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Abstract: This paper presents a novel method for approximating periodic behavior of nonlinear systems by use of switch-

ing affine dynamics. While previous work on approximating limit cycles by switching systems has been re-

stricted to state space partitions with only two regions or approximations in the plane, this study employs more

general partitions in higher-dimensional spaces as well as external signals to develop a scheme for synthesiz-

ing models with guaranteed existence of a globally stable limit cycle. The synthesis approach is formulated

as a constrained numeric optimization problem, starting from sampled nonlinear dynamics data. It minimizes

deviations between this data and the switching affine model’s limit cycle, while satisfying constraints to ensure

global stability. The principle and effectiveness of the proposed method is illustrated through examples.

1 INTRODUCTION

Periodic behavior is a fundamental phenomenon ob-

served across numerous application domains, includ-

ing biology, engineering, and physics (Teplinsky

and Feely, 2008; Mirollo and Strogatz, 1990; Pe-

terchev and Sanders, 2003). While nonlinear oscilla-

tor models such as Kuramoto, Van-der-Pol, FitzHugh-

Nagumo, Duffing, or Goodwin oscillators (Kuramoto,

2005; Joshi et al., 2016; Gaiko, 2011; Dörfler and

Bullo, 2014; Kudryashov, 2021; Gonze and Ruoff,

2021; Atherton and Dorrah, 1980) are widely used

to describe periodic behavior, the analysis of these

models is limited: Specifically, the characterization

and analysis of limit cycles, including conditions for

uniqueness and stability, is often restricted to special

cases. A central challenge in studying such behavior

is to approximate the underlying oscillatory dynam-

ics with an analytically tractable system class which

allows to rigorously analyze its properties. Exist-

ing data-driven approaches, such as machine learn-

ing or hybrid system identification, can approximate

periodic behavior (Xu and Luo, 2019), but they are

not designed to allow for rigorous analysis of proper-

ties of limit cycles. This gap hinders the systematic

study of oscillatory phenomena in applications such

as, e.g., the investigation of circadian rhythms in bio-

logical systems (Werckenthin et al., 2020), where un-
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derstanding stability, phase shifts, and synchroniza-

tion is essential.

To simplify the model analysis, switching or

piecewise-affine systems (PAS) have proven effective

in approximating nonlinear dynamics (Paoletti et al.,

2007; Lauer et al., 2011). This is primarily due to

the facts that (1.) the analytic solution of piecewise-

affine systems exists for each region of the parti-

tioned state space, and (2.) the approximation qual-

ity can be tuned through adapting the partitioning and

parametrization. Specifically with respect to the ap-

proximation of nonlinear systems with periodic tra-

jectories, the work in (Lum and Chua, 1991; Freire

et al., 1998) proposed conditions for the existence of

limit cycles of PAS (with two-region partitions) in R
2.

The uniqueness and stability of these limit cycles are

further examined in (Coll et al., 2001; Llibre et al.,

2008). These results are then adopted in (Kai and Ma-

suda, 2012) to synthesize PAS with stable limit cycles

in R
2, while the work in (Hanke and Stursberg, 2023;

Hanke et al., 2024) further developed algorithms to

generate planar switching affine systems to approxi-

mate given limit cycles with guarantees of uniqueness

and local stability. However, there the use of only two

affine dynamics and a single separating line limits the

approximation quality. A comprehensive review of

the conditions of the existence of limit cycles in pla-

nar piecewise-linear systems can be found in (Freire

et al., 1998) or in Chapter 5.1 of (Bernardo et al.,

2008). The recent work (Hanke et al., 2025) improved

the approximation quality by employing multiple par-

titions, however the proposed result is still limited to
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the R
2, and it lacks the guarantee of global stability

of the limit cycle.

This paper extends the approaches in literature to

higher-dimensional spaces by leveraging the contrac-

tion property outlined in (Pavlov et al., 2007) to gen-

erate PAS with globally stable limit cycles. A novel

method is proposed for partitioning the state space

and synthesizing affine dynamics within each region,

ensuring both global stability and adjustable approxi-

mation quality.

Section 2 first introduces properties of PAS which

are essential for ensuring high approximation quality.

Section 3 proposes rules for partitioning state spaces

of arbitrary dimensions and for synthesizing PAS with

desired properties by use of optimization. An illustra-

tive numerical example is presented in Sec. 4, includ-

ing cases in 2 and 3 dimensions, before conclusions

and an outlook are provided in Sec. 5.

2 PROBLEM DESCRIPTION

The objective of the procedure to be proposed in this

paper is to reconstruct limit cycles of a broad class of

oscillatory systems with the following property: The

underlying nonlinear dynamics (defined in R
nx) gen-

erates a smooth and stable limit cycle which 1.) is

embedded in an (nx−1)-dim. manifold, 2.) oscillates

around a virtual center point, and 3.) does not show

strong twisting nor points of intersection with itself.

Assume that an ordered set F := {x̃1, x̃2, . . . , x̃nF
}

of different state samples x̃i ∈ R
nx is taken along

the limit cycle of the nonlinear dynamics. For the

sake of clarity, it is assumed that the sampling time

∆t is constant along the cycle, while the method in-

troduced later is also applicable to cases with non-

uniform sampling times. The sampling is assumed to

be dense in the sense that nF is much larger than nx,

i.e., the sampling time ∆t is much smaller than the pe-

riod T = nF ·∆t of the limit cycle, and ∆t < 1 applies.

Given F , the objective of this paper is to propose

a method to construct a dynamic model approximat-

ing the limit cycle of the nonlinear dynamics while

preserving its properties – for this purpose, the class

of switching affine systems is chosen: Let x(t) ∈ R
nx

denote the state at time t ∈R and u(t)∈R a scalar in-

put signal, which is multiplied by a vector B ∈R
nx×1.

Assume that the state space R
nx is partitioned into

finitely many polytopes Pi ⊆ R
nx , i ∈ {1, . . . ,nP},

which are parametrized by Ci ∈ R
1×nx , di ∈ R, and

CnP+1 =C1, dnP+1 = d1 according to:

Pi:={x∈Rnx|Cix≥di,Ci+1x<di+1},
nP⋃
i=1

Pi=R
nx. (1)

Note that this definition is particular in the sense that

the number of Pi and bounding planes (Ci,di) is both

np, as required for the procedure to be proposed. For

pairs (Ai,bi) of Ai ∈R
nx×nx and bi ∈R

nx×1, the affine

dynamics assigned to each Pi is:

ẋ(t) = Aix(t)+ bi+Bu(t), for x(t) ∈ Pi. (2)

Consider a set of switching times Tk = {t0, t1, . . .}with

the initial time t0 = 0. A trajectory x̄[0,∞[ of (2), start-

ing from the initial state x(t0) = x0, contains the state

evolution for a sequence of phases [tk, tk+1] in between

two successive switching times. In each phase with

t ∈ [tk, tk+1], the pair (Ai,bi) in (2) is activated for the

index i for which x(t) ∈ Pi applies. A limit cycle, as a

particular trajectory of (2), is defined as follows:

Definition 1. Limit Cycle

A trajectory x̄∗[0,∞[ of (2) is called limit cycle, if a finite

period T ∈ R>0 exists such that for any point x(t) ∈
x̄∗[0,∞[, t ∈ R≥0 it applies that: x(t +T ) = x(t). �

Definition 2. Stability of a Limit Cycle

A limit cycle x̄∗[0,∞[ of (2) is called globally stable, if

every trajectory converges towards x̄∗[0,∞[ independent

of the initialization x(0) = x0 ∈ R
2. �

The identification of a model of type (2) from F

requires to synthesize the following parameters: 1.)

the number nP of elements Pi of the state space parti-

tion, 2.) the boundaries Cix = di of the Pi, 3.) the pair

of matrices (Ai,bi) for each Pi, and 4.) the signal u(t)
together with the vector B. To match the properties

assumed for the limit cycle of the nonlinear system,

the particular synthesis requirements are:

• The evolution of (2) also forms a limit cycle x̄∗[0,∞[,

which is globally stable according to Def. 2.

• The period of the limit cycle x̄∗[0,∞[ is T = nF ·∆t.

• The limit cycle x̄∗[0,∞[ tracks the sample points in

F as well as possible.

Switching affine systems are a promising candidate

for such an approximation, since the number of pa-

rameters in each Pi is small and the dynamics is rela-

tively simple to analyze. In particular, if the consid-

ered dynamics is strongly nonlinear along the cycle,

the approximation with affine dynamics in restricted

regions is well justified, while freedom in choosing

the Pi (wrt. number and positioning) allows in princi-

ple to obtain arbitrarily good approximations. How-

ever, most existing work on approximating limit cy-

cles is limited to either two regions in the plane, or

provides only local stability guarantees. To address

these limitations, the following exposition uses the

concept of contractivity to obtain a synthesis proce-

dure achieving the named properties of x̄∗[0,∞[ by nu-

merical optimization.
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3 SYNTHESIS OF CONTRACTIVE

SWITCHING AFFINE SYSTEMS

3.1 Partitioning of the State Space

In order to fully utilize the degrees of freedom of-

fered by (2) in assigning different affine dynamics to

the regions when tracking the set of samples F :=
{x̃1, x̃2, . . . , x̃nF

}, a method for partitioning the state

space in any dimension np ∈ [2, nF −1] is introduced

first. This method ensures that the resulting partition

satisfies the conditions in (1). Specifically, the cases

of nx = 2, nx = 3, and nx > 3 are discussed separately

in the sequel.

Case nx = 2: Let a center point xs of all points in

F be determined by:

xs,[q] =
1

2

(

max
l∈{1,...,nF}

x̃l,[q]− min
l∈{1,...,nF}

x̃l,[q]

)

(3)

for both dimensions q ∈ {1,2}. By assuming that xs

does not coincide with any point in F , a set of np

sample points x̂1, . . . , x̂np is selected from F , see Re-

mark 2 at the end of this subsection for more details.

Then, for each point x̂i, a unique line Cix = di with

Ci ∈R
1×2, di ∈R, can be determined, which contains

xs and x̂i. Such a line then serves as the boundary be-

tween the regions Pi−1 and Pi, as illustrated in Fig. 1.

xs

x̂1

x̂2

x̂3

x̂4

x̂5

P1

P2

P3

P4

P5

Figure 1: Based on F , the center point xs, and a set of se-
lected points x̂1, . . . , x̂nP

∈F (each representing the first state
of any subset F1, . . . ,FnP

along the limit cycle), the lines for
partitioning X into regions Pi are determined.

Case nx = 3: Let the center point xs again be de-

termined by (3). Then, a plane Ω∗x = ε∗ with Ω∗ ∈
R

1×3, ε∗ ∈R, is determined by:

(Ω∗
,ε∗) := argmin

Ω,ε

nF

∑
i=1

‖Ωx̃i − ε‖2, s.t. Ωxs = ε (4)

Based on the outcome of (4), a line:

Γ := {x ∈ R
3 | x = xs +ηΩ∗

, η ∈ R} (5)

which contains xs and shares the direction vector Ω∗

is obtained. Note that the plane Ω∗x = ε∗ contains the

center point xs, while the overall distance between the

sample points in F to the plane is minimized across

all possible values of Ω and ε. If no point in F is

contained1 in Γ, a set of np sample points x̂1, . . . , x̂np

is selected from F . For each of these sample points

x̂i, a unique plane containing x̂i and the line Γ is de-

termined. If such a plane does not contain any other

sample point from F , then it is assumed to constitute

the boundary Ri−1,i := {x∈R
3|Cix= di} between two

adjacent regions Pi−1 and Pi. In this way, a partition

which does not satisfy (1), as illustrated in Fig. 2a), is

avoided. An admissible partitioning from the afore-

mentioned procedure is shown in Fig. 2b).

a) b)

xs

xs
Ω∗

Γ

P5

P6

P1

P2

P3

P4
x̂1

x̂2

x̂3

x̂4

x̂5x̂6

Figure 2: For nx = 3, the partitioning shown in Fig. 2 a)
does not satisfy (1). In contrast, an admissible partition is
obtained by the considered procedure for the case in Fig. 2
b).

Case nx > 3: Determine again xs, the vector Ω∗ ∈

R
1×nx , and the line Γ according to (3) to (5). Let also

np sample points x̂1, . . . , x̂np be selected from F . How-

ever, for any of these sample points x̂i, a hyperplane

containing x̂i and the line Γ (while being defined in

an nx − 1 dimensional subspace) is not unique. To re-

solve this issue, a set of linearly independent vectors

Ω2, . . . ,Ωnx−2, Ω j ∈R
1×nx , are identified, which have

to be linearly independent of Ω∗. Based on these vec-

tors, a hyperplane Ψ can be determined in the nx − 2

dimensional subspace by:

Ψ:={x ∈ R
nx |x = xs+η1Ω∗+

nx−2

∑
j=2

η jΩ j, η j ∈R}. (6)

Assume that Ψ does not contain any points from F ,

then for each sample point x̂i, a unique hyperplane in

the nx − 1 dimensional subspace can be determined,

which contains Ψ and x̂i. If such hyperplane does not

contain any other sample point from F , this hyper-

plane is then chosen to be the boundary Ri−1,i := {x ∈
R

nx |Cix = di} between the regions Pi−1 and Pi.

Remark 1. The proposed procedure a-priori ex-

cludes sets F that are likely to yield poor approxi-

1If this condition does not hold, one may resolve the
issue by slightly changing Ω∗.
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mations. One of these cases is shown in Fig. 3 a),

in which the condition is not satisfied that Cix = di

does only contain one sample point x̂i and one line Γ.

The second case, shown in Fig. 3 b), corresponds to

a limit cycle intersecting itself. While the proposed

partitioning procedure may succeed here, it becomes

clearly evident, e.g. for P3, that no affine system can

be found that adequately captures the opposing direc-

tions of motion of the trajectories. This limitation mo-

tivates the exclusion of limit cycles with intersections,

as stated in Sec. 2.

x1 x1

x3

x2

x2

a)
b)

xs
xs

P1

P2

P3

P4

x̂1

x̂2

Γ

Ω∗x = ε∗

Cix = di

Figure 3: Types of sets F that are not suitable for the par-
titioning procedure under consideration: the case in a) fails
to meet the condition that Cix = di does only contain a sam-
ple point x̂i and Γ, while the case in b) is not feasible for
determination of A3,b3 ∈ P3 and A4,b4 ∈ P4.

Remark 2. The np sample points of the sequence

{x̂i}
np

i=1 with timestamps {t̂i}
np

i=1 are selected from F

such that all time intervals satisfy:

∆t̂i := |t̂i+1 − t̂i|< 1 ∀i ∈ {1, . . . ,np} (7)

with t̂np+1 ≡ t1. While this selection is not strictly nec-

essary to partition the state space, it enables good ap-

proximation quality in the reconstructed limit cycle,

as will be discussed in Sec. 3.3.

3.2 Construction of the Dynamics

Assume that the number nF and the partition (1) into

Pi are fixed. According to (Pavlov et al., 2007), the

switching affine system (2) is said to be contractive,

if the following is satisfied:

• Condition 1: Aix + bi = Ai+1x + bi+1 holds for

all x on the boundary Cix = di and for all i ∈
{1, . . . ,nP}, with Anp+1 = A1 and bnp+1 = b1.

• Condition 2: AT
i Q + QAi ≺ 0 holds for all i ∈

{1, . . . ,nP} with a positive-definite matrix Q ≻ 0.

The first condition requires that the gradient of the

autonomous dynamics on the switching boundaries

must be continuous, while the second condition im-

plies the existence of a common Lyapunov function

in all regions. Next, the important property of con-

tractivity is established, which underlies the synthesis

procedure in this paper:

Lemma 1. (Contractive switching affine systems

(Demidovich, 1967; Pavlov et al., 2007)) If the sys-

tem (2) is contractive with a non-zero vector B, then

for any piecewise continuous periodic signal u(t) with

a period T , the solution x(t), t ≥ 0 starting from an ar-

bitrary x(0) ∈R
nx always converges to a unique limit

cycle with the same period T . �

In order to encode the requirement of continu-

ous gradients on the switching boundaries, the fol-

lowing equality constraints for synthesizing (Ai,bi),
i ∈ {1, . . . ,nP} are proposed:

Ai,[q]−Ai+1,[q]=αi,[q]Ci, bi,[q]−bi+1,[q]=αi,[q]di (8)

for αi,[q] ∈ R and q ∈ {1, . . . ,nx}, where Ai,[q] repre-

sents the q-th row of Ai.

The condition for the existence of a common Lya-

punov function represents a nonlinear matrix inequal-

ity involving the matrices A1, . . . ,AnP
and Q. If these

constraints are satisfied, the system (2) is ensured to

have a globally stable limit cycle as in Def.s 1 and

2 with a period of T (provided that the signal u(t)
is also periodic with the same length, see Lemma 1).

The task is thus to adapt (2) in order to achieve that

the limit cycle approximates the sample points in F

with respect to position and time.

3.3 Tracking the Sample Points in F

For tracking the sample points in a set Fi, consider the

set F1 explicitly – the following procedure can then be

transferred to the other sets Fi, i ∈ {2, . . . ,nP} equiva-

lently. For F1 = {x̂1, x̃2, . . . , x̃n1
} with n1 denoting the

number of points in F1 and x̂1 = x̃1, the following cost

functional is defined:

J1 :=
n1

∑
j=2

||eA1( j−1)∆t x̂1 + . . .

∫ ( j−1)∆t

0
eA1(( j−1)∆t−τ)(b1 +Bu(τ)) dτ− x̃ j||

2
2. (9)

It records the difference between the reachable points

of ẋ(t) = A1x(t)+ b1 +Bu(t) (starting from x̂1) and

the sampled points in F1 at each sampling time2.

By synthesizing A1, b1 and B for a given signal

u(t), the first challenge in minimizing J1 is the nonlin-

earity caused by the matrix exponential function eA1t .

2For sampled states in F with non-uniform but known
sampling times, only the corresponding times in (9) need to
be adjusted.
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Based on the Taylor series:

eA1t=Inx+A1t+
1

2!
A2

1t2+. . .≈Inx+
nd

∑
j=1

1

j!
A

j
1t j (10)

the value of eA1t can be approximated by the right-

hand side of (10) with sufficiently high order nd . If

the state dimension nx is large, a high order nd would

increase the complexity of the optimization signifi-

cantly (due to a higher-order nonlinearity), whereas

a smaller order (such as nd ≤ 3) would lead to a non-

negligible approximation error. To this end, two pos-

sible countermeasures are introduced:

• For a fixed matrix A1, the approximation error in

(9) is small for small times t. Especially for t < 1

the series t j, j ∈ {nd,nd + 1, . . .} in the neglected

terms is converging to zero, and thus neglecting

these terms does only lead to small contributions

to the approximation error.

• For any fixed time t and if the spectrum of A1

is contained in the unit cycle, the matrices A
j
1,

j ∈ {nd,nd + 1, . . .} in the neglected terms also

converge to zero, thus leading to small errors.

The first countermeasure is included into the parti-

tioning procedure in Section 3.1 Remark 2 by se-

lecting sample points on the boundaries such that

j ·∆t < 1 holds for all j ∈ {1, . . . ,n1} in (9). The sec-

ond countermeasure is established by ensuring that

the largest singular value of A1 is smaller than one,

what can be guaranteed by observing the nonlinear

matrix inequality:

AT
1 A1 ≺ Inx . (11)

Note that larger numbers np of regions of the parti-

tion, in general, reduce the transition time from one

boundary to the next, and thus lead to smaller ap-

proximation errors in the Taylor series expansion for

a given order nd (at the price of having to synthesize

more pairs (Ai,bi)). The condition (11) forces the

eigenvalues of A1 to be contained in the interior of the

left half of the unit circle (since the contraction con-

dition requires the real-part of the eigenvalues of A1

to be negative in addition). Consequently, the conver-

gence rate of (2) in the region P1 is also bounded by 1,

which can be counterproductive if the sample points

to be tracked in F1 encode that the state of the sampled

limit cycle changes very differently in a certain region

of the state space. As a result, the inclusion of (11)

should be seen as an optional measure, or be replaced

by a less conservative condition, such as AT
1 A1 ≺ βInx

for some β > 1. The described countermeasures only

affect the approximation quality without compromis-

ing the contraction property ensured by Lemma 1. A

detailed analysis of the upper bound of the approxi-

mation error can be found in (Higham, 2009; Kenney

and Laub, 1998).

The periodic signal u(t) can e.g. be chosen piece-

wise constant for k ∈ {0,1,2, . . .}:

u(t) =

{

−1, t < [kT,(k+ 1
2
)T )

1, t < [(k+ 1
2
)T,(k+ 1)T ).

(12)

The integral part of (9) then leads to an analytic ex-

pression:
∫ t

0
eA1(t−τ)(b1 +Bu(τ)) dτ =











(eA1t − Inx)A
−1
1 (b1 −B) for 0 ≤ t < 1

2
T

(eA1
T
2−Inx)A

−1
1 (b1−B)+(eA1(t−

1
2 T )−Inx)A

−1
1 (b1+B)

for 1
2
T ≤ t < T,

what is particularly beneficial for applying the pre-

viously discussed countermeasures in synthesis, see

Section 3.4. Note that the matrix A1 is always in-

vertible, as the contractivity condition implies that A1

must be Hurwitz.

3.4 Overall Optimization Problem

Given a partitioned state space according to Sec. 3.1

and a periodic signal u(t) of type (12), the optimiza-

tion problem to synthesize the switching affine system

(2) is defined as:

min
Ai,bi,αi,i∈{1,...,np},B,Q

nP

∑
i=1

Ji (13)

s.t. for all i ∈ {1, . . . ,np} :

constraints (8) ∀q ∈ {1, . . . ,nx}, (14)

AT
i Q+QAi ≺ 0, Q ≻ 0, B 6= 0, (15)

AT
i Ai ≺ Inx (optional constraint), (16)

eAini∆t x̂i+

∫ ni∆t

0
eAi(ni∆t−τ)(bi+Bu(τ))dτ=x̂i+1. (17)

In here, Ji is defined for each region in a similar way

as J1 in (9). This is a nonlinear optimization problem

with in total (nP + 1)n2
x +(2nP + 1)nx variables. The

cost functional minimized in (13) records the distance

between each sample point in F and the point on the

limit cycle of (2) at the same time. The constraints

(14) and (15) guarantee that the resulting system (2)

is contractive, while the optional constraint (16) aims

at achieving a satisfying approximation by using the

Taylor expansion for the matrix exponential function

in (13) and (17). The last constraint aims at ensur-

ing that the set of sample points x̂i, i ∈ {1, . . . ,nP}
on the boundaries are reached by the limit cycle of

(2). Otherwise, the minimization of (13) may only
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force a transient trajectory of (2) to track the sample

points in F , instead of the limit cycle of (2) (due to

the approximation error of eAit ). In general, the op-

timization problem is not guaranteed to be feasible,

but increasing the number np or choosing a different

partition contributes to finding a feasible solution.

As an extension to account for transient behavior

from arbitrary initial states to the limit cycle, an ad-

ditional term can be included in (13) to minimize the

deviation of the model dynamics from the sampled

transient trajectories. Finally, it is worth mentioning

that measurement noise (typically affecting the sam-

ples in F) is eliminated by the solution of (13) to (17)

and assigning the model (2) to any of the regions Pi.

4 NUMERIC EXAMPLES

4.1 Illustrating Example in the Plane

To evaluate the performance of the proposed synthe-

sis method, first an example of a set F of nineteen

points in the plane is considered, as shown in Fig. 4

and Fig. 5 (marked by the solid black circles). The

obtained period based on the sample set is T = 1.4,

which is also used for the periodic signal (12). In a

first instance, the state space is partitioned by eight

rays (solid blue lines) according to the rules provided

in Section 3 with:

C1=
[

1 − 1
4

]

, C2=
[

1 −2
]

, C3=
[

−1 −2
]

,

C4=
[

−1 − 1
4

]

, C5=
[

−1 1
5

]

, C6=
[

−1 3
]

,

C7=
[

1 5
2

]

, C8=
[

1 1
6

]

, d1 =
1

2
, d2 =−3,

d3 =−5, d4 =−
3

2
, d5 =−

3

5
, d6 =5, d7 =6, d8 =

4

3

using the center point xs = [1,2]T . The limit cycle of

(2) obtained from solving the problem (13) with an

order of nd = 4 for the matrix exponential function is

shown in Fig. 4. The shape of the limit cycle makes

apparent that a small order nd leads to considerable

approximation errors. As a countermeasure, the order

is increased to nd = 9, for which the pairs (Ai,bi),
i ∈ {1, . . . ,8} are obtained from solving the problem

(13) (again with T = 1.4 in (12)). The resulting limit

cycle is marked in black in Fig. 5.

The distance to the sampled points is much

smaller, and trajectories from different initial points

(in- and outside of the limit cycle) are simulated to

demonstrate the stability and uniqueness of the limit

cycle, see Fig. 5 and Fig. 6 (solid magenta, red and

green). Note that the optional condition (16) was not

used within this optimization, since the accuracy of

the matrix exponential with nd = 9 was acceptable.

x1

x2

50

−50

0

0 5−5 10

C8

C7C6

C5

C4

C3

C2

C1

Figure 4: Sample points (black circles), switching bound-
aries in solid blue, and the limit cycle of the switching sys-
tem with nd = 4 in solid black.

x1

x2

50

−50

0

0 5−5 10

A8,b8

A7,b7

A6,b6

A5,b5

A4,b4

A3,b3

A2,b2

A1,b1

Figure 5: Sampled points (black circles) and switching
boundaries in blue. The limit cycle is shown in black as well

as trajectories from different initial points x(0)=
[

2.5 −20
]T

red, x(0)=
[

−5 50
]T

green, and x(0)=
[

7.5 −50
]T

magenta.

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

10

1
(t

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0

50

2
(t

)
x

x

t

Figure 6: Convergence of x1(t) and x2(t) for different initial

points x(0)=
[

2.5 −20
]T

red, x(0)=
[

−5 50
]T

green, and

x(0)=
[

7.5 −50
]T

magenta.
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4.2 Example in a 3D-Space

For an additional example within a 3-dimensional

state space, consider the set of sample points illus-

trated in Fig. 7 (denoted by black circles). By apply-

ing the method described in Section 3.1 (case nx = 3),

and adhering to the requirement of the first counter-

measure (transition times between sample points on

adjacent boundaries are less than 1) leads to np = 8

subsets Fi to minimize the transition time between

each pair of x̂i. Solving the optimization problem (4)

and using the provided sample points as well as the

center point xs = [1,2,0]T provides the following re-

sult:

Ω∗=
[

−0.0115 −0.0066 0.9999
]

, ε∗ =−0.0247,

which is shown as green plane in Fig. 7. The required

line of intersection is given by Γ := {x ∈ R
3 | x =

xs +ηΩ∗, η ∈ R}, as marked by the solid blue line

in Fig. 7. Since no point in F is contained in Γ, a

unique plane containing both (Γ and x̂i) is determined

for each sample point x̂i to:

C1=
[

1 − 1
4

0.0099
]

, C2=
[

1 −2 −0.0017
]

,

C3=
[

−1 −2 −0.0247
]

,C4=
[

−1 − 1
4
−0.0132

]

,

C5=
[

−1 1
5
−0.0102

]

, C6=
[

−1 3 0.0083
]

,

C7=
[

1 5
2

0.0280
]

, C8=
[

1 1
6

0.0126
]

, d1=0.5, d2=−3

d3=−5, d4=−1.5,d5=−0.6, d6=5, d7=6, d8=1.33,

see the solid blue planes in Fig. 7. The resulting limit

cycle obtained from solving the optimization problem

in Section 3.4 is marked in black in Fig. 7. The dis-

tance to the sampling points is once again acceptable,

Figure 7: Sampled points (black circles), green plane with
minimum distance to the sampled points including xs (red
circle), the line of intersection Γ as solid blue line and
boundaries shown as planes in blue, while the limit cycle
is marked in black and the trajectories from different initial

points x(0)=
[

6.5 10 0.1
]T

red, x(0)=
[

−1.9 18.5 0.18
]T

green, and x(0)=
[

−5 10 0
]T

magenta.

0 0.5 1 1.5 2 2.5 3
-5

0

5
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1
(t

)

0 0.5 1 1.5 2 2.5 3
-20

0

20

2
(t

)

0 0.5 1 1.5 2 2.5 3
-0.2

0

0.2

3
(t

)
x

x
x

t

Figure 8: Convergence of x1(t), x2(t), x3(t) for dif-

ferent initial points x(0)=
[

6.5 10 0.1
]T

red, x(0)=
[

−1.9 18.5 0.18
]T

green, and x(0)=
[

−5 10 0
]T

magenta.

even though all dimensions are on significantly dif-

ferent scales, which underscores the approximation

quality of the approach. Trajectories from different

initial points again demonstrate the convergence to

the unique limit cycle, see Fig. 7 and Fig. 8 with tra-

jectories in magenta, red, and green.

5 CONCLUSIONS

This work has introduced a method for approximat-

ing periodic behavior of nonlinear dynamic systems

not restricted to the planar case. Based on suitable

sampling of the limit cycle of the nonlinear dynam-

ics, switched affine systems with exogenous inputs

are used for approximation, while the approach pre-

serves essential limit cycle properties including stabil-

ity and uniqueness. Unlike previously available meth-

ods, the work here provides constructive rules to par-

tition the state space and synthesize the dynamics by

optimization, such that the limit cycle of the switching

affine system matches the sample points of the non-

linear data generator in an optimized sense. By using

the notion of contractivity, the constructed limit cycle

is ensured to be globally stable. Although the intro-

duced conditions generate a non-convex and nonlin-

ear optimization problem, they simultaneously ensure

a smooth limit cycle, a behavior frequently observed

in real-world systems. While solvability of the opti-

mization problem cannot be guaranteed, any solution

found under these conditions will be convergent.

It should be noted that the use of a center point in

which all boundaries intersect is particularly suitable

if the sample points have a relatively even distribution

around an interior region in R
nx .
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Future work aims at investigating schemes of par-

titioning without a common center point, and the cou-

pling of several oscillators of the proposed type.
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