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This paper presents a novel method for approximating periodic behavior of nonlinear systems by use of switch-

ing affine dynamics. While previous work on approximating limit cycles by switching systems has been re-
stricted to state space partitions with only two regions or approximations in the plane, this study employs more
general partitions in higher-dimensional spaces as well as external signals to develop a scheme for synthesiz-
ing models with guaranteed existence of a globally stable limit cycle. The synthesis approach is formulated
as a constrained numeric optimization problem, starting from sampled nonlinear dynamics data. It minimizes
deviations between this data and the switching affine model’s limit cycle, while satisfying constraints to ensure
global stability. The principle and effectiveness of the proposed method is illustrated through examples.

1 INTRODUCTION

Periodic behavior is a fundamental phenomenon ob-
served across numerous application domains, includ-
ing biology, engineering, and physics (Teplinsky
and Feely, 2008; Mirollo and Strogatz, 1990; Pe-
terchev and Sanders, 2003). While nonlinear oscilla-
tor models such as Kuramoto, Van-der-Pol, FitzHugh-
Nagumo, Duffing, or Goodwin oscillators (Kuramoto,
2005; Joshi et al., 2016; Gaiko, 2011; Dorfler and
Bullo, 2014; Kudryashov, 2021; Gonze and Ruoff,
2021; Atherton and Dorrah, 1980) are widely used
to describe periodic behavior, the analysis of these
models is limited: Specifically, the characterization
and analysis of limit cycles, including conditions for
uniqueness and stability, is often restricted to special
cases. A central challenge in studying such behavior
is to approximate the underlying oscillatory dynam-
ics with an analytically tractable system class which
allows to rigorously analyze its properties. Exist-
ing data-driven approaches, such as machine learn-
ing or hybrid system identification, can approximate
periodic behavior (Xu and Luo, 2019), but they are
not designed to allow for rigorous analysis of proper-
ties of limit cycles. This gap hinders the systematic
study of oscillatory phenomena in applications such
as, e.g., the investigation of circadian rhythms in bio-
logical systems (Werckenthin et al., 2020), where un-
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derstanding stability, phase shifts, and synchroniza-
tion is essential.

To simplify the model analysis, switching or
piecewise-affine systems (PAS) have proven effective
in approximating nonlinear dynamics (Paoletti et al.,
2007; Lauer et al., 2011). This is primarily due to
the facts that (1.) the analytic solution of piecewise-
affine systems exists for each region of the parti-
tioned state space, and (2.) the approximation qual-
ity can be tuned through adapting the partitioning and
parametrization. Specifically with respect to the ap-
proximation of nonlinear systems with periodic tra-
jectories, the work in (Lum and Chua, 1991; Freire
et al., 1998) proposed conditions for the existence of
limit cycles of PAS (with two-region partitions) in R2.
The uniqueness and stability of these limit cycles are
further examined in (Coll et al., 2001; Llibre et al.,
2008). These results are then adopted in (Kai and Ma-
suda, 2012) to synthesize PAS with stable limit cycles
in R2, while the work in (Hanke and Stursberg, 2023;
Hanke et al., 2024) further developed algorithms to
generate planar switching affine systems to approxi-
mate given limit cycles with guarantees of uniqueness
and local stability. However, there the use of only two
affine dynamics and a single separating line limits the
approximation quality. A comprehensive review of
the conditions of the existence of limit cycles in pla-
nar piecewise-linear systems can be found in (Freire
et al., 1998) or in Chapter 5.1 of (Bernardo et al.,
2008). The recent work (Hanke et al., 2025) improved
the approximation quality by employing multiple par-
titions, however the proposed result is still limited to
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the R?, and it lacks the guarantee of global stability
of the limit cycle.

This paper extends the approaches in literature to
higher-dimensional spaces by leveraging the contrac-
tion property outlined in (Pavlov et al., 2007) to gen-
erate PAS with globally stable limit cycles. A novel
method is proposed for partitioning the state space
and synthesizing affine dynamics within each region,
ensuring both global stability and adjustable approxi-
mation quality.

Section 2 first introduces properties of PAS which
are essential for ensuring high approximation quality.
Section 3 proposes rules for partitioning state spaces
of arbitrary dimensions and for synthesizing PAS with
desired properties by use of optimization. An illustra-
tive numerical example is presented in Sec. 4, includ-
ing cases in 2 and 3 dimensions, before conclusions
and an outlook are provided in Sec. 5.

2 PROBLEM DESCRIPTION

The objective of the procedure to be proposed in this
paper is to reconstruct limit cycles of a broad class of
oscillatory systems with the following property: The
underlying nonlinear dynamics (defined in R"*) gen-
erates a smooth and stable limit cycle which 1.) is
embedded in an (n, — 1)-dim. manifold, 2.) oscillates
around a virtual center point, and 3.) does not show
strong twisting nor points of intersection with itself.

Assume that an ordered set F := {X|,%2,...,% }
of different state samples &; € R™ is taken along
the limit cycle of the nonlinear dynamics. For the
sake of clarity, it is assumed that the sampling time
At is constant along the cycle, while the method in-
troduced later is also applicable to cases with non-
uniform sampling times. The sampling is assumed to
be dense in the sense that ny is much larger than n,,
i.e., the sampling time Az is much smaller than the pe-
riod T = np - At of the limit cycle, and Ar < 1 applies.

Given F, the objective of this paper is to propose
a method to construct a dynamic model approximat-
ing the limit cycle of the nonlinear dynamics while
preserving its properties — for this purpose, the class
of switching affine systems is chosen: Let x(¢) € R"
denote the state at time ¢ € R and u(¢) € R a scalar in-
put signal, which is multiplied by a vector B € R™* !,
Assume that the state space R™ is partitioned into
finitely many polytopes P; C R™, i € {1,...,np},
which are parametrized by C; € R, d; € R, and
Cup+1 = C1, dypy1 = dy according to:

np
Pi:={xeR™|Cix>d;,Ciy1x<dis1}, | JP=R™. (1)
i=1
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Note that this definition is particular in the sense that
the number of P; and bounding planes (C;,d;) is both
np, as required for the procedure to be proposed. For
pairs (A;,b;) of A; € R™ " and b; € R™>!, the affine
dynamics assigned to each P; is:

x(t) =Aix(t)+bi+Bu(t), forx(t) e Bi.  (2)
Consider a set of switching times T = {to,#1,...} with
the initial time 7o = 0. A trajectory Xjg . of (2), start-
ing from the initial state x(f9) = xo, contains the state
evolution for a sequence of phases [fx, #;+1] in between
two successive switching times. In each phase with
t € [ty tet1], the pair (A;,b;) in (2) is activated for the
index i for which x(¢) € P; applies. A limit cycle, as a
particular trajectory of (2), is defined as follows:
Definition 1. Limit Cycle
A trajectory XTO,OO[ of (2) is called limit cycle, if a finite
period T € Ry exists such that for any point x(t) €
X0, 1 € Req it applies that: x(t+T)=x(1). O

Definition 2. Stability of a Limit Cycle
A limit cycle XTO.,w[ of (2) is called globally stable, if
every trajectory converges towards f[ko,oo[ independent
of the initialization x(0) = xo € R, O
The identification of a model of type (2) from F
requires to synthesize the following parameters: 1.)
the number np of elements P; of the state space parti-
tion, 2.) the boundaries C;x = d; of the P;, 3.) the pair
of matrices (A;,b;) for each P;, and 4.) the signal u(r)
together with the vector B. To match the properties
assumed for the limit cycle of the nonlinear system,
the particular synthesis requirements are:
* The evolution of (2) also forms a limit cycle XFOPO[,
which is globally stable according to Def. 2.
* The period of the limit cycle ’?[ko.oo[ isT =np-At.

* The limit cycle Xi‘o o] tracks the sample points in
F as well as possible.

Switching affine systems are a promising candidate
for such an approximation, since the number of pa-
rameters in each P; is small and the dynamics is rela-
tively simple to analyze. In particular, if the consid-
ered dynamics is strongly nonlinear along the cycle,
the approximation with affine dynamics in restricted
regions is well justified, while freedom in choosing
the P; (wrt. number and positioning) allows in princi-
ple to obtain arbitrarily good approximations. How-
ever, most existing work on approximating limit cy-
cles is limited to either two regions in the plane, or
provides only local stability guarantees. To address
these limitations, the following exposition uses the
concept of contractivity to obtain a synthesis proce-

dure achieving the named properties of ffo.m[ by nu-

merical optimization.
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3 SYNTHESIS OF CONTRACTIVE
SWITCHING AFFINE SYSTEMS

3.1 Partitioning of the State Space

In order to fully utilize the degrees of freedom of-
fered by (2) in assigning different affine dynamics to
the regions when tracking the set of samples F :=
{%1,%2,...,%; }, a method for partitioning the state
space in any dimension n,, € [2, nr — 1] is introduced
first. This method ensures that the resulting partition
satisfies the conditions in (1). Specifically, the cases
of ny =2, ny =3, and n, > 3 are discussed separately
in the sequel.

Case n, = 2: Let a center point x; of all points in
F be determined by:

1 . . -
Xl = 5 <,E fmax | ifgl =, {ﬁ{?np}m]) )

for both dimensions ¢ € {1,2}. By assuming that x;
does not coincide with any point in F, a set of n,
sample points X1, ... ,)Enp is selected from F, see Re-
mark 2 at the end of this subsection for more details.
Then, for each point %;, a unique line Cix = d; with
C; e R1*2 d; € R, can be determined, which contains
xs and ;. Such a line then serves as the boundary be-
tween the regions P;_ and P;, as illustrated in Fig. 1.

Figure 1: Based on F, the center point x5, and a set of se-
lected points X1, ..., %,, € F (each representing the first state
of any subset Fi,..., F,, along the limit cycle), the lines for

partitioning X into regions P; are determined.

Case n, = 3: Let the center point x; again be de-
termined by (3). Then, a plane Q*x = €* with Q* €
RI¥3, &% € R, is determined by:

nr
(Q*,e") = argminz |Q%; —¢€ll2, s.t.Qxs=¢ (4)

£ =l
Based on the outcome of (4), a line:
F::{x€R3|x:xs+nQ*,n€R} (5)

which contains x; and shares the direction vector Q*
is obtained. Note that the plane Q*x = €* contains the

center point x;, while the overall distance between the
sample points in F to the plane is minimized across
all possible values of Q and €. If no point in F is
contained' in T, a set of n, sample points £1,... ,)?,,p
is selected from F. For each of these sample points
Xi, a unique plane containing X; and the line I" is de-
termined. If such a plane does not contain any other
sample point from F, then it is assumed to constitute
the boundary R;_ ; := {x € R}|Cix = d;} between two
adjacent regions P,_| and P;. In this way, a partition
which does not satisfy (1), as illustrated in Fig. 2a), is
avoided. An admissible partitioning from the afore-
mentioned procedure is shown in Fig. 2b).

Figure 2: For n, = 3, the partitioning shown in Fig. 2 a)
does not satisfy (1). In contrast, an admissible partition is
obtained by the considered procedure for the case in Fig. 2
b).

Case n, > 3: Determine again x;, the vector Q* €
R'*™ and the line I" according to (3) to (5). Let also
n, sample points £1,..., £,, be selected from . How-
ever, for any of these sample points £;, a hyperplane
containing X; and the line I" (while being defined in
an n, — 1 dimensional subspace) is not unique. To re-
solve this issue, a set of linearly independent vectors
Q. Q2,05 € R™"xare identified, which have
to be linearly independent of Q*. Based on these vec-
tors, a hyperplane ¥ can be determined in the n, — 2
dimensional subspace by:

ny—2
¥:={x € R™[x = xsmQ"+)_ n;Q;, n; €R}. (6)
j=2
Assume that ¥ does not contain any points from F,
then for each sample point £;, a unique hyperplane in
the n, — 1 dimensional subspace can be determined,
which contains ¥ and £;. If such hyperplane does not
contain any other sample point from F, this hyper-
plane is then chosen to be the boundary R;_ ; := {x €
R"|Cix = d;} between the regions P;_; and P;.
Remark 1. The proposed procedure a-priori ex-
cludes sets F that are likely to yield poor approxi-

UIf this condition does not hold, one may resolve the
issue by slightly changing Q*.
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mations. One of these cases is shown in Fig. 3 a),
in which the condition is not satisfied that Cix = d;
does only contain one sample point X; and one line I.
The second case, shown in Fig. 3 b), corresponds to
a limit cycle intersecting itself. While the proposed
partitioning procedure may succeed here, it becomes
clearly evident, e.g. for Ps, that no affine system can
be found that adequately captures the opposing direc-
tions of motion of the trajectories. This limitation mo-
tivates the exclusion of limit cycles with intersections,
as stated in Sec. 2.

a) Z
2
C,')C = d,’
X3 | A
X1 L
r
Xs
[ ] x
/."
[ ]
X1
Q*x =¢*

Figure 3: Types of sets F' that are not suitable for the par-
titioning procedure under consideration: the case in a) fails
to meet the condition that C;x = d; does only contain a sam-
ple point £; and I, while the case in b) is not feasible for
determination of A3, b3 € Pz and Ag,b4 € Py.

Remark 2. The n, sample points of the sequence
{%:}37, with timestamps {#;};", are selected from F

such that all time intervals satisfy:

A= —B| <1 Vie{l,..,n,} (7

with t,, S+l =1 While this selection is not strictly nec-
essary to partition the state space, it enables good ap-
proximation quality in the reconstructed limit cycle,
as will be discussed in Sec. 3.3.

3.2 Construction of the Dynamics

Assume that the number ny and the partition (1) into
P; are fixed. According to (Pavlov et al., 2007), the
switching affine system (2) is said to be contractive,
if the following is satisfied:

e Condition 1: Axx+ b; = Aj+1x + b1 holds for
all x on the boundary Cix = d; and for all i €
{1 yene ,np}, with Anp+l =A; and bnp+1 =b.

¢ Condition 2: AiTQ 4+ QA; < 0 holds for all i €
{1,...,np} with a positive-definite matrix Q > 0.

The first condition requires that the gradient of the
autonomous dynamics on the switching boundaries
must be continuous, while the second condition im-
plies the existence of a common Lyapunov function
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in all regions. Next, the important property of con-
tractivity is established, which underlies the synthesis
procedure in this paper:

Lemma 1. (Contractive switching affine systems
(Demidovich, 1967; Pavlov et al., 2007)) If the sys-
tem (2) is contractive with a non-zero vector B, then
Sor any piecewise continuous periodic signal u(t) with
aperiod T, the solution x(t), t > 0 starting from an ar-
bitrary x(0) € R™ always converges to a unique limit
cycle with the same period T. O

In order to encode the requirement of continu-
ous gradients on the switching boundaries, the fol-
lowing equality constraints for synthesizing (A;,b;),
i€{l,...,np} are proposed:

Al Air1,[g=%[qCis bifgbit1[g=%i[gdi (8)

for o) € R and g € {1,...,n,}, where A; | repre-
sents the g-th row of A;.

The condition for the existence of a common Lya-
punov function represents a nonlinear matrix inequal-
ity involving the matrices A1, ...,A,, and Q. If these
constraints are satisfied, the system (2) is ensured to
have a globally stable limit cycle as in Def.s 1 and
2 with a period of T (provided that the signal u(r)
is also periodic with the same length, see Lemma 1).
The task is thus to adapt (2) in order to achieve that
the limit cycle approximates the sample points in F
with respect to position and time.

3.3 Tracking the Sample Points in F

For tracking the sample points in a set F;, consider the
set F] explicitly — the following procedure can then be
transferred to the other sets Fj, i € {2,...,np} equiva-
lently. For Fi = {£,%2,...,%,, } with n; denoting the
number of points in F} and X; = X1, the following cost
functional is defined:

ny .
Jii= Y || DA
j=2

(-DAr
/’ A U=DA=T) () 4 Bu(t)) di— 5|3, (9)
0

It records the difference between the reachable points
of %(t) = A1x(t) + by + Bu(t) (starting from £;) and
the sampled points in F; at each sampling time?.

By synthesizing A, b; and B for a given signal
u(t), the first challenge in minimizing J; is the nonlin-
earity caused by the matrix exponential function e1’.

2For sampled states in F with non-uniform but known
sampling times, only the corresponding times in (9) need to
be adjusted.
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Based on the Taylor series:

1 ng 1 .
eAllenx+A1t+§A%t2+. -~ A+Y FA{N (10)
! j=1J

the value of ¢*!” can be approximated by the right-
hand side of (10) with sufficiently high order ny. If
the state dimension n, is large, a high order n; would
increase the complexity of the optimization signifi-
cantly (due to a higher-order nonlinearity), whereas
a smaller order (such as n; < 3) would lead to a non-
negligible approximation error. To this end, two pos-
sible countermeasures are introduced:

* For a fixed matrix Ay, the approximation error in
(9) is small for small times . Especially for# < 1
the series ¢/, j € {ng,nq+1,...} in the neglected
terms is converging to zero, and thus neglecting
these terms does only lead to small contributions
to the approximation error.

* For any fixed time 7 and if the spectrum of A;
is contained in the unit cycle, the matrices A7,
j € 4{ng,ng+1,...} in the neglected terms also
converge to zero, thus leading to small errors.

The first countermeasure is included into the parti-
tioning procedure in Section 3.1 Remark 2 by se-
lecting sample points on the boundaries such that
j+At < 1holds forall j € {1,...,n;} in (9). The sec-
ond countermeasure is established by ensuring that
the largest singular value of A; is smaller than one,
what can be guaranteed by observing the nonlinear
matrix inequality:

ATA <1, (11)

Note that larger numbers 7, of regions of the parti-
tion, in general, reduce the transition time from one
boundary to the next, and thus lead to smaller ap-
proximation errors in the Taylor series expansion for
a given order ny (at the price of having to synthesize
more pairs (A;,b;)). The condition (11) forces the
eigenvalues of A; to be contained in the interior of the
left half of the unit circle (since the contraction con-
dition requires the real-part of the eigenvalues of A;
to be negative in addition). Consequently, the conver-
gence rate of (2) in the region P; is also bounded by 1,
which can be counterproductive if the sample points
to be tracked in F} encode that the state of the sampled
limit cycle changes very differently in a certain region
of the state space. As a result, the inclusion of (11)
should be seen as an optional measure, or be replaced
by a less conservative condition, such as AITAl =< B,
for some B > 1. The described countermeasures only
affect the approximation quality without compromis-
ing the contraction property ensured by Lemma 1. A

detailed analysis of the upper bound of the approxi-
mation error can be found in (Higham, 2009; Kenney
and Laub, 1998).

The periodic signal u(¢) can e.g. be chosen piece-

wise constant for k € {0,1,2,...}:

=1 e < kT (k4 5)T)
u(t) = {1,z< [(k+%)T,(i+1)T). (12)

The integral part of (9) then leads to an analytic ex-
pression:

/OleAl@*f) (b1 +Bu(x)) dt =

T
Afl(b1+B)

(eM — 1, )AT (b —B) for 0 <1<
(M 21, AT (b1—B)+(eM1 3T,
for %T <t<T,

B —

~—

what is particularly beneficial for applying the pre-
viously discussed countermeasures in synthesis, see
Section 3.4. Note that the matrix A; is always in-
vertible, as the contractivity condition implies that A
must be Hurwitz.

3.4 Opverall Optimization Problem

Given a partitioned state space according to Sec. 3.1
and a periodic signal u(z) of type (12), the optimiza-
tion problem to synthesize the switching affine system
(2) is defined as:

np

in Y Ji (13)

m
Apbi0,i€{l,...np},B,0 1

s.t.forallie{l,...,n,}:

constraints (8) Vg € {1,...,n,}, (14)
ATQ+0A; <0, Q0~0, B#0, (15)
ATA; < I, (optional constraint), (16)

n,-Af
eAiniAtx"l-—|—/ Ailnidi=1) (b+Bu(t))dt=%i11. (17)
0

In here, J; is defined for each region in a similar way
as Jp in (9). This is a nonlinear optimization problem
with in total (np + 1)n? + (2np + 1)n, variables. The
cost functional minimized in (13) records the distance
between each sample point in F and the point on the
limit cycle of (2) at the same time. The constraints
(14) and (15) guarantee that the resulting system (2)
is contractive, while the optional constraint (16) aims
at achieving a satisfying approximation by using the
Taylor expansion for the matrix exponential function
in (13) and (17). The last constraint aims at ensur-
ing that the set of sample points %;, i € {1,...,np}
on the boundaries are reached by the limit cycle of
(2). Otherwise, the minimization of (13) may only
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force a transient trajectory of (2) to track the sample
points in F, instead of the limit cycle of (2) (due to
the approximation error of e4?). In general, the op-
timization problem is not guaranteed to be feasible,
but increasing the number n, or choosing a different
partition contributes to finding a feasible solution.

As an extension to account for transient behavior
from arbitrary initial states to the limit cycle, an ad-
ditional term can be included in (13) to minimize the
deviation of the model dynamics from the sampled
transient trajectories. Finally, it is worth mentioning
that measurement noise (typically affecting the sam-
ples in F) is eliminated by the solution of (13) to (17)
and assigning the model (2) to any of the regions P;.

4 NUMERIC EXAMPLES

4.1 Illustrating Example in the Plane

To evaluate the performance of the proposed synthe-
sis method, first an example of a set F' of nineteen
points in the plane is considered, as shown in Fig. 4
and Fig. 5 (marked by the solid black circles). The
obtained period based on the sample set is 7 = 1.4,
which is also used for the periodic signal (12). In a
first instance, the state space is partitioned by eight
rays (solid blue lines) according to the rules provided
in Section 3 with:

cel1 1], el
1
C7:[1 %]a ng[l %}7 dlzzv dz__37
3 3 4
d3 :_57 dy :_57 d5 :_gv d6 :57 d7 :67 ds :§

using the center point x; = [1,2]7. The limit cycle of
(2) obtained from solving the problem (13) with an
order of n; = 4 for the matrix exponential function is
shown in Fig. 4. The shape of the limit cycle makes
apparent that a small order n, leads to considerable
approximation errors. As a countermeasure, the order
is increased to ny = 9, for which the pairs (A;,b;),
i €{l,...,8} are obtained from solving the problem
(13) (again with T = 1.4 in (12)). The resulting limit
cycle is marked in black in Fig. 5.

The distance to the sampled points is much
smaller, and trajectories from different initial points
(in- and outside of the limit cycle) are simulated to
demonstrate the stability and uniqueness of the limit
cycle, see Fig. 5 and Fig. 6 (solid magenta, red and
green). Note that the optional condition (16) was not
used within this optimization, since the accuracy of
the matrix exponential with n; = 9 was acceptable.
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Figure 4: Sample points (black circles), switching bound-
aries in solid blue, and the limit cycle of the switching sys-
tem with n; = 4 in solid black.

50 ¢

Ny

X2 A

750 L

X1

Figure 5: Sampled points (black circles) and switching
boundaries in blue. The limit cycle is shown in black as well

as trajectories from different initial points x(0)=[2.5 —20] g
red, x(0)=[—5 50] " green, and x(0)=[7.5 —50] " magenta.

10

x,0
o w

50

x,0
o

50t : : : : : : :
0 0.5 1 15 2 25 3 35 4
t
Figure 6: Convergence of x; (¢) and x () for different initial
points x(0)=[2.5 fZO}T red, x(0)=[—5 SO]T green, and

x(0)=[7.5 —50]" magenta.
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4.2 Example in a 3D-Space

For an additional example within a 3-dimensional
state space, consider the set of sample points illus-
trated in Fig. 7 (denoted by black circles). By apply-
ing the method described in Section 3.1 (case n, = 3),
and adhering to the requirement of the first counter-
measure (transition times between sample points on
adjacent boundaries are less than 1) leads to n, = 8
subsets F; to minimize the transition time between
each pair of £;. Solving the optimization problem (4)
and using the provided sample points as well as the
center point x; = [1,2,0]7 provides the following re-
sult:

Q*:[—0.0IIS —0.0066 0.9999] , € =—0.0247,
which is shown as green plane in Fig. 7. The required
line of intersection is given by I':= {x € R | x =
xs +NQ*, n € R}, as marked by the solid blue line
in Fig. 7. Since no point in F is contained in I', a
unique plane containing both (I" and ;) is determined
for each sample point £; to:

Ci=[l —§ 0.0099], C;=[I =2 —0.0017,

C3=[-1 -2 —0.0247,C4=[-1 —1 —0.0132],
Cs=[-1 1 —0.0102], Cs=[-1 3 0.0083],

Cr=[l 3 0.0280], Cs=[1 £ 0.0126],d1=0.5, dr=—3
d3=—5, dy=—1.5,d5=—0.6, d¢=5, d7=06, dz=1.33,
see the solid blue planes in Fig. 7. The resulting limit
cycle obtained from solving the optimization problem

in Section 3.4 is marked in black in Fig. 7. The dis-
tance to the sampling points is once again acceptable,

Figure 7: Sampled points (black circles), green plane with
minimum distance to the sampled points including x; (red
circle), the line of intersection I" as solid blue line and
boundaries shown as planes in blue, while the limit cycle
is marked in black and the trajectories from different initial

points x(0)=[6.5 10 0.1]" red, x(0)=[~1.9 18.5 0.18]"

green, and x(0)=[—5 10 0] T magenta.

1 1 .
0 0.5 1 15 2 25 3

Figure 8: Convergence of x(f), xp(t), x3(¢) for dif-
ferent initial points x(0)=[6.5 10 O.I]T red, x(0)=
[~1.9 18.5 0.18]" green, and x(0)=[—5 10 0]" magenta.

even though all dimensions are on significantly dif-
ferent scales, which underscores the approximation
quality of the approach. Trajectories from different
initial points again demonstrate the convergence to
the unique limit cycle, see Fig. 7 and Fig. 8 with tra-
jectories in magenta, red, and green.

S CONCLUSIONS

This work has introduced a method for approximat-
ing periodic behavior of nonlinear dynamic systems
not restricted to the planar case. Based on suitable
sampling of the limit cycle of the nonlinear dynam-
ics, switched affine systems with exogenous inputs
are used for approximation, while the approach pre-
serves essential limit cycle properties including stabil-
ity and uniqueness. Unlike previously available meth-
ods, the work here provides constructive rules to par-
tition the state space and synthesize the dynamics by
optimization, such that the limit cycle of the switching
affine system matches the sample points of the non-
linear data generator in an optimized sense. By using
the notion of contractivity, the constructed limit cycle
is ensured to be globally stable. Although the intro-
duced conditions generate a non-convex and nonlin-
ear optimization problem, they simultaneously ensure
a smooth limit cycle, a behavior frequently observed
in real-world systems. While solvability of the opti-
mization problem cannot be guaranteed, any solution
found under these conditions will be convergent.

It should be noted that the use of a center point in
which all boundaries intersect is particularly suitable
if the sample points have a relatively even distribution
around an interior region in R".
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Future work aims at investigating schemes of par-
titioning without a common center point, and the cou-
pling of several oscillators of the proposed type.
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