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Abstract: This paper presents a framework for efficient kinematic and dynamic modelling of a quadruped robot using 
the recursive Newton-Euler method. The robot features 12 actuators—three per leg—and is analysed under 
both static walking and dynamic trotting gaits. The formulation incorporates assumed ground reaction forces 
and system over-constraints, enabling the resolution of contact forces through a reduced set of six linear 
equations. Twelve generalized coordinates are used for static gait analysis, with an additional generalized 
coordinate introduced for dynamic trotting. Body attitude, velocity, and acceleration are derived from joint-
space trajectories, and forward dynamics is computed by inverting the inverse dynamics equations by 
numerically evaluating the mass matrix and nonlinear torque vectors. By employing a reduced set of 
generalized coordinates and simplified constraint handling of ground reactions, the proposed framework 
streamlines rigid-body dynamic simulation for such a high-degree-of-freedom system. 

1 INTRODUCTION 

Modelling of engineering systems and processes is a 
critical step toward achieving robust and accurate 
control. This is equally applicable in the field of 
robotics, where obtaining a realistic and precise 
dynamic model is essential for accurate motion 
control. Achieving high levels of autonomy, 
accuracy, and precision in robotic systems 
necessitates a thorough understanding of the 
underlying kinematic and dynamic principles specific 
to the robot. These fundamentals are critical for the 
precise control, modelling, and optimization of 
robotic behaviour.  

Kinematics, which characterizes the 
mathematical framework governing the motion of 
robotic systems independent of forces, plays a vital 
role in the design and analysis phases of robotic 
system development. In contrast to kinematics, 
dynamics focuses on the relationship between the 
forces, torques, and the resulting motion of the 
respective robotic system. This understanding is 
fundamental for accurate modelling and control, 
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enabling the development of control strategies that 
ensure good performance and stability. Dynamic 
analysis is essential for designing controllers capable 
of adapting to varying environmental conditions, 
thereby enhancing the robot's reliability and 
robustness. By analysing the forces and torques 
required to achieve desired motions, one can optimize 
system design for energy efficiency without 
sacrificing performance. Similar to kinematics, 
dynamics also provides insight into the interaction 
between the robot and its environment, which is 
critical for executing complex tasks such as terrain 
exploration and manipulation. 

Locomotion in multi-body systems, such as 
legged robots, presents significant complexity due to 
the coupled nature of joint interactions and 
intermittent ground contacts. Addressing key 
challenges such as stability control and trajectory 
planning necessitates a comprehensive understanding 
of the system’s kinematic and dynamic behaviour. 
Currently, the majority of quadruped dynamic models 
are formulated using the Euler-Lagrange approach, 
which systematically derives the equations of motion 
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based on energy methods and generalized coordinates 
(He et al., 2016; Sun et al., 2007). The Euler-
Lagrange approach derives the equations of motion 
by computing the system’s kinetic and potential 
energy, while incorporating closed kinematic chains 
and high-dimensional constraint conditions. This 
often necessitates the introduction of additional 
generalized coordinates and constraint equations, 
resulting in a set of differential-algebraic equations 
(DAEs) that are computationally intensive to solve. 
An alternative that is widely adopted in multibody 
dynamics is the Newton-Euler formulation, which 
employs a recursive algorithm to compute the 
equations of motion and joint torques more efficiently 
(Bennani & Giri, 1996; Fu & Gao, 2022; Liu et al., 
2019; Potts et al., 2011). While the forces and 
moments can be numerically computed with relative 
ease (Morais et al., 2021; Shi et al., 2021) analytical 
solutions using this formulation are often complex 
and introduce unnecessary constraint forces. In most 
cases, in addition to the body six variables and their 
derivatives, 12 joint states, and their derivatives, are 
required to calculate joint forces and moments. 

In this paper, we propose an accurate model that 
captures the underlying rigid-body dynamics of the 
quadruped robot while reducing simulation 
complexity and improving computational efficiency. 
The model is designed to exploit the kinematic over-
constraints present in the quadruped system, reducing 
the number of generalized coordinates to 12 for static 
walking and 13 for dynamic walking, thereby 
simplifying the dynamic equations. Furthermore, the 
study focuses on formulating a recursive algorithm 
for computing the input joint torques, enabling 
efficient dynamic analysis and accurate derivation of 
the system’s equations of motion. Computational 
efficiency is significantly enhanced by formulating 
the equations of motion such that only six unknown 
ground reaction force components need to be solved. 
This reduction in dimensionality streamlines the 
overall dynamic computation and improves the 
accuracy and efficiency of force and moment 
calculations within the system 

2 KINEMATIC MODEL 

The quadruped model presented in this study features 
four identical legs with symmetric kinematic 
configurations. The coordinate frame assignment for 
a representative leg is illustrated in Fig. 1.  

Frame 0 is defined as the reference frame for the 
leg and maintains a constant orientation relative to the 
body frame. Its axes are aligned such that the x, y, and 

z axes of Frame 0 correspond to the y, x, and z axes of 
the body frame, respectively. Frame 1 is assigned to 
the actuator responsible for the Hip 
Abduction/Adduction (HAA) joint. Frame 2 is 
associated with the Hip Flexion/Extension (HFE) 
joint, while Frame 3 corresponds to the Knee 
Flexion/Extension (KFE) joint. Frame 4 is located at 
the end of the leg, representing the end-effector. The 
coordinate frames are assigned according to the 
Denavit-Hartenberg (D-H) convention. The Z axes of 
Frames 1 through 3 are aligned with the axes of 
rotation of their respective joints, ensuring 
consistency with the joint actuation directions. Due to 
the orthogonality between the first and second joint 
axes, the Z axes of Frames 1 and 2 are orthogonal, 
whereas the Z axes of Frames 2 and 3 are parallel. The 
X axis in each frame is defined to be orthogonal to 
both its own Z axis and the Z axis of the subsequent 
frame. Additionally, the X axes of Frames 2 and 3 are 
aligned with the axes of their corresponding links. 
Joint angles are defined as the relative angles between 
the X axes of two consecutive frames. The system’s 
home configuration, illustrated in Fig. 1.a, 
corresponds to all joint angles being set to 0° , 
resulting in the alignment of all X axes across the 
kinematic chain as shown in the figure. From this 
configuration, a sequential set of joint rotations is 
applied to reach the final standing posture depicted in 
Fig. 1.d. In Fig. 1.b, Links 2 and 3 are simultaneously 
rotated by 90° , with respect to Frame 0. Fig. 1.c 
shows Link 2 rotated by 45° , relative to Frame 1. 
Finally, in Fig. 1.d, Link 3 is rotated by 45°, relative 
to Frame 2, completing the transition to the standing 
configuration. 

 
Figure 1: Coordinate frame assignment for a single leg of 
the quadruped robot. 
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In this work, identical frame assignments are applied 
to all four legs of the quadruped system to ensure 
consistency and simplify the kinematic formulation. 
The coordinate frames are defined using 
transformation matrices derived according to the D-H 
convention. The corresponding D-H parameters for a 
single leg, as represented in the standing 
configuration shown in Figure 4.2d, are summarized 
in Table 1. 

Table 1: Implemented D-H table for the legged system. 𝒊  𝜶𝒊ି𝟏  𝒂𝒊ି𝟏  𝒅𝒊  𝜽𝒊  
1 90 0 0 𝜃ଵ  
2 -90 0 0 𝜃ଶ  
3 0 𝑙ଶ  0 𝜃ଷ  
4 0 𝑙ଷ  0 0  

3 INVERSE DYNAMICS 
FORMULATION STRATEGY 

A primary objective of this research is to develop a 
systematic strategy for conducting dynamic analysis 
and formulating the equations of motion required for 
simulating the rigid-body dynamics of the quadruped 
system. The resulting methodology, which will be 
elaborated upon in the subsequent section, on the 
dynamic analysis, establishes the foundation for 
accurate and computationally efficient simulation 
model. Prior to presenting the full dynamic 
formulation, this section outlines the overall strategy, 
which involves the development of a recursive 
algorithm for computing the input joint torques. 

The input joint torques are computed from joint 
reaction moment vectors that are determined starting 
from assumingly known ground reaction forces. The 
system is analysed recursively, starting from the foot 
and progressing to Frame 1 at the HFE joint, solving 
for forces and moments on each link. Fig. 2.a shows 
the forces and moments exerted on the torso at all four 
HFE joints, while Fig. 2.b illustrates the reaction 
force and moment on a single leg at the HFE joint and 
the ground. 

The HFE joint reaction force and moment vectors, 𝐟𝟏𝒊𝒋  and 𝐧𝟏𝒊𝒋  are decomposed into two components: 
one resulting from the leg's inertial forces and 
moments, and the other from the ground reaction 
forces, as shown below in (1) and (2), for a single leg. 
 𝒇 𝒃 𝟏 ൌ 𝒇ത 𝒃 𝟏 ൅ 𝒇෠ 𝒃 𝟏 (1) 

 
Figure 2: Schematic illustration of forces and moments 
acting on the torso and a representative leg. 

 𝒏 𝒃 𝟏 ൌ 𝒏ഥ 𝒃 𝟏 ൅ 𝒏ෝ 𝒃 𝟏 (2)   

where, 𝒇 𝒃 𝟏 and 𝒏 𝒃 𝟏 represents the reaction force and 
moments exerted by link 1 on the body, excluding the 
contribution from the ground reaction force, and 𝒇෠ 𝒃 𝟏 ൌ 𝑅ସ௕  𝒇 𝟒 𝟒  and 𝒏ෝ 𝒃 𝟏 ൌ 𝑷 𝒃 ସ ൈ 𝑅ସ௕  𝒇 𝟒 𝟒  represents 
the reaction forces and moments exerted by the legs 
on the body due to ground reaction force. 

All force and moment vectors here are expressed 
in body-fixed reference frame. 

In the initial stage, 𝒇ത 𝒃 𝟏  and 𝒏ഥ 𝒃 𝟏  are computed 
under the assumption that all legs are suspended in 
air, implying that 𝐟𝟒𝒊𝒋 and 𝐧𝟒𝒊𝒋 to be 0. The algorithm 
then recursively propagates calculating forces and 
moments through each joint, progressing toward the 
HFE joint for each leg. In the second stage, the still 
unknown ground reaction force and moment 
components are determined by solving the dynamic 
force and moment balance equations as shown in (3) 
and (4).          ∑ 𝑅௜௝ସ௕ 𝒇 𝟒 𝟒,𝒊𝒋 ൌ 𝑚௕ 𝒂 𝒃 𝒃 − 𝑮 𝒃 𝒃 − ∑ 𝒇ത 𝒃 𝟏,𝒊𝒋 (3) ∑ 𝑷 𝒃 𝟒,𝒊𝒋 ൈ 𝑅௜௝ସ௕ 𝒇 𝟒 𝟒,𝒊𝒋 ൌ 𝐼 ௕ ௕ 𝜶 𝒃 𝒃 − 𝐼 ௕ ௕ 𝝎 𝒃 𝒃 ൈ 𝝎 𝒃 𝒃 −∑ 𝒏ഥ 𝒃 𝟏,𝒊𝒋  (4)   

Equations (3) and (4) are formulated with known 
right-hand side terms, while the unknowns are 
grouped into left-hand side expressions involving 𝒇 𝟒 𝟒,𝒊𝒋  for the four legs. In-depth analyses of the 
solution are presented in the subsequent sections. 

The system's inverse dynamic analysis is carried 
out using the recursive Newton-Euler algorithm 
(Craig, 2005). Joint velocities and accelerations are 
computed from the body frame to the foot frame using 
an outward iteration process. Using these velocity and 
acceleration vectors, the inertial force vector 𝑭𝒊 and 
inertial moment vector 𝑵𝒊 acting on the ith link are 
computed via the Newton-Euler equations. The 
reaction force 𝑓௜ and reaction torque 𝑛௜ at the ith joint 
are computed recursively using the reaction force and 
torque vectors from the subsequent joint i+1, based 

ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics

412



on the previously calculated force and moment 
vectors.  

The presented formulations are defined with 
respect to a single leg and must therefore be applied 
independently to all four legs. The recursive 
computation initiates at the last link (Link 3), where 
the ground reaction force is either evaluated or 
assumed to be zero in the case of a non-contact 
(swing) phase. A systematic approach for computing 
the ground reaction forces is developed and will be 
detailed in the subsequent section. 

4  INVERSE DYNAMIC 
SOLUTION 

The inverse dynamics analysis, which involves 
computing joint torques based on the specified 
motion of the robot, including the robot’s body, is 
conducted with respect to a specific set of ground 
reaction forces. Depending on the gait pattern, 
multiple leg support configurations are possible. The 
nominal configuration corresponds to the quadruped 
standing on all four legs, permitting body motions 
such as roll, pitch, yaw, and vertical displacement. In 
contrast, during a static walking gait, three legs 
remain in contact with the ground at any given time, 
while one leg is in the swing phase. In dynamic gaits 
such as trotting or pacing, two diagonally or laterally 
opposed legs are in contact with the ground at any 
given time, while the remaining two are in the swing 
phase. Additionally, there exist phases, such as during 
jumping or bounding, where all four legs are airborne. 
To compute the joint torques, required for rigid-body 
dynamics, it is essential to determine the 
corresponding ground reaction forces. The ground 
reaction force computation for each of these scenarios 
is discussed in in the following subsections. 

 
Figure 3: Ground reaction force on the legs of quadruped 
system. 

4.1 Ground Support on Four Legs 

When all four legs are in contact with the ground, 
ground reaction forces act on each leg, as depicted in 
Fig. 3. This configuration introduces twelve unknown 
force components, represented as ൣ𝑓௜,௝൧் , where i 
refers to the left or right leg and j indicates front or 
rear leg. However, the dynamic equilibrium of the 
robot's body yields only six equations, three for linear 
forces and three for moments, corresponding to (3) 
and (4). As the system contains six more unknowns 
than available equations, it becomes statically 
indeterminate and hence requires six additional 
constraint equations to fully resolve the ground 
reaction forces. 

To address this issue, a set of simplifying 
assumptions is introduced to provide the necessary 
constraint equations. The vertical ground reaction 
forces (Z-direction) for all four legs are treated as 
independent, contributing four separate unknowns. In 
contrast, the ground reaction forces in the X-direction 
are assumed to be equal across all four legs, reducing 
the associated unknowns to a single variable. 
Likewise, the Y-direction ground reaction forces are 
assumed identical for all legs, introducing only one 
additional unknown. These assumptions reduce the 
total number of unknowns to six, allowing the system 
to be fully determined from the available dynamic 
equilibrium equations. 

4.2 Ground Support on Three Legs 

During static walking, the robot maintains ground 
contact with three legs, resulting in nine unknown 
ground reaction force components, still exceeding the 
number of available equilibrium equations. To 
address this, the same assumptions applied in the full 
support case are maintained for the Z and X 
directions: three independent vertical (Z-axis) 
reaction forces and one common reaction force along 
the X-axis, reducing the number of unknowns in these 
directions to four. However, the reaction force 
components along the Y-direction are viewed as 
follows. When one leg is lifted, it is assumed that the 
leg on the same side experiences a distinct reaction 
force component from the ground along the Y than 
the two legs on the opposite side, which are assumed 
to receive equal lateral reaction force components 
from the ground. This introduces two additional 
unknowns along the Y-axis. With these assumptions, 
the total number of unknowns is reduced to six, 
matching the number of dynamic equilibrium 
equations and allowing the reaction forces to be 
determined. The static condition in these scenarios 
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justifies the simplifying assumptions used. In 
dynamic walking, however, all ground reaction force 
components are treated independently as outlined next. 

4.3  Ground Support on Two Legs and 
During Airborne 

In dynamic gaits such as trot and pace, the robot 
maintains ground contact with only two legs at any 
given time. Under these conditions, the reaction force 
problem becomes more tractable, as the system 
involves only six unknown ground reaction force 
components, three per contact point, which can be 
determined directly from the equations of motion 
without necessitating additional assumptions or 
constraints. 

Conversely, during a pronk gait, the robot enters 
an aerial phase wherein all limbs are off the ground, 
resulting in zero ground contact. Consequently, the 
ground reaction forces at the feet are identically zero. 
This absence of external contact forces simplifies the 
system dynamics, allowing for direct computation of 
the internal reaction forces and moments exerted by 
the legs on the robot’s body based solely on its inertial 
properties and joint torques. 

5 FORWARD DYNAMICS 

With the forward dynamic formulation, the objective 
is to determine the acceleration components 
corresponding to the generalized coordinates 
assuming the knowledge of the input torque vector. 
The focus of this study is on two different gait 
patterns, namely the static walking gait and the 
dynamic trotting gait. 

In the case of a static walking gait, three legs 
maintain ground contact at any instant of time. This 
statically stable support configuration allows the 
estimation of the robot body's pose through the 
known joint angles of the supporting legs. Under the 
assumption of static equilibrium and using forward 
kinematic relations, the system is described by twelve 
generalized coordinates, corresponding to the three 
joint angles ൫𝜃ଵ,௜ ,𝜃ଶ,௜ ,𝜃ଷ,௜൯ for each of the four legs, 
resulting in a total of twelve joint coordinates. On the 
other hand, during the dynamic trotting gait, only two 
diagonally opposed legs are in contact with the 
ground at any given moment, which results in a 
reducing the support polygon to a line. The associated 
body rotation cannot be determined solely from the 
displacement of the attachment points of the two 
supporting legs. To address this limitation, the roll 

angle ∅ of the quadruped system is introduced as an 
additional generalized coordinate, increasing the total 
number of generalized coordinates to thirteen. 

The accelerations of the generalized coordinates, 
twelve in the case of the static walking gait and 
thirteen in the case of the dynamic trotting gait, are 
obtained through the forward dynamics formulation. 
The resulting accelerations are numerically integrated 
twice to obtain the joint velocities and displacements. 
The body’s orientation and angular rates are 
subsequently determined through forward 
kinematics, as described in the previous section. To 
evaluate the dynamic model, the inverse dynamics 
formulation based on the Newton-Euler recursive 
algorithm is used to numerically compute the 
system’s inertia matrix, as well as the gravity, 
Coriolis, and centrifugal torque vectors (Harib & 
Srinivasan, 2003; Walker & Orin, 1982). 

Once the inertia matrix, Coriolis and centrifugal 
torque vector, and gravity torque vector have been 
computed, they are combined with the input torque 
vector, generated by the control law, to solve for the 
joint acceleration vector as shown in (5). This 
acceleration vector is then numerically integrated 
twice to obtain the joint velocity and displacement 
vectors.  
 𝒒ሷ = 𝑀ሺ𝒒ሻିଵሺ𝝉 − 𝑪ሺ𝒒,𝒒ሶ ሻ − 𝑮(𝒒)) (5) 
A comprehensive analysis of the system dynamics, 
control implementation, and experimental validation 
are presented in (Sureshkumar, 2025). 

6 SIMULATION RESULTS 

A simulation was conducted in Simulink to validate 
the proposed dynamic formulation. This section 
presents a brief overview of the open-loop control 
results, wherein the acceleration, velocity, and 
displacement vectors obtained from the forward 
dynamics are compared against the corresponding 
vectors derived from the desired trajectory, computed 
using inverse kinematics. 

Fig. 4, illustrates the path planning profile for the 
dynamic trotting gait, depicting the positional 
trajectories of both the robot’s body and the end-
effectors (feet) over the course of the gait cycle. These 
trajectories serve as essential inputs for the inverse 
kinematics computation, which subsequently yields 
the desired joint angle trajectories required to achieve 
the planned motion. For the dynamic trotting gait, as 
depicted in Figure 5.7, the back-right (BR) and front-
left (FL) legs move in unison during one step phase, 
followed by the back-left (BL) and front-right (FR)  
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legs during the subsequent phase.  

 
Figure 4: Gait profile for dynamic trotting. 

Initially, the inverse kinematics is used to 
compute joint positions, velocities, and accelerations, 
which serve as inputs to the inverse dynamics model 
for calculating the required joint torques. As 
discussed in the previous section, the inertia matrix, 
Coriolis and centrifugal torque vector, and 
gravitational torque vector are determined 
numerically. These, along with the input torque 
vector, are then used in the forward dynamics 
formulation to solve for joint accelerations as 
described in (5). The computed joint accelerations are 
subsequently integrated twice over time to obtain the 
corresponding joint velocities and displacements. The 
resulting joint kinematic trajectories are then 
compared against those derived from the inverse 
kinematics to validate the proposed methodology. 
The comparison results in the form of acceleration, 
velocity and displacement of the HFE joints of the 
back-right leg are shown in Fig. 5 – 7. 

Figure 5-7 illustrates high agreement of the 
simulation of the joint trajectories obtained from the 
forward dynamic simulation with those computed via 
the inverse kinematics based on the desired trajectory. 
The observed discrepancies are minimal, with a 
maximum percentage error of only 0.0006%. 

Such results indicate strong validation for the 
accuracy and effectiveness of the proposed 
methodology in modelling the system dynamics. The 
close agreement between the forward dynamics 
outputs and the reference trajectories derived from 
inverse kinematics demonstrates the reliability of the 
implemented numerical framework. Additionally, the 
consistency across results confirms the correctness of 
the developed code and simulation environment, 
ensuring its proper functionality for dynamic 
analysis. This validation reinforces the robustness of 

the computational framework and supports its 
applicability to real-world quadruped robotic systems 
for dynamic modelling and control. 

 
Figure 5: Comparison of the HFE joint acceleration for the 
back-right (BR) leg. 

 
Figure 6: Comparison of the HFE joint velocity for the 
back-right (BR) leg. 

 
Figure 7: Comparison of the HFE joint displacement for the 
back-right (BR) leg. 
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7  CONCLUSIONS 

This study presents the development of a novel 
framework for formulating the system dynamics of a 
quadruped robot through the systematic selection of 
kinematic and dynamic constraints. The dynamic 
model is constructed using the recursive Newton-
Euler formulation to ensure computational efficiency. 
The forward dynamics is implemented by deriving 
the joint acceleration vector from the system rigid 
body dynamic equation. A numerical approach is 
used to compute the inertia matrix, Coriolis and 
centrifugal torque vector, and gravitational torque 
vector. These dynamic terms are then utilized to solve 
for the joint acceleration vector which could be then 
integrated twice in the simulation to obtain the joint 
velocity and displacement vectors.  

A simulation environment was established for a 
quadruped system comprising twelve actuators, with 
each leg driven by three independently actuated 
joints, enabling full mobility and control authority. 
Motion trajectories were generated based on a 
predefined dynamic trotting gait. The accuracy of the 
dynamic formulation and the developed simulation 
model was validated by simulating the system under 
representative trajectories corresponding to dynamic 
trotting gaits. 

A comprehensive analysis of the dynamic 
formulation, with a particular focus on the forward 
dynamics could include closed-loop control 
simulations employing a feedforward and feedback 
control strategies, followed by experimental 
validation to assess the accuracy and effectiveness of 
the proposed approach. 
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