the UAV 
body, 𝛼, 𝛽 : Rotor tilt angles (dual-axis), 𝑇 : Thrust 
magnitude (in rotor frame) 
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3 ANALYSIS 

To ensure structural robustness, aerodynamic 
efficiency, and fire resilience, the UAV was 
simulated using SimScale. The frame was modelled 
with Polylactic Acid (PLA), while 16 mm carbon 
fibre rods reinforced the tilt mechanism and motor 
shafts. Structural integrity was assessed via Finite 
Element Analysis (FEA) to identify stress 
concentrations under load. Computational Fluid 
Dynamics (CFD) simulations examined airflow 
during flight and wall climbing. The results informed 
key design choices. 

3.1 Frame Analysis 

To evaluate the structural integrity of the UAV frame 
under operational loading conditions, a static 
structural analysis was performed using the Finite 
Element Analysis (FEA) module in SimScale. The 
frame model, derived from the SolidWorks assembly, 
consists of PLA. A fine mesh was applied with 
maximum edge length of 0.005 m and minimum of 
0.001 m, generating approximately 944,000 nodes for 
accurate stress resolution. 

 

Figure 6: Meshing setup for structural FEA in SimScale. 

     The material properties used for PLA were: 
Young’s Modulus of 3.5 GPa, Poisson’s ratio of 0.36, 
and density of 1.24 g/cm³, while carbon fibre rods 
were assumed to be rigid due to their high stiffness. 
Boundary conditions included fixed supports at the 
motor mount joints and load application points 
corresponding to the EDF thrust force. A gravity 
vector of 9.81 m/s² was applied globally to simulate 
self-weight. Contacts between components were 
defined as bonded, and the analysis assumes linear 
elastic behavior with no material plasticity.  

The simulation results revealed that the maximum 
von Mises stress occurred at the junctions of the 
carbon fibre rods and the PLA plates, especially 
around the motor mount zones, with a peak stress of 
approximately 48.3 MPa, which is well below PLA’s 

typical yield strength (~60 MPa), ensuring a safe 
stress margin. The displacement contour showed a 
maximum deflection of around 1.83 mm. The Cauchy 
stress distribution confirmed that stresses were 
concentrated around bolt holes and load-bearing 
corners, validating the structural importance of 
reinforcement via carbon fibre rods. The factor of 
safety was maintained above 1.25 throughout critical 
regions.  

 

Figure 7: FEA results showing von Mises stress 
distribution, stress concentration near carbon fibre shafts, 
Cauchy stress zones around load paths, and total 
displacement. 

3.2 CFD Analysis 

To assess the aerodynamic performance of the UAV 
during both horizontal flight and inclined wall-
climbing phases, a steady-state incompressible 
turbulent flow simulation was performed using the k-
omega SST model in SimScale. An inlet velocity of 
15 m/s was specified at the front face, while the outlet 
was set to zero relative pressure, replicating realistic 
cruise conditions. All solid surfaces were treated as 
no-slip walls, and the far-field boundaries were 
defined with slip conditions. The mesh comprised 
over 3.2 million cells, ensuring sufficient resolution 
for boundary layer development and wake 
interaction.  

  

Figure 8: CFD domain setup in SimScale with refined mesh 
regions enclosing the UAV to capture detailed boundary 
layer behavior and wake dynamics under 15 m/s inlet flow. 
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     Viscous forces along the X-axis peaked at ~0.6 N, 
reflecting aerodynamic drag opposing forward 
motion, before stabilising in steady flow. Lateral and 
vertical viscous forces were negligible, supporting 
directional stability. Pressure moments were 
strongest about the Y-axis (~1.2 N·m), indicating 
possible yaw imbalance from asymmetric flow near 
the EDF ducts, while X and Z-axis moments 
remained negligible, confirming pitch–roll stability. 
Porous moment analysis showed consistent Z-axis 
resistance (~2 units), highlighting the need for yaw 
compensation. Pressure forces were dominated by a 
thrust-aligned X-axis component (~5 units), with 
minimal fluctuations elsewhere. 

 

 

 

 

 

 
 

Figure 9: Time evolution plots of viscous and pressure 
forces and moments from CFD simulation. 

4 ALIVE DETECTION SYSTEM 

In the domain of Urban Search and Rescue (USAR), 
the ability to identify the presence and status of 
human victims in obstructed or hazardous 
environments remains a critical challenge. Past 
approaches, as detailed in studies such as Ingle & 
Chunekar (Ingle & Chunekar, 2016) and Kalaboina et 
al. (Kalaboina et al., 2018), have relied on ultrasonic, 
PIR, and low-resolution camera systems for motion 
and heat-based human detection.  

Traditional sensing methods struggle with static 
or unconscious individuals and are prone to 
environmental noise. To overcome this, we 
implemented a computer vision-based alive detection 
pipeline, simulated on a MacBook Air using its 
webcam. The system integrates three modules: (i) 
YOLOv8 for person detection, (ii) MediaPipe 
FaceMesh to assess consciousness via Eye Aspect 
Ratio (EAR), and (iii) Farneback optical flow to 
detect breathing through pixel-level thoracic motion 
over a temporal buffer. Each subject is classified as 
Alive and Conscious (eyes open, breathing), Alive 
and Unconscious (eyes closed, breathing), Dead (no 
motion or eye activity), or Obstructed/Not Visible. 
Outputs include timestamped detection logs, GPS 

coordinates (simulated), and status saved in JSON 
format for integration with geo-tagged rescue 
interfaces.  

 

Figure 10: Output states from the simulated alive detection 
system showing classification into "Alive & Conscious", 
"Alive but Unconscious", and "Dead" based on eye and 
breathing activity. 

We propose embedding the detection pipeline into the 
wall-climbing UAV using Intel RealSense D435i 
(depth/obstacle detection), RealSense T265 (pose 
estimation), and an MTF-01P optical flow sensor, 
managed through a Raspberry Pi running ROS. The 
alive_detector.py node will publish real-time human 
status, confidence, and obstruction flags, with depth 
discontinuity aiding occlusion detection when YOLO 
fails. 

5 CONTROL SYSTEM 

Model Predictive Control (MPC) governs the UAV’s 
behaviour across three stages: sticking, tilting, and 
thrust-based climbing. In the sticking phase, MPC 
controls wheel torque to ensure zero wall-plane 
velocity. During tilting, it regulates EDF gear rotation 
for smooth, constrained motion. In the thrust phase, 
MPC coordinates EDF thrust and wheel torque to 
stabilise climbing while maintaining roll, pitch, and 
tilt limits. The UAV model, built using URDF/Xacro, 
includes structural and inertial details, focusing on 
EDF and tilt joints. The MPC state vector includes 
position, velocity, orientation, tilt angle, and thrust, 
with inputs as thrust vectors and torques. Stage-
specific cost functions and constraints (e.g., torque 
bounds, joint limits) ensure energy-efficient, stable 
tracking. 

For perception, the UAV uses an Intel RealSense 
camera indoors to capture RGB-depth data for alive 
detection via optical flow and pose estimation 
through odometry. Outdoors, GPS is used for 
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mapping victim locations, enabling robust operation 
across environments. To validate the control 
framework, initial testing was conducted on a 
standard quadcopter using PX4’s MPC Multirotor 
Rate Model with body rate and thrust inputs. A 
figure-eight reference trajectory was tracked at 
constant altitude by discretizing parametric 
equations, confirming smooth, accurate tracking thus 
establishing a baseline for extending MPC control to 
the more complex tilt-rotor UAV platform. 𝑥ሺ𝑡ሻ = 𝑟𝑐𝑜𝑠ሺ𝜔𝑡ሻ 𝑦ሺ𝑡ሻ = 𝑟𝑠𝑖𝑛ሺ2𝜔𝑡ሻ 𝑧ሺ𝑡ሻ = 𝑧0 

 
Figure 11: MPC-based quadcopter simulation in RViz 
showing tracking of a figure-eight trajectory.  

To ensure real-time tracking, the reference 
trajectory was interpolated between sampled 
waypoints so the MPC solver always received a 
continuous setpoint. At each timestep, the control 
loop retrieved the UAV’s state, computed tracking 
error, constructed the MPC state vector and reference 
horizon, and solved for optimal control inputs, which 
were published as VehicleRatesSetpoint messages. 
Visualisation in RViz was achieved using helper 
functions that converted predicted state vectors into 
PoseStamped messages and markers for intuitive path 
comparison. Simulations demonstrated that the 
quadcopter successfully tracked a figure-eight path 
with smooth transitions and minimal deviation, 
validating the MPC design. The green curve 
(reference), red marker (current setpoint), and blue 
path (predicted trajectory) in RViz confirmed 
effective error minimisation and stability.  

 

The MPC cost function minimized the error 
between the predicted state and the figure-eight 
reference while penalizing control effort:  min௨బ:ಿషభ ෍|𝑥௞ − 𝑥௞ref|ொଶே

௞ୀ଴  + |𝑢௞|ோଶ  

6 CONCLUSION 

The design and simulation of a wall-climbing UAV 
specifically suited for search and rescue missions in 
dangerous, fire-prone areas are presented in this 
paper. The UAV's servo-driven tilt-rotor mechanism, 
which has been verified by structural and 
aerodynamic analyses with SimScale, allows it to 
transition between flight and vertical surface 
adhesion. Strength, maneuverability, and thermal 
resilience are guaranteed by essential elements like 
high-thrust EDFs, PLA frames, and carbon fiber 
reinforcements. Real-time sensors, a ROS-based 
compute unit, and a specially designed alive detection 
pipeline that can recognize human life signs using 
YOLOv8, MediaPipe eye tracking, and optical flow-
based breathing detection are all integrated into the 
UAV's electronics. 

The detection system, successfully simulated on a 
laptop, classifies individuals into four states: Alive & 
Conscious, Alive but Unconscious, Dead, and 
Obstructed. It logs results with GPS metadata for 
mapping and rescue coordination. Future work will 
involve full hardware integration, real-time testing 
with ROS nodes, and validation of control strategies 
through Model Predictive Control (MPC) in Gazebo. 
The UAV will be fire-hardened using Nomex 
insulation and tested in indoor and outdoor scenarios 
to enable autonomous operation in real-world disaster 
environments. 

7 FUTURE WORK 

In the next phase, we will focus on physical 
prototyping and validation. A fully integrated UAV 
will be fabricated using a PLA frame coated with 
Nomex to improve fire resistance, with thermal 
resilience assessed through heat flux and flame 
exposure simulations. Indoor and outdoor trials will 
evaluate surface stability, wall-climbing 
performance, and autonomous navigation under 
challenging conditions, including strong ambient 
light where Intel RealSense sensors may 
underperform. Real-time alive-detection inference 
will be optimised on Raspberry Pi or NVIDIA Jetson 

Fire-Resistant Wall-Climbing UAV for Victim Detection in Urban Search and Rescue Missions

423



modules, with endurance testing incorporating power 
consumption measurements. Limitations in EDF 
efficiency and flight time will be addressed through 
revised propulsion strategies and adaptive energy 
management. 
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