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Abstract: In the paper, the pedestrian position is estimated by integrating the inertial measurement unit (IMU) and the 
wireless signal using the Cubature Kalman filter (CKF) based on the maximum correntropy criterion (MCC). 
Wireless signals may include short-range wireless communications such as ultra-wideband (UWB) signal and 
mobile communication signals such as LTE/5G. UWB can measure distances with an error of less than 30 cm 
in a line-of-sight (LoS) environment, but in an environment with LoS, it provides range measurements with 
a wide range of non-Gaussian uncertainty errors. In this case, ia an IMU/UWB system is configured with a 
conventional minimum mean square error (MMSE)-based filter, significant errors will occur. To address this 
issue, this paper designed an MCC-based CKF and applied it to pedestrian positioning technology. Simulation 
analysis results demonstrated that the proposed filter is robust to UWB uncertainty and enables reliable 
IMUUWB integration. 

1 INTRODUCTION 

A system integrating an inertial measurement unit 
(IMU) and wireless signals is being considered for 
indoor pedestrian navigation. An IMU can be 
integrated using LTE/5G-based wireless positioning 
solutions or ultra-wideband (UWB)-based ranging 
measurements. This paper first describes an 
integration filter using UWB. UWB enables accurate 
range measurements and position estimates in line-of-
sight (LoS) environments, but it is difficult to provide 
accurate position information in non-line-of-sight 
(NLoS) environments such as indoors because range 
measurements include various uncertainty errors 
(Banani et al., 2013, Cho, 2019). In order to integrate 
IMU and UWB, nonlinear filters such as the extended 
Kalman filter (EKF) (Brown and Hwang, 2012) and 
the Cubature Kalman filter (CKF) (Arasaratnam and 
Haykin, 2009) can be used to take into account the 
nonlinear characteristics of inertial navigation and 
ranging measurement. However, these minimum 
mean square error (MMSE)-based filters do not 
adequately respond to UWB uncertainties, potentially 
leading to large errors. In this paper, we introduce a 
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maximum correntropy criterion (MCC)–based CKF 
(MC-CKF) considering this issue. 

MCC-based filters are designed based on a kernel 
function that maximizes the similarity between the 
estimates and the measurement and reflects the error 
characteristics of the measurement. The sum of the 
kernel function values, including the residuals 
calcualted in the measurement update process, is used 
as the cost function. And state variables are then 
estiamted to maximize this cost function. If 
uncertainty errors occur in the UWB measurement, 
the MCC-based filter adjusts the P and R matrices to 
minimize the impact of measurement uncertainty 
errors (Chen et al., 2017, Li et al., 2022). 

The purpose of this paper is to apply MCC to CKF 
so that it can be used in nonlinear systems. The 
designed MC-CKF is applied to a tightly coupled 
IMU/UWB system for indoor pedestrian navigation. 
The performance of the MC-CKF-based IMU/UWB 
integrated navigation system is verified through 
simulation. The simulation results confirmed the 
following: When UWB measurements contain non-
Gaussian uncertainty errors (Cho, 2019), MC-CKF 
significantly adjusts the R matrix corresponding to 
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the error measurements to provide stable position 
estimates. This is the contribution of this paper to the 
field of indoor pedestrian navigation. 

2 IMU/UWB INTEGRATION 
BASED ON MC-CKF 

For integration of an IMU-based inertial navigation 
system (INS) with UWB, the state variables are first 
set as follows: 

TL Lx Pos Vel Euler ε = ∇             (1) 

where LPos  and LVel  are the position and velocity 
in the local level coordinate system, Euler  is the 
attitude expressed in Euler angles, and ∇  and ε  are 
the accelerometer bias and gyro bias, respectively. 

In CKF, these state variables are converted into 
cubature points. The number of cubature points is 2N, 
and since the system dimension N is 15, there are 30 
cubature points. 

In CKF, cubature points are time-propagated 
using the following INS equations (Farrell and Marth, 
1999): 
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where bf  and b
ibω  are the accelerometer output and 

gyro output, respectively, ∇̂  and ε̂  are the estimated 
accelerometer bias and gyro bias, respectively, and 
dt  is the INS update interval. Q  is a quaternion, L

ieω  
is the Earth’s angular velocity vector, and L

eLω  is the 
rotational angular velocity vector in the local level 
coordinate system caused by the velocity. 

When the ranging measurements are obtained via 
UWB, the measurement-update is processed in the 
CKF. The ranging measurement equation is as 
follows (Cho, 2019): 

2 2
, ,( ) ( )x x y y

j k j k j k j kr AN Pos AN Pos w= − + − +   (5) 

where [ ]x y T
j jAN AN  is the position of anchor node 

j, jPos  is the j-axis position of the pedestrian in the 
local level coordinate system, and ( )w j  is the noise 
contained in channel j. And {1,2, , }j M∈  . 

In general, w in (5) can be modelled as Gaussian 
noise in LoS environments. However, in indoor 
environments, w can appear as a non-Gaussian heavy-
tailed impulse error. Considering this, the kernel 
function of MC-CKF can be set as follows (Chen et 
al., 2017): 

2 2( ) exp( / 2 )G e e σ= −                       (6) 

where σ  is the kernel bandwidth. 
Applying a fixed-point iteration algorithm during 

the measurement-update process can improve the 
convergence performance of the filter. The P and R 
matrices are adjusted as follows: 

1
( ) ( )( )x T

k i P k i PP B C B− −=                        (7) 
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where i is the iteration order, T
P P kB B P−=  and 

T
R RB B R= . kP −  must be computed before the 

measurement-update using the time-propagated 
cubature points. ( )
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where 
1

( ) ( 1)ˆ ˆ( )x
k i P k k ie B x x− − −
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1
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After the fixed-point iteration algorithm 
completes, the state variables and error covariance 
matrix are updated as follows: 

1
, ( ) , ( ) ( )ˆ ˆ ˆ( )k k xy k i yy k i k k ix x P P y y− − −= + −              (13) 
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Where 
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Figure 1: Flowchart of MC-CKF. 
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where n is the number of the Cubature points.  
The proposed filter can be summarized as shown 

in Figure 1. 

3 SIMULATION ANALYSIS 

A simulation was conducted to analyse the 
performance of an MC-CKF-based IMU/UWB 
integrated pedestrian navigation system in an indoor 
space. The pedestrian’s walking trajectory was set as 
shown in Figure 2, with four anchor nodes. 

The simulation assumes two scenarios: the first is 
a LoS environment where only noise exists in the 
measurements, and the second is an NLoS 
environment where the measurements include biases, 
impulse errors, and ramp errors (Cho, 2019). 
 

 
Figure 2: Simulation trajectory. 

Figure 3 shows the results performed in a LoS 
environment, and Figure 4 shows the results 
performed in an NLoS environment. 

In the first simulation, only noise exists in the four 
range measurements, so little adjustment of R matrix 
is made. Additionally, the positioning results of CKF 
and MC-CKF are almost the same, and the heading 
estimation performance is slightly improved in MC-
CKF. 
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(a) measurement error 

 
(b) square root of adjusted R matrix 

 
(c) position error 

 
(d) heading error 

Figure 3: Simulation result in the LoS environment. 

In the second simulation, the four range 
measurements include not only noise but also impulse, 
bias, and ramp errors. Consequently, the adjusted R 
matrix of MC-CKF accurately reflects the error 
characteristics of each measurement. As a result, 
while CKF incurs large position and heading errors 
due to the measurement errors, MC-CKF estimates 
position and heading information with the same 
accuracy as in a LoS environment. 

 
(a) measurement error 

Figure 4: Simulation result in the NLoS environment.  
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(b) square root of adjusted R matrix 

 
(c) position error 

 
(d) heading error 

Figure 4: Simulation result in the NLoS environment 
(cont.).  

4 CONCLUSIONS 

This paper discusses a navigation technology that 
integrates an IMU and wireless signals for indoor 
pedestrian positioning. UWB uses wireless signals to 
measure range information. While range 
measurements in LoS environments are only subject 
to noise, NLoS environments include bias, impulse, 
and ramp errors. In these environments, filters such 
as EKF and CKF generate significant positioning 
errors. To address this issue, we propose MC-CKF. 
This filter recognizes measurement errors and adjusts 
the R matrix for each channel. Simulation results 
demonstrate that the same positioning accuracy is 
maintained in NLoS environments as in LoS 
environments. 
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