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Abstract: Within the BPP project, a combination of statistics and word n-gram extraction enabled the creation of a
bilingual (French/English) ontology in the field of e-recruitment. The produced dataset was of good quality,
but it still contained errors. In this paper, we present an approach that explores the use of large language
models (LLMs) to automate the validation and enrichment of ontologies and knowledge graphs. Starting with
a naive prompt and using small language models (SLMs), we tested various approaches, including zero-shot,
few-shot, chain-of-thought (CoT) reasoning, and self-consistency (SC) decoding. The preliminary results are
encouraging, demonstrating the ability of LLMs to make complex distinctions and to evaluate the relationships
derived from our ontology finely.

1 INTRODUCTION

Integrating knowledge from various sources into on-
tologies and knowledge graphs remains a complex
problem. The Web is now a major resource, with
vast and diverse information, digital encyclopedias,
forums, blogs, public websites, ”social tagging,” and
networks, enabling the generation of ontologies and
knowledge graphs. Yet, the exponential growth of
these bases makes manual verification and validation
increasingly time-consuming.

Within the BPP project (Butterfly Predictive
Project), statistics and n-gram extraction supported
the creation of an ontology for e-recruitment in En-
glish and French, covering 440 job titles across 27
sectors, accessible here 1. Part of it was manually
evaluated with good results (0.8 precision), but the
large number of candidate terms prevented full vali-
dation.

The rise of Large Language Models (LLMs) opens
new perspectives for ontology enrichment. They can
detect errors, inconsistencies, ill-defined concepts,
and missing relations Petroni et al. (2019). Lever-
aging their analysis and generation abilities makes
creating consistent and user-friendly knowledge bases
more feasible.

a https://orcid.org/0000-0002-9947-3048
b https://orcid.org/0000-0001-9425-5570
1https://www-labs.iro.umontreal.ca/∼lapalme/LBJ/
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This study presents initial results to aid semantic
disambiguation of concepts and relations within this
noisy ontology. After related work (Section 2), we
present the data (Section 3), then detail our approach
(Section 4) and first results (Section 5), before con-
cluding (Section 6).

2 RELATED WORKS

Recent advances in natural language processing
(NLP) have improved the modeling of semantic re-
lationships in ontologies. Resources like ESCO or
ROME provide structured information, but keeping
them up to date requires significant manual work. To
address this, deep learning approaches based on trans-
formers have emerged Vaswani et al. (2017), either
encoder-only (e.g. BERT Devlin et al. (2018)) or
decoder-only (e.g. GPT Brown and al. (2020)). En-
coders project entities into a vector space to estimate
semantic proximity, while LLMs enable explicit rea-
soning methods such as zero-shot, few-shot, or chain-
of-thought prompting (CoT). In this article, we com-
pare these methods for semantic matching on noisy
recruitment ontology data.

LLM performance has grown with model scal-
ing, but larger models face limits in energy con-
sumption and deployment complexity. Alterna-
tive methods—few-shot prompting Brown and al.
(2020), CoT Wei et al. (2022); Kojima et al. (2022),
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instruction-tuned CoT Ranaldi and Freitas (2024),
or self-consistency Wang et al. (2022); Chen et al.
(2023) improve results without increasing size. Given
the time-intensive nature of ontology construction,
adopting LLMs appears both expected and justified.

Several works explore this direction. Meyer et
al. Meyer et al. (2024) tested ChatGPT for query
generation and knowledge extraction. Kommineni et
al. Kommineni et al. (2024) combined ChatGPT for
competency questions with Mixtral 8x7B for entity
extraction, building a knowledge graph via a RAG-
based workflow. Abolhasani and Pan Abolhasani and
Pan (2024) developed OntoKGen, which uses an it-
erative CoT algorithm with user validation for auto-
mated graph generation in Neo4j.

Unlike these works, which focus on building on-
tologies from scratch, we address an already popu-
lated ontology, emphasizing LLM-based validation of
entities and relationships.

3 DATA AND STATISTICS

In this section, we present the data from the BPP
project. A bilingual (English/French) ontology of 440
occupations from 27 activity domains was developed
for the e-recruitment sector.

Each occupation is linked to the necessary skills
for its practice, totaling approximately 6,000 different
skills. This data is organized according to the ESCO
modeling le Vrang et al. (2014)2, a multilingual Euro-
pean classification project for skills, occupations, and
qualifications, aiming to create European harmoniza-
tion in recruitment. Table 1 presents some descriptive
statistics for this ontology.

Table 1: Descriptive statistics for the ontology.

Ontology
in French in English

Unigrams 9,335 3,810
Bigrams 5,995 3,785
Trigrams 305 2,421

Unique skills 2,962 4,015
No. of occupations 312 127

Table 2 presents an example of evaluated n-grams
for the occupation of ’Analyste financier’ (Financial
analyst), categorized by transversal skills3 and tech-

2European Skills Competences and Occupations https:
//ec.europa.eu/esco/

3Transversal skills, also known as soft skills, are per-
sonal and social skills, oriented towards human interactions,

nical skills4. Each occupation is thus linked to a set
of word n-grams (from 1 to 3) ranked by TF-IDF.

4 METHODOLOGY

This section is divided into three subsections, cor-
responding to the three phases of our experiments.
First, we present the methodology used for fine-
tuning a BERT-based model. Second, we will de-
scribe the methodology behind our experiment in-
volving prompt engineering. And thirdly, we present
our final pipeline, which yielded the best results.

Fine-Tuning an Encoder-Only Model. This sub-
section presents experiments conducted with encoder-
only models, whose objective was to measure the se-
mantic similarity between occupation and skill de-
scriptions. These models represent each element (oc-
cupation or skill) as a vector in a latent space and esti-
mate their proximity using a measure such as the co-
sine similarity. To train an encoder model to classify
occupation-skill pairs as relevant or not, we formu-
lated the problem as a binary classification task. Posi-
tive examples were extracted directly from the ESCO
ontology. To generate negative examples, we com-
pared three techniques: negative random sampling,
easy negative mining and hard negative mining. Fig-
ure 1 illustrates the three methods.

Random Negative Sampling. For each occupation,
we randomly selected unrelated skills in ESCO, con-
sidering them as irrelevant. This method assumes that
relationships absent in the ontology correspond to ab-
sences of semantic link, which can introduce latent
noise if some skills, relevant, are simply not listed.

Easy Negative Mining. A more controlled variant
of random negative sampling consists of selecting,
among the skills unrelated to a given occupation,
those that are most semantically distant in the vector
space. This method, known as easy negative mining,
enables the creation of high-quality negative exam-
ples while minimizing the risk of false negatives.

To this end, we used vector representations de-
rived from the [CLS] token of CamemBERT Martin
et al. (2020), which serves as a global summary of the

which can be considered relevant regardless of the occupa-
tion.

4Technical skills, also known as hard skills, are for-
mally demonstrable skills resulting from technical learning,
often academic, and evidenced by grades, diplomas, or cer-
tificates.
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Table 2: List of skills, classified by unigrams, bigrams, and trigrams, for the occupation ’financial analyst’ obtained from 497
job offers. N-grams considered irrelevant have been struck through. Skills are sorted in descending order of score.

Financial analyst
Soft skills Hard skills

financial, business, support, management,
process, reports, data, project, including,
projects ...

accounting, analysis, finance, reporting, cpa,
cma, budget, cga, end, forecast ...

analytical skills, communication skills,
problem solving, ability work, internal
external, real estate, decision making,
interpersonal skills, financial services, verbal
written ...

financial analyst, financial analysis, financial
reporting, financial statements, variance
analysis, finance accounting, accounting
finance, balance sheet, journal entries, financial
modelling ...

analytical problem solving, problem solving
skills, verbal written communication, ability
work independently, key performance
indicators, fast paced environment, oral written
communication, time management skills,
communication interpersonal skills,
interpersonal communication skills ...

financial planning analysis, ad hoc reporting,
financial reporting analysis, financial analysis
reporting, financial statement preparation, year
end close, consolidated financial statements,
planning budgeting forecasting, business case
analysis, possess strong analytical ...

sequence. Each occupation and skill was individually
encoded and represented by the [CLS] token vector
extracted from the model’s final layer. We then com-
puted the cosine distance between each occupation’s
[CLS] vector and those of all unrelated skills in the
ESCO ontology. For each occupation, the most dis-
tant skills were selected as easy negatives and labeled
as 0 in our classification dataset.

Hard Negative Mining. To complement the pre-
vious methods, we explored a hard negative mining
strategy, inspired by contrastive learning Robinson
et al. (2021), to generate more difficult negative ex-
amples, i.e. skills that are semantically close to the
occupations but not actually related. The objective is
to encourage the model to learn finer distinctions be-
tween truly relevant and ambiguous cases.

We used the positive-aware hard negative mining
proposed in de Souza P. Moreira et al. (2025), in
particular Top-k with percentage to positive thresh-
old (TopKPercPos). This method helps to reduce the
number of potential false negatives, which represent a
fairly common problem when performing hard nega-
tive mining, taking advantage of information from the
positive relevance score (percentage in this case).

Unlike the previous method, which relied on
CamemBERT for embeddings, here we employed the
intfloat/multilingual-e5-large model, a multilingual
encoder trained with contrastive learning and compat-
ible with the Sentence Transformers library Reimers
and Gurevych (2019). This choice ensured consis-
tency with the family of models used in our reference
article.

For each occupation, we proceeded as follows:

• We computed the embeddings of all skills and oc-
cupations using the E5 model.

• We identified the highest cosine similarity score
among the positive skills for the given profession.

• We then selected, among the unrelated skills,
those whose score was less than 95% of this posi-
tive score, as hard negatives.

However, with a threshold set at 95% of the pos-
itive score, we observed that many relevant, yet not
explicitly related, skills were falsely considered neg-
ative. We therefore lowered the threshold to 90% of
the positive score, which preserved the difficulty of
the negative examples while reducing the occurrence
of false negatives.

4.1 Prompt Engineering

In this subsection, we present the LLMs used for
evaluating occupation–skill relationships. Unlike en-
coder models, which produce vector representations
for static pairs, LLMs are used here in a generative
setting, responding to carefully designed prompts.
This setup enables us to leverage their ability to fol-
low instructions, reason over input, generalize, and
generate explanations.

We used several models, belonging to different
families and sizes: open-source models that can be
deployed locally (Mistral, Gemma, DeepSeek, Qwen,
Phi) via the Ollama tool, as well as proprietary mod-
els accessible via a web interface and API (GPT, Le
Chat (Mistral)).

They were tested with different prompt configura-
tions: zero-shot, few-shot, chain-of-thought, and self-
consistency. It will be discussed in more detail in the
following subsections.
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Figure 1: Schematic representation of the negative sampling methods in the embedding space for a given occupation (yellow
circle).

4.1.1 Zero-Shot and Few-Shot Prompting

We began in a zero-shot setting, i.e., without pro-
viding examples or detailed instructions. This ap-
proach is not only computationally lightweight but
also allows us to directly evaluate the model’s implicit
knowledge and potential biases.

Few-shot prompting involves presenting the
model with a small number of annotated examples di-
rectly within the prompt, in order to guide its behav-
ior without additional training. As demonstrated by
Brown et al. Brown and al. (2020) with GPT-3, this
approach often achieves results comparable to fine-
tuning, while avoiding the costs associated with cre-
ating annotated datasets.

In our study, few-shot prompting was used as an
intermediate step between zero-shot prompting and
more advanced techniques such as chain-of-thought
prompting. The objective was twofold: to assess the
potential improvement over the zero-shot setting; to
observe the effects of example formatting and distri-
bution on model responses.

Few-shot prompting was subsequently reused in
a more elaborate form in the context of chain-of-
thought prompting.

4.1.2 Chain-of-Thought Prompting

Conventional zero-shot and few-shot prompting ap-
proaches show their limitations when a task requires
explicit reasoning. To address this shortcoming,
Wei et al. Wei et al. (2022) introduced Chain-of-
Thought (CoT) prompting, which involves enriching
the prompt with a natural language reasoning chain
that explicitly exposes the logical steps leading to the
answer. This method has achieved significant im-
provements on several complex reasoning tasks, but
primarily with very large models (over 100 billion pa-
rameters).

By contrast, small models (Small Language Mod-
els, SLMs) tend to produce superficially coherent but

logically incorrect reasoning Gudibande et al. (2023),
often leading to worse performance than conventional
prompting. To address this limitation without re-
sorting to resource-intensive techniques such as fine-
tuning or knowledge distillation, we adopted a strat-
egy of directly injecting pre-constructed reasoning
chains into the few-shot prompt.

Three variants of CoT prompting were tested:
1. Zero-shot Chain-of-Thought (zero-CoT), based

on the approach of Kojima et al. Kojima et al.
(2022), simply adds the phrase “Let’s think step
by step” to the original prompt.

2. CoT generated by Mistral Le Chat (in-family):
We asked the model to generate complete justi-
fications for occupation–skill pairs, which were
then inserted into a few-shot prompt. The goal
was to test the hypothesis proposed by Ranaldi
and Freitas (2024), namely that a student model
benefits more from exposure to reasoning gener-
ated by a model from the same family (in-family
alignment).

3. ChatGPT-generated CoT (out-of-family): This
variant followed the same approach as above, but
used ChatGPT-4 as the generator. GPT-4 acted
here as an out-of-family teacher model, following
a logic inspired by knowledge distillation with-
out training, but by injecting curated reasoning
examples. All generated outputs were manually
reviewed by an expert annotator.

4.1.3 Self-Consistency Decoding

The self-consistency (SC) method, introduced by
Wang et al. Wang et al. (2022), aims to improve the
robustness of CoT prompting. Instead of relying on a
single greedy response, this approach samples multi-
ple reasoning chains via stochastic decoding and de-
termines the final answer by majority voting. The un-
derlying intuition is that for complex tasks, correct
reasoning—though diverse—tends to converge on the
same conclusion more often than incorrect reasoning.
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Figure 2: Self-consistency using a CoT prompt generated
by the teacher LLM and validated by a human.

In this study, we did not use the classic probabilis-
tic decoding mechanism, but instead adapted the self-
consistency concept for our context. More specifi-
cally, we implemented two variants:

Majority Voting. For each occupation–skill pair,
we generated nine independent responses from the
same model using an identical few-shot CoT prompt.
The final prediction (yes or no) was determined by a
majority vote across the nine responses.

Universal Self-Consistency (USC). Inspired by
Chen et al. Chen et al. (2023), this variant consists of
submitting the nine generated responses to a follow-
up prompt in which the same model is asked to select
the most consistent answer, according to its judgment.

Figure 2 illustrates the overall process of imple-
menting SC using a CoT prompt generated by the
teacher LLM.

4.1.4 Reformulating the Instructions

Although the techniques explored in the previous sub-
sections improved model performance, the results re-
mained insufficient to achieve satisfactory filtering
quality. In particular, the Mistral 7B model et al.
(2023) — despite its efficiency and speed — fre-
quently produced contradictory responses, sometimes
accompanied by incorrect or internally inconsistent
explanations.

As also observed by Gudibande et al. Gudibande
et al. (2023), SLMs tend to mimic the reasoning struc-
ture of large teacher models without really under-
standing the underlying logic. This limitation reduces
their ability to accurately detect errors in noisy data.

We then formulated two hypotheses to explain the
persistence of false positives:

Prompt Wording: Our initial prompt asked
whether a “skill” was required for a given job, while
some of the inputs to be evaluated were not skills at
all (e.g., “job search,” “10,” “thread”). This lexical
bias may have led the model to validate such terms by
default.

Model Size: Despite recent advances, a model’s
overall knowledge and reasoning capabilities remain
strongly correlated with its size. Smaller models
struggle to generalize or to effectively exploit limited

contextual clues.
To test the first hypothesis, we designed a revised

prompt that emphasizes the automatic and potentially
noisy nature of the candidate terms to be assessed.
The aim was to free the model from the implicit as-
sumption that “this term is a skill” and encourage it to
more readily reject vague or irrelevant inputs:

You are a job market expert. You are given a
job and a candidate skill. This skill was ex-
tracted automatically and may be incorrect, ir-
relevant, or too vague. Your task is to deter-
mine whether this skill is:
yes: a technical skill that is truly necessary for
this job; no: a behavioral or transversal skill,
or a skill that does not correspond to this job
(e.g., vague, redundant, irrelevant, etc.).
Answer only ”yes” or ”no”, followed by a
short explanation.

4.2 Ensembling LLMs

To test the second hypothesis (the effect of model
size), we compared the performance of Mistral 7B
with five larger models, each evaluated using both the
initial and the revised prompt.

Then, inspired by the performance gains observed
with self-consistency, we explored the potential of
model ensembling using these larger models, which
already demonstrated satisfactory results individually.
For each occupation–skill pair, we performed a ma-
jority vote across the predictions of the five models.
Figure 2 illustrates the overall principle of this voting
process.

Figure 3: Schematic representation of the ensembling.
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5 EXPERIMENTS

In this section, we present our experiments and re-
sults, organized into three parts corresponding to the
main stages of our methodology.

5.1 Experimental and Evaluation
Protocol

We focused on a subset of the complete ontology
by selecting only the occupations and skills from the
”Telecoms, Hosting, Internet” activity domain. This
subset includes 294 skills linked to 5 occupations. Af-
ter a thorough manual analysis, we determined that
some repeated skills could be grouped by occupation,
resulting in a final set of 289 distinct skills. A man-
ual evaluation by three domain experts was performed
on the obtained results. The inter-annotator agree-
ment, measured using Fleiss’ Kappa Fleiss (1971)
reached 0.75, indicating a substantial level of agree-
ment, while also highlighting the inherent difficulty
of the task. We conducted a second review to reassess
the points of disagreement. Most of these centered on
skills that also tended to confuse the language mod-
els, falling primarily into two categories: soft skills
and vague or ambiguous terms. Given that the ontol-
ogy already provides a separate list of soft skills for
each occupation, we chose to retain only hard (techni-
cal) skills. Consequently, vague terms such as “inte-
gration” or “infrastructure,” as well as soft skills like
“team leader,” were annotated as “no.”

Given that the subset of data used is imbalanced,
with 173 instances labeled ”yes” and 116 ”no,” we
report Precision, Recall, F-score metrics for both
classes and overall accuracy to ensure a more reliable
evaluation.

5.2 Results

5.2.1 Fine-Tuning an Encoder-Only Model

Since the data subset is in French, we selected
CamemBERT-base Martin et al. (2020), a RoBERTa-
based model, for fine-tuning. The dataset (occupa-
tion–skill pairs) was framed as a binary classifica-
tion problem: 1 = positive, 0 = negative. Positive
pairs came from ESCO. As ESCO lacks negatives, we
tested three negative mining strategies (cf. method-
ology). Two dataset versions were used: (i) a pre-
processed one with lexical noise; (ii) a cleaned ver-
sion where skills were rewritten automatically (e.g.,
respect echeanciers → respect des échéanciers).

Training used identical hyperparameters (3
epochs, batch size: 32, learning rate: 1e-5). Results

are shown in Table 3.

5.2.2 Prompt Engineering

Zero-Shot. With Mistral 7B, the basic prompt “Does
occupation X require skill Y?” revealed: (i) a strong
bias toward “yes”; (ii) systematic inclusion of soft
skills; (iii) lexical variability in outputs; (iv) sensitiv-
ity to wording.

Few-Shot. Using four annotated examples, Mis-
tral reproduced the demo format but also inherited the
class imbalance, yielding extreme “yes” bias (only 15
“no” predictions).

CoT and SC. Chain-of-Thought methods gave
modest gains but increased costs. Comparing Uni-
versal Self-Consistency (USC) and majority-vote SC
showed SC was usually superior with zero-CoT
prompts. Table 4 shows results.

New Prompt. To improve results, we designed a
revised prompt (see Methodology). Tested zero-shot
with several LLMs, it significantly boosted accuracy
(Table 5).

5.3 Discussion

5.3.1 Negative Mining Strategies

For encoder-only models, we observed that: Easy
negatives caused overfitting: near-perfect accuracy
on ESCO but poor generalization. Random nega-
tives offered the best trade-off, with balanced pre-
cision/recall and stable training. Hard negatives
slowed convergence but improved robustness, espe-
cially on our manual dataset.

Fine-tuned models consistently performed better
on Mistral-corrected inputs, confirming the role of
lexical clarity. BERT models underperform LLMs,
partly because ESCO skills are long and generic,
while our ontology emphasizes concise, technical
terms. This limits BERT’s vocabulary alignment and
cross-dataset generalization.

5.3.2 LLM-Based Evaluations

LLMs showed both strengths and limitations. Small
models (e.g., Mistral 7B) lacked reasoning depth and
were prompt-sensitive. Larger ones (12–14B) showed
biases and often accepted vague terms. Intra-model
variability remained an issue across runs.

These findings motivated an ensemble strategy us-
ing majority voting, which reduced inconsistencies.
Compared with GPT-4o/4.1, large open-source mod-
els were already competitive, yet our ensemble con-
sistently outperformed both them and individual GPT
baselines (Table 6).
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Table 3: Results with fine-tuned CamemBERT.

Model Data Method Precision Recall F1 Accuracy
yes no yes no yes no

CamemBERT

Preproc. random neg. 0.63 0.54 0.87 0.23 0.73 0.33 0.61
easy neg. 0.59 0.09 0.94 0.01 0.72 0.02 0.57
hard 95% 0.66 0.53 0.75 0.42 0.70 0.47 0.62
hard 90% 0.81 0.35 0.65 0.55 0.72 0.43 0.63

Cleaned random neg. 0.63 0.77 0.97 0.17 0.77 0.28 0.65
easy neg. 0.60 – 1.00 0.00 0.75 – 0.60
hard 95% 0.65 0.64 0.89 0.29 0.75 0.40 0.65
hard 90% 0.66 0.78 0.95 0.27 0.78 0.39 0.68

Table 4: Performance of Mistral 7B with prompting methods.

Model Method Precision Recall F1 Accuracy
yes no yes no yes no

Mistral 7B

zero-shot 0.62 0.53 0.87 0.22 0.72 0.31 0.61
few-shot 0.65 0.74 0.94 0.25 0.77 0.37 0.66
zero-shot CoT 0.68 0.56 0.75 0.47 0.71 0.51 0.64
CoT Mistral 0.65 0.65 0.90 0.28 0.76 0.39 0.65
CoT ChatGPT 0.65 0.80 0.96 0.24 0.78 0.37 0.67
CoT SC 0.67 0.70 0.90 0.34 0.77 0.46 0.67
CoT USC 0.64 0.60 0.89 0.25 0.74 0.35 0.63

Table 5: Performance with old vs. new zero-shot prompt.

Model Prompt Precision Recall F1 Accuracy
yes no yes no yes no

Mistral 7B old 0.62 0.53 0.87 0.22 0.72 0.31 0.61
new 0.74 0.66 0.80 0.58 0.77 0.61 0.71

Gemma-3 12B old 0.68 0.69 0.89 0.36 0.77 0.48 0.68
new 0.88 0.91 0.95 0.81 0.91 0.86 0.89

DeepSeek-R1 14B old 0.68 0.53 0.68 0.53 0.68 0.53 0.62
new 0.85 0.85 0.91 0.77 0.88 0.81 0.85

Phi-4 14B old 0.61 0.42 0.55 0.48 0.58 0.45 0.52
new 0.88 0.90 0.94 0.82 0.91 0.86 0.89

Qwen-3 14B old 0.72 0.51 0.58 0.65 0.64 0.58 0.61
new 0.91 0.81 0.86 0.87 0.88 0.84 0.86

Table 6: Ensemble vs GPT models with new zero-shot prompt.

Model Prompt Precision Recall F1 Accuracy
yes no yes no yes no

Ensemble new 0.93 0.91 0.94 0.90 0.94 0.90 0.92
GPT-4o new 0.77 0.92 0.97 0.57 0.86 0.70 0.81
GPT-4.1 new 0.86 0.88 0.93 0.77 0.89 0.82 0.86

6 CONCLUSION

This study explored several strategies to improve
the automatic validation of occupation–skill relations
in an ontology, combining fine-tuned encoder-based
models and prompt-based LLM evaluations. We

demonstrated that hard negative mining yields more
robust classification for encoder models, especially
when coupled with input correction. In parallel,
prompt engineering and reasoning-based prompting
(CoT, self-consistency) improved LLM performance,
though limitations persisted—particularly in smaller
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models. To address these, we proposed an ensemble
approach that outperformed all individual models, in-
cluding proprietary LLMs like GPT-4, highlighting its
potential as a lightweight yet effective alternative for
ontology curation tasks.

Despite remaining challenges, our work opens
promising directions for automating knowledge base
validation and enrichment. In future work, we aim to
investigate fine-tuning strategies for LLMs to improve
their reasoning on domain-specific tasks. Another
perspective involves adapting our methods to differ-
ent domains and ontological structures. We also see
potential in integrating external knowledge sources,
such as curated databases of occupations and skills, to
enhance LLM interpretability and decision-making.
Finally, assessing the impact of these methods on real-
world applications, like recommendation systems or
career guidance platforms, would be an essential step
toward validating their practical value.
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