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Abstract: This paper introduces QARSA, a novel reinforcement learning algorithm that combines the strengths of off-
policy and on-policy methods, specifically Q-learning and SARSA, for the dynamic control of nonlinear 
systems. Designed to leverage the sample efficiency of off-policy learning while preserving the stability and 
lower variance of on-policy approaches, QARSA aims to offer a balanced and robust learning framework. 
The algorithm is evaluated on the CartPole-v1 simulation environment using the OpenAI Gym framework, 
with performance compared against standalone Q-learning and SARSA implementations. The comparison is 
based on three critical metrics: average reward, stability, and sample efficiency. Experimental results 
demonstrate that QARSA outperforms both Q-learning and SARSA, achieving higher average rewards, 
stability, sample efficiency, and improved consistency in learned policies. These results demonstrate 
QARSA’s effectiveness in environments were maximizing long-term performance while maintaining learning 
stability is crucial. The study provides valuable insights for the design of hybrid reinforcement learning 
algorithms for continuous control tasks. 

1 INTRODUCTION 

Reinforcement Learning (RL) has become a 
prominent approach in developing intelligent agents 
capable of learning optimal behaviors through 
interactions with their environment. Central to this 
paradigm is the reward signal, which the agents aim 
to maximize over time. The flexibility and 
effectiveness of RL have made it widely applicable 
across diverse domains such as robotics and game 
playing, cementing its importance in artificial 
intelligence research (AlMahamid & Grolinger, 
2022). 

Among various RL methodologies, temporal 
difference (TD) learning stands out for its capacity to 
learn from direct interactions without explicit 
environmental models. 

This paper introduces a novel reinforcement 
learning algorithm, QARSA, combining off-policy 
and on-policy learning approaches, specifically Q-
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learning and SARSA. Off-policy methods like Q-
learning emphasize past experiences, enhancing the 
accumulation of rewards, sample efficiency, and 
facilitating rapid learning. Conversely, on-policy 
methods such as SARSA directly utilize the current 
policy in their updates, resulting in greater stability 
and lower variance. By merging these complementary 
features, QARSA, the novel algorithm proposed in 
this work, aims to achieve improved rewards and 
sample efficiency alongside increased stability.This 
is particularly suitable for dynamic control scenarios 
involving nonlinear systems. 

To evaluate the effectiveness of QARSA, this 
work applies the algorithm to the classical cart-pole 
problem, a well-established benchmark for assessing 
RL performance in control tasks. The cart-pole 
environment requires the agent to balance a pole 
upright on a moving cart by applying directional 
forces, exemplifying the critical balance between 

Hani Hazza, A. A., Fabri, S. G., Bugeja, M. K. and Camilleri, K.
Combining off-Policy and on-Policy Reinforcement Learning for Dynamic Control of Nonlinear Systems.
DOI: 10.5220/0013836700003982
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 22nd International Conference on Informatics in Control, Automation and Robotics (ICINCO 2025) - Volume 1, pages 387-394
ISBN: 978-989-758-770-2; ISSN: 2184-2809
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

387



exploration and exploitation required for successful 
control (Surriani et al., 2021). 

Therefore, this paper aims to analyze and compare 
the performance of QARSA, Q-learning, and SARSA 
on the cart-pole problem. This comparison will 
provide valuable insights into the relative strengths 
and limitations of each algorithm. Additionally, this 
paper analyzes the learning curves, final outcomes, 
hyperparameter sensitivity, and the impact of various 
function approximation techniques. Through this 
comprehensive analysis, the strengths and 
weaknesses of the new QARSA algorithm are 
highlighted, contributing valuable insights into its 
practical applicability and scalability in 
reinforcement learning for control tasks. 

2 BACKGROUND WORK 

Two of the most fundamental model-free methods in 
RL are Q-Learning and SARSA. Both fall under the 
category of Temporal-Difference (TD) learning, and 
update a value function based on the agent's 
experience without requiring a model of the 
environment.  

Sutton & Barto, (2018)  highlighted that SARSA's 
conservative update mechanism can yield superior 
performance in environments where cautious 
exploration strategies are beneficial. Double Q-
learning (Van Hasselt et al., 2016) and Weighted Q-
learning (Cini et al., 2020) address the overestimation 
bias inherent in traditional Q-learning, leading to 
enhanced stability and improved outcomes, 
particularly in environments characterized by high 
complexity and variability in action-value functions. 
Several comparative analyses have investigated how 
RL algorithm performance can be influenced by 
exploration methods (e.g., ε-greedy, softmax), reward 
shaping, and discretization strategies such as those by 
Tokic (2010). These elements are particularly critical 
in continuous-state environments like the cart-pole 
task, which require discretization for tabular RL 
methods. 

Nagendra et al. (2017) and Zhong (2024) 
conducted comparisons of various RL algorithms, 
emphasizing sample efficiency and stability. 
However, a thorough comparative analysis explicitly 
evaluating Q-learning and SARSA based on 
cumulative rewards per episode in this environment 
remains under-explored. Mothanna & Hewahi (2022) 
demonstrated the applicability of Q-learning and 
SARSA in solving the cart-pole problem, proposing 
future work to extend the analysis to additional RL 
algorithms. 

Despite these developments, limited direct 
comparative work specifically addresses the learning 
efficiency, stability, and ultimate performance of Q-
learning and SARSA in the cart-pole environment. 
Most existing comparative studies have either 
examined more complex tasks or employed different 
evaluation metrics. Those works that focus on the 
cart-pole problem utilize the OpenAI Gym simulation 
framework and include metrics such as average 
reward, stability, sample efficiency, and overall 
effectiveness (Brockman et al., 2016). 

In (Hazza et al.,2025) the performances of three 
reinforcement learning algorithms were collectively 
compared under a sensitivity analysis in which all 
hyperparameter values were systematically varied to 
observe their impact on the learning process. While 
Q-learning exhibited marginally higher average and 
cumulative rewards, the differences among 
Q-learning, SARSA, and Double Q-learning were not 
substantial across the tested range, indicating that no 
single method decisively outperforms the others. 

Q-Learning and SARSA represent two 
fundamentally different approaches to value-based 
learning (Kommey et al., 2024) . Q-Learning is an 
off-policy algorithm that learns the value of the 
optimal policy independently of the agent's actions. 
While effective in many deterministic environments, 
its reliance on the maximum Q-value in the update 
step can lead to overestimation bias and instability in 
noisy or stochastic environments. In contrast, SARSA 
is an on-policy method that learns the value of the 
policy the agent is actually following. It tends to be 
more stable and risk-averse, especially in 
unpredictable environments, but often converges 
more slowly and may be overly conservative (Wang 
et al., 2013). 

With this in mind, this work proposes a novel 
hybrid approach, designed to merge the strengths of 
on-policy and off-policy reinforcement learning 
methods, and tested by simulation on the cart-pole 
problem, as detailed in the rest of the paper.  

2.1 Q-Learning Algorithm 

Q-learning is one of the most widely used RL 
algorithms, renowned for its simplicity and 
effectiveness, introduced by Watkins in 1989 
(Watkins & Dayan, 1992). It is an off-policy 
algorithm that estimates the optimal action-value 
function Q (s, a) by learning from the maximum 
future reward, regardless of the agent's current policy. 
Its update rule is defined by Equation (1): Q (s, a)  ←  Q (s, a) + α [r + γ max_a′ Q (s′, a′) −                         Q (s, a)]                                           (1)                              
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Here, Q (s, a)  denotes the Q-value of taking action a 
in state s, α is the learning rate, γ is the discount factor, 
r is the immediate reward, and s′ is the next state after 
action a, and a′ is the action taken in the next state s′. 
The use of the maximum Q-value over next actions a′ 
makes Q-Learning optimistic and efficient in 
deterministic settings, but it can suffer from 
overestimation in noisy environments. 

2.2 SARSA Algorithm 

SARSA (State-Action-Reward-State-Action) refers 
to an on-policy method that updates the value 
function based on the actual actions taken by the 
agent under its current policy (Sutton & Barto, 2018).   

The SARSA update rule is given by Equation (2): 
 Q (s, a)  ←  Q (s, a)  +  α [r +  γ Q (s′, a′)  −                            Q (s, a)]                                         (2) 

 
In this case, a′ is the next action actually chosen 

by the policy, not necessarily the one with the 
maximum value. This makes SARSA more 
conservative and safer in stochastic environments, as 
it learns the action-values according to the policy 
being followed. 

Previous studies, such as those by Singh and 
Sutton (1996), have compared these two algorithms 
under various conditions.  SARSA tends to perform 
better in environments with high variability or where 
risk-averse behavior is preferred, while Q-Learning 
often converges faster in deterministic tasks.  

2.3 QARSA: A Hybrid Reinforcement 
Learning Algorithm 

Recognizing the complementary strengths and 
weaknesses of Q-Learning and SARSA algorithms, 
we propose QARSA (a hybrid of the two). This 
algorithm combines the update rules of both Q-
Learning and SARSA via a tunable blending 
parameter λ ∈ [0,1].  

By adjusting λ, QARSA can strike a balance 
between the aggressive, policy-independent updates 
of Q-Learning and the cautious, policy-aware updates 
of SARSA. This makes it particularly suited for 
environments that exhibit both deterministic and 
stochastic behaviors. We evaluate QARSA against its 
parent algorithms to assess performance differences 
using simulation experiments in a the cart-pole 
control environment. 

 
 
 

2.3.1 QARSA Update Rule 

The QARSA update rule is given by Equation (3): 
 Q(s, a) ← Q(s, a) + αൣr + γ൫λmaxୟᇲQ(sᇱ, aᇱ) +                       (1 − λ)Q(sᇱ, aᇱ)൯ − Q(s, a)൧    (3) 

 
where s is the current state, a is the current action, r is 
the reward, s′ is the next state, a′ is the action taken in 
state s′ (based on policy), α is the learning rate, γ is 
the discount factor, and λ is the blending factor, 
controlling the mix between Q-Learning and SARSA.  

This update rule allows for a weighted 
combination between on-policy and off-policy 
learning.  

By adjusting λ, the agent can adopt a learning 
style that is best suited to the environment's 
characteristics. 

2.3.2 Behaviour and Interpretation 

When λ→1: QARSA is equivalent to Q-Learning, 
using the maximum expected return for future 
actions. This can speed up learning but risks 
overestimating the value function in stochastic 
environments. 

When λ→0: QARSA reduces to SARSA, basing the 
value update on the actual action taken. This often 
results in safer but slower learning. 

Intermediate λ: Provides a balance; the agent is 
neither too optimistic nor too cautious, which can lead 
to improved stability and better generalization. 

3 METHODOLOGY 

3.1 Environment Setup 

The cart-pole problem is a well-known benchmark in 
the use of reinforcement learning for control systems. 
It is favoured for its straightforward design and fast 
training time. However, its simplicity also limits its 
applicability, meaning that insights gained from this 
task may not extend well to more complex scenarios, 
particularly those that involve continuous action 
spaces or high-dimensional visual inputs. The RL 
model for this setup is shown in Figure 1. In this task, 
the agent’s goal is to keep the pole balanced in the 
inverted position by applying forces to move the cart 
either left or right. The following considerations are 
to be noted: 
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Figure 1: The Reinforcement Learning Model for The Cart 
Pole Problem. 

• State Space: This consists of the system's 
state variables that describe the system’s 
dynamics.  

The state space consists of four continuous 
parameters: The cart position (x), which can vary 
within the range of -2.4 to +2.4 meters, the pole angle 
(θ) that in this set-up will range from -0.2095 to 
+0.2095 radians (equivalent to -12° to +12 °), the cart 
velocity (ẋ), and the pole angular velocity ((𝜃ሶ) ሶ). The 
last two are unbounded and can take any value 
(Mishra & Arora, 2023).  

• Action Space: The action space is discrete 
and consists of two possible moves:  
0: Apply force to push the cart to the left, and 
1: Apply force to push the cart to the right. 

The resulting state depends on the action taken. For 
example, as illustrated in Figure 2, if the system starts 
with the pole in an upright position and the cart is 
pushed to the left, the pole typically leans to the right, 
leading to a new state, and vice versa.  

• Reward Structure: The agent earns a 
reward of +1 for every time step that the pole 
angle remains within the ± 12° angle range. 

If the pole tilts beyond ±12 degrees or when the cart 
position exceeds the horizontal boundary of ±2.4m 
from the centre, that specific episode of the simulation 
is stopped. An episode is also stopped if the pendulum 
angle and position remain within the prescribed ranges 
for up to 500 time steps, corresponding to 10 seconds 
of simulated time, with each step representing 20 
milliseconds, this being considered as constituting 

successful balancing control for a significant amount 
of time (Li et al., 2024). 

 
Figure 2: Typical Actions Performed by The Cart Pole 
Problem. 

3.2 Algorithm Implementation  

As this study aims to implement and compare the  
Q-learning, SARSA, and QARSA algorithms, they 
were developed using the same core parameters to 
ensure a fair and consistent evaluation. Q-learning is 
implemented using a tabular approach, where the 
action-value function Q (s, a)  is stored in a table and 
updated using the Bellman Equation 1. Similarly, 
SARSA is applied as a tabular method, but its Q-
value updates incorporate the action taken in the next 
state, following the SARSA update rule in Equation 
2. QARSA combines elements of both Q-learning and 
SARSA, as described in Section 2.3. 

Table 1 presents the hyperparameter values 
identified through experimental trials as having the 
most significant influence on the algorithms’ 
performance (Jumaah et al., 2025). These parameter 
values were chosen based on established practices in 
the literature and were fine-tuned to enhance the 
overall performance of all three algorithms. The 
second column of Table 1 displays the optimized 
values found by experimentation to yield the best 
results. 

Table 1: Hyperparameter values of Q-Learning, SARSA, 
and QARSA algorithms for the Cart Pole Problem. 

Hyperparameter Value 
Learning Rate α 0.09 

Discount Factor γ 0.07 
Blending factor λ 0.5 

Exploration Strategy ϵ 0.995 
Number of Episodes 5000 

Max Steps per Episode 500 
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3.3 Experimental Procedure 

The experimental process was structured as follows: 
Each algorithm began by initializing the Q-table(s) to 
zero for all state-action pairs. Training commenced 
by resetting the CartPole-V1 environment to initialize 
the starting state for each episode. Actions were 
selected using the epsilon-greedy policy, primarily 
choosing the action with the highest estimated 
reward. The selected action was executed, after which 
the environment's reward and next state were 
observed. Subsequently, the Q-value(s) were updated 
according to the algorithm-specific update rule. If an 
episode concluded due to the pole falling or the cart 
moving out of bounds, the total accumulated reward 
for that episode was recorded. 

3.4 Performance Metrics 

The following metrics were employed to assess the   
algorithm performance (Escobar et al., 2020): 
• Average Reward: Calculated as the mean total 

reward received per episode throughout the 
training period, serving as a primary indicator of 
algorithm efficacy. 

• Stability: This metric assesses the consistency 
of algorithm performance once convergence is 
achieved. Stability was quantified by calculating 
the standard deviation of rewards over the final 
100 episodes, with lower values indicating 
higher stability and consistent behavior. 

• Sample Efficiency: This evaluates how 
effectively an algorithm improves its 
performance given limited experiences. 
Specifically, sample efficiency was measured 
by the cumulative reward obtained over the first 
1000 episodes, reflecting how rapidly each 
algorithm learns an effective policy. 

3.5 Computational Issues 

All algorithms and simulations were implemented 
using Python 3.10 with the following essential 
libraries: the OpenAI Gym: CartPole-v1 
environment, NumPy for numerical computation, and 
Matplotlib for visualization and plotting of learning 
curves. Experiments were executed on a standard 
computer equipped with a 12th Gen Intel(R) Core 
(TM) i9-12900K 3.20 GHz processor, 32.0 GB RAM, 
and NVIDIA® GeForce RTX™ 4090 GPU to run the 
simulations in a reasonable time.  

Evaluation becomes computationally expensive 
due to the rapid growth of the state and action spaces 
as discretization increases. For instance, discretizing 

the state variables cart position, cart velocity, pole 
angle, and pole angular velocity into fixed intervals 
significantly expands the size of the state-action 
space, leading to increased computational overhead 
and complexity in learning and decision-making 
possible state-action (Tallec et al., 2019). As a result, 
the Q-table grows exponentially with finer 
discretization, significantly increasing memory 
requirements and the computational overhead for 
value updates during training. Moreover, each 
simulation involves frequent table lookups, policy 
evaluations, and Q-value updates, all of which scale 
with the size of the discretized space. 

This necessitates high-performance 
computational resources, especially when running 
repeated trials across multiple algorithms to study the 
statistical significance of the results in comparative 
analyses (Gogineni et al., 2024). 

4 RESULTS AND DISCUSSION 

The performance of the Q-learning, SARSA, and 
QARSA reinforcement learning algorithms was 
assessed using the previously described metrics 
across 5,000 episodes. The first results are illustrated 
in the learning curves shown in Figure 3. All three 
algorithms demonstrate rapid progress during the first 
1,000 episodes, suggesting fast initial learning, but 
also display significant variability in their 
performance.   

 
Figure 3: Reward Performance of Q-Learning, SARSA, and 
QARSA Algorithms for The Cart Pole Problem. 

This pattern may reflect the agent’s exploration of 
various strategies or challenges in consistently 
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maximizing rewards, potentially due to a non-
stationary or highly stochastic environment.  

The frequent intersections of the learning curves 
further support the notion that the algorithms perform 
comparably overall, with no single method clearly 
outperforming the others throughout all episodes. 
This observation is consistent with the average 
reward results that highlight QARSA's slight 
advantage in overall performance, as illustrated in 
Figure 4.  

QARSA attained the highest average reward 
(28.74) with a total of 143712.4 rewards, followed 
closely by Q-learning average reward (28.45) with a 
total of 142264.9 rewards, and then SARSA average 
reward (28.06) with a total of  140319.2 rewards.  

 
Figure 4: The Average Reward of Q-Learning, SARSA, and 
QARSA Algorithms for The Cart Pole Problem. 

 
Figure 5: Stability Performance of Q-Learning, SARSA, 
and QARSA Algorithms for The Cart Pole Problem. 

The slight differences in average rewards suggest 
that all three algorithms performed similarly 
regarding overall effectiveness. However, QARSA's 
slightly higher average reward indicates it may have 
a marginal advantage in maximizing long-term 
returns. 

The stability metrics for all three algorithms were 
also comparable, with SARSA showing slightly 
better stability (14.18) compared to Q-learning 
(14.37) and QARSA showing the best stability 
(13.89), as shown in Figures 5 and 6. 

 
Figure 6: Stability of Q-Learning, SARSA, and QARSA 
Algorithms for The Cart Pole Problem. 

 
Figure 7: Sample Efficiency Performance of Q-Learning, 
SARSA, and QARSA Algorithms for The Cart Pole 
Problem. 

As shown in Figures 7 and 8, QARSA demonstrated 
the best sample efficiency (19212), followed by Q-
learning (18964.4) and SARSA (17585.2). QARSA 
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may learn more effectively from fewer experiences, 
potentially making it more suitable for environments 
where data collection is costly or limited. 

 
Figure 8: The Sample Efficiency of Q-Learning, SARSA, 
and QARSA Algorithms for The Cart Pole Problem. 

Table 2 summarizes the final metrics obtained in the 
three algorithms for the Cart Pole Problem, where the 
best results are highlighted in grey. 

Table 2: The Performance Comparison of Q-Learning, 
SARSA, and QARSA for The Cart Pole Problem. 

Metrics Q-Learning SARSA QARSA 

Total 
Rewards 142264.9 140319.2 143712.4 

Average 
Reward 28.45 28.06 28.74 

Stability 14.37 14.18 13.89 

Sample 
Efficiency 18964.4 17585.2 19212 

4 CONCLUSIONS AND FUTURE 
WORK 

This paper proposed QARSA, a novel reinforcement 
learning algorithm that integrates off-policy and on-
policy learning principles by combining Q-learning 
and SARSA. QARSA was evaluated in the CartPole-
v1 environment and compared against its constituent 
algorithms. Simulation results demonstrated that for 
the cart-pole problem, QARSA marginally 
outperformed both Q-learning and SARSA across all 
key performance metrics, achieving higher average 
rewards, greater stability, and higher sample 

efficiency. These results suggest investigating further 
the performance of the proposed QARSA hybrid 
reinforcement learning method for dynamic control 
settings. Future work will thus focus on testing 
QARSA in other complex environments, not only the 
cart-pole problem, to investigate its scalability to 
continuous state and action spaces, and explore 
methods for determining the optimal value of the 
blending factor between Q-learning and SARSA, 
which is possibly dependent on the characteristics of 
the system being controlled and the desired control 
tasks. Finally, we will rigorously investigate the 
comparative performance between the three 
algorithms through Monte Carlo analysis and 
statistical significance tests. Each algorithm has its 
strengths, and literature shows that the choice of 
optimal hyperparameters depends on the scenario 
defining the problem and the specific requirements of 
the task at hand  (Manglik & Tripathi, 2018). 
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