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Abstract: This paper analyzes a real course-bidding game that features a discrete and finite strategy set with incomplete 
information. Course-bidding systems are widely adopted in academic institutions to allocate limited resources, 
yet their strategic dynamics under incomplete information remain understudied. Due to the discrete nature of 
the game, a pure strategy derived from Nash Equilibrium is intractable. To address this challenge, this study 
employs a Genetic Algorithm (GA) to approximate equilibrium strategies, given the game’s discrete and finite 
strategy space. Due to the discrete nature of the game, pure-strategy Nash Equilibria (PSNE) is intractable. 
This paper investigates the long-term evolution of strategic tendencies, examining their features and 
implications. This study shows that the course-bidding strategy tends to a more concentrated allocation of the 
bidding resources. As agents learn to prioritize high-value courses, the resulting strategy leads to higher 
variance of the bidding ratios between courses, as well as lowering the width of the courses that are invested. 
This analysis reveals structural deficiencies in the model, highlighting the need for mechanisms to mitigate 
over-concentration, such as bid caps or quota adjustments. 

1 INTRODUCTION 

Many schools implement a course selection 
mechanism that grants students the liberty to choose 
their courses freely (Budish & Cantillon, 2012; 
Krishna & Ünver, 2007). For example, at the 
Southern University of Science and Technology, each 
student is given 100 credits to bid for different 
courses, and the courses admit students who bid the 
highest credits. This effectively creates an auction 
model. Studying this model can help understand the 
general impact on students’ course-choosing 
strategies, as well as provide insights into the auction 
model. 

Previous researches on related questions hint at 
the unlikelihood of the existence of an equilibrium. 
For example, in simultaneous auctions with a 
common budget constraint, a symmetric equilibrium 
may also fail to exist in terms of first-price auctions 
for multiple identical units, which is largely similar to 
this study’s case (Ghosh, 2015). However, since the 
bids are integral, which disallows fractional 
increments, and thus the strategy space is finite, usual 
game theory results would generally guarantee the 
existence of at least one Nash equilibrium, potentially 
a mixed strategy. Let Γ=(N, S, u) be a normal-form 

game where strategy sets S are finite due to integer 
bidding constraints. By Nash’s existence theorem, at 
least one mixed strategy equilibrium must exist. 
However, the mixed nature of this strategy makes it 
hard to derive a concrete result, especially given the 
asymmetric situation that is currently studied. 

Krishna and Ünver (2008) conducted a detailed 
analysis of a bidding-based course allocation system 
used at a business school, focusing primarily on 
increasing efficiency through market-clearing 
algorithms and preference elicitation. While their 
model aligns closely with the one studied here, 
particularly in its point-based bidding structure, this 
paper diverges by examining the potential 
development of the course-bidding strategies in the 
long term, which remain underexplored despite their 
potentially significant impact on fairness and 
outcomes due to the course-bidding strategy shift 
over time. 

Due to the difficulties mentioned above around 
the potential nonexistence of a pure strategy Nash 
Equilibrium, a genetic algorithm (GA) is 
implemented to evolve student bidding strategies due 
to the discrete, non-convex, and highly combinatorial 
nature of the course allocation problem. Traditional 
optimization fails because (1) payoff discontinuities 
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violate gradient existence conditions, and (2) strategy 
space cardinality grows as O(k^n) for k bids and n 
students. The underlying mechanism involves 
threshold-based admissions and limited bidding 
budgets, making the strategy space discontinuous and 
poorly suited for traditional optimization techniques. 
Additionally, the absence of guaranteed equilibrium 
solutions in such auction-based settings further 
motivates a simulation-driven approach. The GA 
enables us to explore this complex space of behaviors, 
uncover emergent patterns, and model how 
competitive strategies might evolve over time in 
response to systemic constraints. 

A Genetic Algorithm (GA) is a heuristic search 
technique inspired by the process of natural selection. 
Previous works have already explored how to use GA 
in a context of game theory. For example, Ismail and 
his collaborators studied how a game could be solved 
with good performance using GA (Ismail et al., 2007). 
Another example could be the Hanabi game, which 
also involves incomplete information, studied by 
Rodrigo Cannan, who used a GA system to solve the 
optimal strategy (Canaan et al., 2018). In general, a 
GA algorithm iteratively evolves a population of 
candidate solutions toward higher performance by 
applying biologically motivated operations such as 
selection, crossover, and mutation. Individuals with 
higher fitness—defined by a problem-specific 
evaluation function—are more likely to pass on their 
characteristics to the next generation. Over time, the 
population tends to converge toward more effective 
solutions, even in complex or poorly structured 
search spaces. GAs are particularly useful in domains 
where traditional optimization methods fail due to 
discontinuities, high dimensionality, or the absence of 
gradient information. 

GA is long known for its computational merits. It 
exhibits key advantages in terms of performance over 
the analytical methods (Vié, 2021). First, GA handles 
discontinuity extremely well due to the mutation 
operators acting as small, random perturbations to 
avoid sticking in the local optima. Secondly, since 
parallel algorithms are applied, handling situations 
where the student and course numbers are huge is 
easier. At last, GA mimics the actual student 
“experience” passing process in terms of course 
choosing, as successful course choosers tend to pass 
on their experience to more students in the next year. 

In an auction-like context, GA has also presented 
a valuable outcome in terms of strategy optimization. 
Mochón and the team showed that a GA-assisted 
algorithm has the potential to outperform even human 
bidders in an auction (Mochón et al., 2005). In the 
utility-maximizing context, GA has also been proven 

by Choi and his team to have the capability to 
optimize or at least improve the overall social utility 
(Choi et al., 2018). Even in the notoriously difficult 
and complex combinatorial auctions, GA has been 
showing potential, as shown by the works of 
Karapetyan (Takalloo et al., 2021). 

2 CASE DESCRIPTION 

This study would examine a hypothetical and 
structurally grounded course allocation system 
designed to simulate market-based mechanisms for 
student enrollment. The model considers a setup 
consisting of around 900 students, each with 100 non-
monetary, otherwise not valuable bidding points, 
which would serve as their exclusive budget for 
getting into courses. 

Students are permitted to bid on multiple courses, 
distributing their points across them in any proportion 
they choose. Each course has a predefined capacity 
limit, and the descending order of bids determines 
student enrollment at the end of the bidding stage’s 
deadline. Once the total number of enrolled students 
reaches the capacity of a course, no further students 
are admitted. 

The allocation system incorporates three non-
standard features. First of all, it is a tiebreaking rule: 
in the event of a tie at the cutoff bid, if enrolling all 
tied students would exceed the course’s capacity, then 
none of the tied students are admitted. This 
tiebreaking mechanism introduces strategic 
complexity and potential inefficiencies, as it 
penalizes coordination and creates uncertainty in 
marginal bidding zones. Other than that, another 
widely contested feature is the limited information on 
the existing bidder’s information, which makes the 
expected marginal bidding zone a lot wider than 
transparent bidding. A third criticized feature is the 
advantage that higher-year students have over lower-
year students due to having fewer common courses 
that they need to choose from, which are typically 
competitive, giving them more freedom in their 
bidding tactics. 

This case study aims to evaluate this allocation 
model’s behavioral implications, focusing 
specifically on the existence of an equilibrium 
behavior, strategic bidding dynamics, and the 
incidence of tie-related exclusions. 
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3 METHODOLOGY AND 
ANALYSIS OF THE PROBLEM 

To ensure focus, the model is simplified by 
constraining each student to four-course 
preferences—two from common and two from 
secondary courses—and by evolving only their 
bidding strategy rather than their preferences. This 
allows us to concentrate on the strategic component 
of the allocation problem, avoiding the added 
complexity of preference formation or dynamic 
utility adjustment, all while still capturing the 
competitive behavior under resource constraints. 
Also, the size of the student population is reduced, 
and the course capacity is leveled to further 
concentrate on the strategy itself. 

The course allocation system consists of 50 total 
courses, subdivided into 10 ‘common’ and 40 
‘secondary’ categories. A population of 500 students 
each selects two courses from each category to bid on, 
resulting in four total course preferences per student. 
Each course has a fixed capacity of 20 students. Each 
student’s utility vector assigns weight to only four 
courses—two from each category. The non-zero 
entries are sampled from a uniform distribution and 
normalized such that the sum of the utility vector 
equals 1. Global popularity for each course is 
computed as the proportion of students who have 
assigned a non-zero utility to that course. This serves 
as a proxy for perceived demand and is used in the 
students’ bidding strategy.  

For the time being, a naïve softmax-based bidding 
model on a linear function would be implemented: 𝑠௜ ൌ 𝜃ଵ𝑢௜ ൅ 𝜃ଶ𝑝௜ ൅ 𝜃ଷ              (1) 

Each student utilizes a parameterized bidding 
function based on personal utility and estimated 
course popularity. The score for each preferred course 
is computed as above. These scores are passed 
through a softmax transformation to get a bid 
distribution summing to 100 credits. 

Each course allocates seats by descending bid 
levels. Starting from a bid of 100, the course admits 
all students at each level unless the addition exceeds 
its capacity. If admitting a level’s group would cause 
overflow, all students at that level and below are 
rejected. This is the actual course admission model 
used in the university and differs from the usual 
lottery tiebreaking system.  

Student strategies, defined by the three-
dimensional parameter vector θ, evolve according to 
a genetic algorithm. In each generation, strategies are 
evaluated based on the benefits gained from admitted 
courses. The top-performing individuals, with a 50% 
ratio, are selected, and new offspring are generated 

via parameter averaging and Gaussian mutation, a 
common setup of a GA algorithm. 

Fitness is calculated to be the sum of the students’ 
utility weights for the courses they are successfully 
admitted into to measure the students’ strategy’s 
efficiency in terms of getting the courses with the 
most utility. It is used to evaluate the efficiency of the 
overall bidding strategy. 

4 RESULT OF ANALYSIS 

4.1 Evolution of the Parameters 

 

Figure 1: Evolution of the Theta Parameter Over 
Generations 

Over successive generations, according to Figure 
1, the utility weight parameter θ1 exhibited a nearly 
linear increase, while the popularity weight θ2 and 
bias term θ3 remained relatively constant. This 
suggests that the evolutionary process strongly 
favored strategies that emphasized personal utility 
over collective demand signals. The relative static 
behavior of the popularity weight implies that global 
popularity provided limited predictive value for 
strategic success, possibly due to high competition 
and constrained course selection space. These results 
indicate that, within the simulated environment, 
focusing bids based on individual preferences is a 
more effective strategy than attempting to anticipate 
or avoid competition. 

When seen at a large scale, the weight on 
popularity has a slight tendency to drop, yet the 
tendency is consistent, which shows that there is a 
motive to forsake courses that are over-competed and 
focus on other courses. 
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4.2 Stagnation of the Average Bidder’s 
Utility 

 

Figure 2: Evolution of Fitness Over Generations 

Despite the evolution of high-performing 
strategies’ parameters, according to Figure 2, the 
average fitness across the population remained 
approximately constant at 0.5 throughout the 
simulation, after it stabilized after a few generations. 
Structural constraints in the system likely account for 
this stagnation: with each course admitting only 20 
students and each student bidding on just 4 of 50 total 
courses, the likelihood of successfully securing any 
allocation remains low for the majority of participants.  

The allocation mechanism, where those who lost 
the course bidding still spend their bidding credits, 
and students who are slightly underbid receive no 
benefit at all, creates a highly risky environment 
where only a few strategies may evolve while the 
average strategy is eliminated. 

4.3 Enlarged Variations of the Bidding 
Credit Distributions  

 
Figure 3: Evolution of Bid Variance Over Generations. 

It is observed that, from Figure 3 above, a 
consistent increase in the variance of credit 
allocations over generations exists, indicating a shift 
toward more concentrated bidding strategies. 

Vaguely, two linear boundaries are observed, and 
they can be interpreted as the influence of the 
distribution of the utility over the four chosen courses. 
The higher line indicates that the utility is more one-
sided and concentrated on one course, and the lower 
line indicates that the utility is more evenly spread 
among the four courses. This signifies that the utility 
weight is significantly more prominent than other 
factors in the GA algorithm. As the simulation 
progresses, successful individuals tend to allocate a 
larger portion of their credits to one or two preferred 
courses rather than distributing them evenly across all 
four. This behavior suggests that, given the conditions 
in the simulation, the competitive environment favors 
aggressive, high-stakes bids (“All-in”) over 
diversified, conservative strategies (“Spread-out”). 
The rising variance reflects a collective strategic 
learning process: students increasingly prioritize 
securing admission to a smaller number of high-
utility courses rather than attempting to spread risk 
when given a chance to adapt their strategies 
repeatedly. 

The increase in credit variance reflects an 
emergent “all-in” mentality: as competition 
intensifies, spreading bids becomes synonymous with 
spreading losses. Evolution favors those who 
concentrate power, not those who hedge. However, 
this would increase the variance of individual 
strategies in that if the heavily invested course fails, 
the overall expected utility would be extremely low 
due to the unlikelihood of being enrolled in the other 
courses, due to them being poorly invested. 

4.4 The Behavior of the Utility 
Variance over the Generations 

 
Figure 4: Evolution of Fitness Variance Over Generations. 

The utility variance, according to Figure 4, across 
the population followed a two-phase trajectory. In the 
initial generations, variance surged as random 
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strategy initialization led to significant disparities in 
individual performance. In the early generations, a 
subset of students rapidly achieved high fitness due to 
the genetic algorithm granting privileges to the fit 
strategies, while others consistently failed to secure 
course allocations, resulting in a wide spread of 
outcomes. As evolution progressed, this variance 
gradually declined, reflecting a population-wide 
convergence toward more effective bidding 
behaviors. The decline suggests that although overall 
fitness remained constrained by systemic limitations, 
the diversity of outcomes diminished as poor 
strategies were eliminated and high-performing 
strategies became more common. This suggests that 
in the long term, where students actively tutor newer 
students on their course-bidding strategy, in the more 
rational situation, where students consult older 
students who have relatively more successful course-
bidding history, the utility gained by each student 
tends to stabilize.  

5 CONCLUSION  

This paper used Genetic Algorithms to study a 
course-choosing system in a real-world situation and 
studied its implications. Specifically, this paper aims 
to evaluate whether Nash Equilibrium strategies align 
with the system’s intended fairness and efficiency 
goals. Overall, it is found that this course bidding 
system encourages highly concentrated bidding 
strategies from the students, yet without significant 
contributions to the overall utility gained by the 
students on average. Because students converge on 
high-demand courses, the resulting scarcity makes the 
bidding process inherently more competitive due to 
the increased concentration of the credits. 

This research again solidified the notion that an 
equilibrium strategy may not be the optimal situation 
for a system’s intention and that a careful study and 
reasoning process should be conducted. However, 
since the variance of utility across the students 
steadily drops over the generations, this system 
exhibits a long-term preference for stable behavior 
and fairness in the distribution. It is equally important 
to notice that, due to the limited rationality of the 
students in real life, this equilibrium is not likely to 
be reached, and the overall balance may stick in 
earlier generations where the utility variance across 
the students is high. 

Limitations in this study are noticeable. First of all, 
due to the lack of resources, it is not possible to 
conduct a census of the students’ actual bidding 
strategy, as students tend not even to notice 

themselves. Secondly, the usage of a linear soft-max 
system in parameter choosing is a compromise 
between the complexity of the model and the 
generality. Should an alternative model be used, the 
results may potentially be different. Finally, it is 
worth noticing that actual course bidding strategy 
evolution across the generations may be different 
from the one that GA represents, which is by mutating 
and combining good strategies. In practice, people not 
only take advice from other people but also blend in 
their internal bias towards the strategy-making 
process, complicating the genetics of the strategies. 
Future work should incorporate empirical bidding 
data and model endogenous strategy mutations 
reflecting human biases. 
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