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Abstract: As robotics gains popularity, interaction control becomes crucial for ensuring force tracking in manipulator-
based tasks. Typically, traditional interaction controllers either require extensive tuning, or demand expert
knowledge of the environment, which is often impractical in real-world applications. This work proposes a
novel control strategy leveraging Neural Networks (NNs) to enhance the force-tracking behavior of a Direct
Force Controller (DFC). Unlike similar previous approaches, it accounts for the manipulator’s tangential ve-
locity, a critical factor in force exertion, especially during fast motions. The method employs an ensemble
of feedforward NNs to predict contact forces, then exploits the prediction to solve an optimization problem
and generate an optimal residual action, which is added to the DFC output and applied to an impedance con-
troller. The proposed Velocity-augmented Artificial intelligence Interaction Controller for Ambiguous Models
(VAICAM) is validated in the Gazebo simulator on a Franka Emika Panda robot. Against a vast set of trajec-
tories, VAICAM achieves superior performance compared to two baseline controllers.

1 INTRODUCTION

Modeling and controlling accurate force tracking in
robotic manipulators remains a fundamental chal-
lenge for reliable robot-environment interaction.
Achieving high force-tracking performance is critical
in a broad spectrum of tasks, including contact-rich
manipulation, precision assembly, and surface inter-
action (see Fig. 1).

To address this challenge, impedance controllers
achieve force-tracking accuracy through strategies
such as reference generation (Roveda and Piga, 2021;
Huang et al., 2022; Yu et al., 2024), variable stiff-
ness (Shen et al., 2022; Li et al., 2023), and variable
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Figure 1: Simulation setup — the Panda robot performs
a force-tracking task sliding on a wooden table with a
spherical-tip end-effector.
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damping (Jung et al., 2004; Shu et al., 2021; Duan
et al., 2018; Roveda et al., 2020). Reference gen-
eration methods implement an explicit direct force
control (DFC) loop to follow a desired force trajec-
tory, while variable impedance approaches often rely
on simplified linear-spring environment models (Jung
et al., 2004; Shen et al., 2022; Li et al., 2023; Shu
et al., 2021; Duan et al., 2018; Yu et al., 2024). How-
ever, these simplified models typically represent only
an approximation of the real environment dynamics
(Roveda and Piga, 2021; Jung et al., 2004; Matschek
et al., 2023).

To overcome modeling inaccuracies, recent liter-
ature has explored Artificial Intelligence (AI) tech-
niques (Matschek et al., 2023), particularly Neural
Networks (NNs), to learn a model-less, data-driven
mapping between the manipulator’s end-effector state
and the exerted contact force directly at the control
level. In this context, ORACLE (Petrone et al., 2025)
was proposed as a controller that leverages NN-based
models to optimize force tracking. However, OR-
ACLE’s original formulation neglects the effects of
end-effector velocities tangential to the contact plane,
potentially limiting its prediction accuracy and track-
ing performance, especially at high velocities.

This paper presents an extension of the ORA-
CLE strategy by augmenting its model approxima-
tor’s state with tangential velocity components, result-
ing in a refined controller named Velocity-Augmented
Artificial Intelligence interaction Controller for Am-
biguous Models (VAICAM). The proposed approach
constructs an accurate model of the environment that
relates the end-effector pose, penetration velocity, and
tangential velocity to the resulting contact forces us-
ing feed-forward neural networks (FFNNs) (Naga-
bandi et al., 2018).

To this aim, a dedicated dataset containing dy-
namic trajectories in both force and position space
is generated to train this model effectively. An im-
proved controller is then designed based on this aug-
mented model, enabling optimal selection of con-
trol actions to minimize force-tracking errors. Ex-
tensive validation is carried out in simulation, using
Gazebo (Koenig and Howard, 2004), on a Franka
Emika Panda manipulator (Haddadin et al., 2022).
Furthermore, the paper conducts a comparative analy-
sis between a standard direct force controller (Roveda
and Piga, 2021) and ORACLE (Petrone et al., 2025)
across varying velocity conditions, concretely attest-
ing ORACLE’s performance degradation as the end-
effector velocity increases.

By integrating tangential velocity information into
the ORACLE framework, VAICAM demonstrates
improved force prediction and enhanced tracking

capabilities, extending the applicability of neural-
network-based force controllers to a wider range of
challenging interaction tasks.

2 METHODOLOGY

This paper introduces VAICAM, an AI-driven tool
to enhance the force tracking capabilities of an
impedance controller used in unknown environments.
It augments the ensemble of FFNNs originally pro-
posed in ORACLE (Petrone et al., 2025) by adding to
its input the tangential velocity v of the end-effector
(EE), resulting in a mapping from the robot state and
the DFC control action xxx f into its next state. This de-
sign choice yields a more accurate prediction of the
next wrench, that will later be used to compute the
optimal residual action added to the low-level control
action of the DFC. VAICAM’s overall control scheme
is summarized in Fig. 2, whose building blocks will
be detailed in the next sections.

2.1 Base Controller

The low-level impedance controller enforces the de-
sired interaction dynamics on the robot, specifically,
Cartesian space mass-spring-damper dynamics. Con-
sider the equations of motion for a manipulator with
n Degrees of Freedom (DOFs) performing an m-
dimensional task, with m ≤ 6 ≤ n (Featherstone and
Orin, 2016):

BBB(qqq)q̈qq+CCC(qqq, q̇qq)q̇qq+ τττ f (q̇qq)+ggg(qqq) = τττc − JJJ⊤(qqq)hhhe,
(1)

where BBB(qqq) ∈ Rn×n is the inertia matrix, CCC(qqq, q̇qq) ∈
Rn×n is the matrix accounting for the centrifugal and
Coriolis effects, τττ f (q̇qq) ∈ Rn accounts for viscous and
static friction, ggg(qqq)∈Rn represents the torque exerted
on the links by gravity, τττc ∈ Rn indicates the torque
control action, JJJ(qqq) ∈ Rm×n is the geometric Jaco-
bian, and hhhe ∈Rm is the vector of wrenches exerted on
the environment measured by means of a force/torque
sensor mounted on the manipulator’s flange. The vec-
tors qqq, q̇qq, q̈qq ∈ Rn represent joint positions, velocities,
and accelerations, respectively.

The expression of the Cartesian impedance con-
trol law with robot dynamics compensation is (Sicil-
iano and Villani, 1999; Formenti et al., 2022)

τττc = JJJ⊤(qqq)hhhc +CCC(qqq, q̇qq)q̇qq+ τττ f (q̇qq)+ggg(qqq), (2)

where the task space wrench hhhc realizing the compli-
ant behavior can be chosen as (Caccavale et al., 1999;
Iskandar et al., 2023)

hhhc = KKKd∆∆∆xxx+DDDd ẋxx, (3)
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Figure 2: Control architecture. The MA learns the transition function F̂ of the dynamical system represented by the
impedance-controlled robot interacting with an unknown environment, given data composed of the system states sss and control
inputs xxx f , i.e. the DFC action. After training, VAICAM computes the optimal residual action xxx∗c , aiming at minimizing the
force tracking error between hhhr and the predicted wrench ĥhhe.

where KKKd ,DDDd ∈ Rm×m are diagonal matrices of con-
trol parameters, namely stiffness and damping, re-
spectively, and ∆∆∆xxx ≜ xxxd − xxx ∈ Rm is the Cartesian
pose error between the setpoint xxxd ∈ Rm and the ac-
tual robot pose xxx ∈Rm. Assuming m = 6, xxx is defined
as xxx ≜ (x,y,z,φ,θ,ψ)⊤, where (x,y,z)⊤ and (φ,θ,ψ)⊤

are translational and rotational components, respec-
tively.

2.2 Direct Force Controller

Given that the impedance controller solely manages
interaction forces passively, lacking the capability to
track a force reference, a DFC loop can be closed
specifically along the directions in which force track-
ing is necessary (Roveda and Piga, 2021). The
adopted control law is a simple PI controller having
the following model:

xxx f = xxxr +ΓΓΓ

(
KKKP∆∆∆hhh+KKKI

∫
t
∆∆∆hhhdt

)
, (4)

where, if m = 6, ΓΓΓ = diag(γx,γy,γz,γφ,γθ,γψ) is the
task specification matrix (Khatib, 1987), with γi = 1
if the i-th direction is subject to force control, 0 other-
wise. xxx f ∈ Rm is the force controller output, while
xxxr ∈ Rm is the reference pose, whose i-th compo-
nent is tracked when γi = 0. KKKP,KKKI ∈ Rm×m are the
proportional and integral gains of the controller, and
∆∆∆hhh = hhhr −hhhe ∈ Rm is the error between the reference
wrench to be exerted hhhr ∈ Rm and the actual exerted
wrench hhhe ∈ Rm.

2.3 Model Approximator

The Model Approximator (MA) addresses the inher-
ent complications in accurately modeling the robot-
environment interaction with a rather straightforward
method that only requires the user to set up a handful
of experiments that autonomously train the NN-based
model. The MA deals with the current system state
sssk, aiming to predict the state at the next time step
k+1 following the equation

ŝssk+1 = F̂(sssk,xxx f ), (5)

where ŝssk+1 is the predicted next state. F̂ represents
the transition dynamics approximation which outputs
the next predicted state, where F indicates the ac-
tual dynamical system, i.e. the impedance-controlled
robot (see Fig. 2). Specifically, instead of predicting
sssk+1 explicitly, the actual FFNN’s output δδδŝss is chosen
to be the approximate difference between two subse-
quent states, similarly to (Nagabandi et al., 2018), i.e.:

δδδsss = sssk+1 − sssk. (6)

This allows (5) to be rewritten as

ŝssk+1 = sssk +δδδŝss(sssk,xxx f ), (7)

with δδδŝss(sssk,xxx f ) being the actual NN output, as in
Fig. 3.

As regards the state definition, in general sss takes
the form

sss ≜ (xxx, ẋxx,hhhe)
⊤, (8)
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Figure 3: MA architecture. The hidden layers approximate
the dynamics transition function sssk+1 = F(sssk,xxx f ) by pre-
dicting the state variation δδδŝss.

but it might be specialized according to the task setup.
Indeed, assuming tracking forces only along the z
axis, ORACLE (Petrone et al., 2025) only considers
orthogonal components in sss, i.e. EE penetration ve-
locity and force along the same direction. This work
introduces a new feature in sss, namely the EE tan-
gential velocity v, which influences the evolution of
the exerted force, especially at high speeds (Iskandar
et al., 2023). In summary, we propose the following
augmentation in the MA state representation:

sss ≜ (z, ż, fz)
⊤ → sss ≜ (z, ż,v, fz)

⊤ , (9)

where v =
√

ẋ2 + ẏ2 is the tangential velocity, with
ẋ, ẏ being the velocity components on the EE xy plane,
and fz is the normal force along z, i.e., the contact
direction.

From an architectural standpoint, the FFNN is ac-
tually an ensemble of FFNN as in (Chua et al., 2018),
since using an array of N independently trained NNs
minimizes the errors risen by epistemic and stochastic
uncertainties.

2.4 VAICAM Algorithm

Acting as the glue that joins all items together,
the VAICAM algorithm combines the DFC-enhanced
impedance controller and the MA. It utilizes the con-
trol action output by the DFC xxx f along with the force
prediction of the MA ĥhhe, and then outputs the opti-
mal residual action xxx∗c that will then be added to the
impedance controller action aiming at minimizing the
force tracking error. VAICAM will search for xxx∗c in
the neighborhood of xxx f in an area centered around it
with predefined radius ρρρ > 000.

Then, the control input to the impedance con-
troller is updated by solving an optimization problem,
run at each control step k:

xxx∗c(k) = argmin
xxxc∈xxx f ±ρρρ

Lk(sss,xxxc,hhhr), (10)

where

Lk(sss,xxxc,hhhr) = |hhhr(k)− ĥhhe(sssk,xxxc)|+Ωk(xxxc) (11)

Data: xxx f from (4), sss = (xxx, ẋxx,hhhe)
⊤,hhhr

Result: xxx∗c
if k = 1 then

Set ααα, βββ and ρρρ;
Set weights of the pre-trained MA NN

ensemble;
end
Build the discretized neighborhood of candidate

optimal actions BBBρρρ(xxx f ) = [xxx f ±ρρρ];
for xxxc ∈ BBBρ(xxx f ) do

Infer the predicted force from the model
approximator with (7):
ĥhhe(sss,xxxc) = hhhe +δδδĥhhe(sss,xxxc);

Compute the regularizer in (12) as
Ωk(xxxc) = ∥xxxc∥2

ααα + |xxxc − xxx∗c(k−1)|βββ;
Compute the corresponding loss function in

(11) as Lk(sss,xxxc,hhhr) = |hhhr − ĥhhe|+Ωk(xxxc);
end
Call VAICAM by solving the optimization

problem in (10) minimizing (11):
xxx∗c(k) = argminxxxc∈BBBρρρ(xxx f ) Lk(sss,xxxc,hhhr);

Algorithm 1: VAICAM algorithm at every control
step k.

is the cost function to minimize, whose first term |hhhr−
ĥhhe| is the expected force tracking error, and

Ωk(xxxc) = ∥xxxc∥2
ααα + |xxxc − xxx∗c(k−1)|βββ (12)

is a regularizer that contributes to smoothing-out large
jumps of the control term xxxc. The first term in (12) pe-
nalizes heavy actions so as to avoid deep penetrations
of the EE into the environment, whereas the second
prevents fast variations between subsequent actions.
The two terms are defined as:

∥xxxc∥2
ααα = ∑

i
αix2

c,i, (13a)

|xxxc − xxx∗c(k−1)|βββ = ∑
i

βi|xc,i − x∗c,i(k−1)|, (13b)

where both ααα,βββ ∈Rm are parameters to be chosen by
the user. This method, summarized in Algorithm 1,
along with the base force controller, is activated as
soon as contact is established between the EE and the
environment.

2.5 Training Procedure

The training and validation of the ensemble of FFNN,
which is done in a preliminary offline stage, uses col-
lected data resulting from thorough exploration of the
state space. In order to collect the data, reference
forces and positions are provided to the base force
controller, and the output data, consisting of the ac-
tual robot states sss and control actions xxx f , are recorded.
During the training stage of the FFNN, their weights
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are updated using the Stochastic Gradient Descent al-
gorithm in order to minimize the Mean Squared Error
(MSE) between the actual and estimated states.

In our training procedure, we recommend com-
manding sine waves as references in both force and
position spaces, in order to have a thorough explo-
ration and avoid data gaps in the state domain. Com-
manding a sine wave reference for the position addi-
tionally entails that the EE velocity v is sinusoidal,
allowing for the complete exploration of the velocity
space as well. This is a crucial aspect because, com-
pared to (Petrone et al., 2025), the inclusion of the
new feature v requires a dedicated training. Further-
more, we recommend exaggerating the amplitude of
the sine wave force references: even though they can-
not be perfectly tracked by the controller, this ensures
that the force domain is sufficiently explored.

After collecting data, they are then processed fol-
lowing methods used in (Nagabandi et al., 2018; Chua
et al., 2018), i.e. they are normalized by subtracting
the mean of each quantity and then dividing by its
standard deviation. A zero-mean Gaussian noise in
the form N (µ = 0,σ) is applied to the measured data
hhhe in order to enhance the robustness of the NN.

3 RESULTS

3.1 Task and Materials

The experimental validation is divided into two main
phases, both conducted on the 7-DOF Franka Emika
Panda robot:

• Experiment I: train, validate, and test the Static
Model Approximator (SMA) used by ORACLE,
which is the MA trained and validated using static
position references (Petrone et al., 2025) without
tangential velocity, and the Dynamic Model Ap-
proximator (DMA) used by VAICAM, which is
the MA trained and validated using dynamic posi-
tion references with tangential velocities;

– the goal is to assess the performance of both
MAs on dynamic position reference trajecto-
ries, and validate that the DMA yields higher
accuracy as the tangential velocity increases;

• Experiment II: execute dynamic trajectories us-
ing the base controller (Roveda and Piga, 2021),
ORACLE (Petrone et al., 2025) and VAICAM,
and compare the force tracking results;

– in this case, the objective is to assess the per-
formance of both control strategies, and val-
idate that the controller that uses the DMA
(VAICAM) performs better than both the base

Table 1: Parameters used in the experiments.

Parameter Value
Coulomb friction coefficient µ 0.2

Time step solver ODE
Impedance control translational stiffness Kd,t 1700
Impedance control orientational stiffness Kd,r 300

Damping ratio ξ 1
DFC Proportional gain KP 1 ·10−6

DFC Integral gain KI 2 ·10−3

Table 2: Configurations of the FFNN ensemble.

Parameter Value
Number of estimators N 3

Hidden layers 3
Neurons per layer 200

Activation function ReLU
Learning rate 1 ·10−3

Ensemble type Fusion
Training epochs 50
Loss function MSE

Weight optimizer Adam

controller and the controller that uses the SMA
(ORACLE).

The NN’s algorithm is coded in Python using
PyTorch (Paszke et al., 2019), interfacing with the
other modules via ROS communication mechanisms
(Quigley et al., 2009). The controllers implemented
in ROS are coded in C++.

In order to accurately simulate the robot,
Gazebo (Koenig and Howard, 2004) is used as
the simulation software. A spherical tip EE is
mounted at the flange of the robot (see Fig. 1).
The interaction control parameters are chosen as
KKKd = diag(Kd,t ,Kd,t ,Kd,t ,Kr,t ,Kr,t ,Kr,t) and DDDd =

diag{ξ
√

Kd,i}6
i=1, where Kd,t and Kd,r are the transla-

tional and rotational stiffness gains, respectively, and
ξ is the damping ratio. Table 1 provides a summary
of the parameters. In our experiment, a linear force is
exerted on the z axis, thus ΓΓΓ = diag(0,0,1,0,0,0).

3.2 Experiment I: Model Approximator
Validation

For a fair comparison with (Petrone et al., 2025),
we base the FFNNs structure on the findings therein.
Specifically, all FFNNs used share the same config-
uration in terms of depth (number of hidden layers),
width (number of neurons per layer) and learning al-
gorithm parameters, as listed in Table 2. Linear type
layers are used, while the activation function is of the
ReLU type (Agarap, 2019). The optimized config-
uration of the base estimator that ensures enhanced
inference time without compromising prediction ac-
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curacy uses N = 3 FFNNs. Adam (Kingma and Ba,
2015) refers to Adaptive Moment Estimation, an op-
timizer used for NN regression tasks, while “Fusion”
indicates how a single output is retrieved from the en-
semble, i.e. the arithmetic average across the indepen-
dent network estimations is computed.

3.2.1 Static Model Approximator

The dataset is composed of 10 trajectories, with 9 of
them being used in the training set, and the remain-
ing 1 in the validation set, used by Adam (Kingma
and Ba, 2015) to adaptively optimize the learning
rate. The position reference is in the form of a static
waypoint, as this MA, unlike the one proposed in
this work, does not take into consideration v (Petrone
et al., 2025). The force reference is in the form of
a sinusoidal wave with randomized frequency, ampli-
tude, and mean. Raw data in both training and valida-
tion sets are pre-processed as indicated in Sect. 2.5.

After training the MA, a test set is developed in
order to assess its performance. Since the aim of
this work is to assess the MA generalization ability
against dynamic position trajectories, this set is com-
posed of horizontal line references that the EE tries to
track with a constant velocity and a sinusoidal force
reference. The MA is tested against a total of 110 tra-
jectories of about 1.2m executed using the base con-
troller, divided into 11 evenly-spaced velocities in the
range [0.01,0.50]m/s. The performance assessment
is based on the comparison of the force predicted by
the MA with the actual force.

3.2.2 Dynamic Model Approximator

Compared to the SMA discussed in Sect. 3.2.1, we
adopt a different training approach, i.e. both the force
and position references in the training set take a si-
nusoidal form. On the basis of the training proce-
dure outlined in Sect. 2.5, sinusoidal position refer-
ences allow covering the desired velocity span bet-
ter than constant velocity profiles. The validation set
is composed of 11 trajectories, each randomly given
a velocity from the 11 velocity samples in the range
[0.01,0.50]m/s.

After executing the trajectories, the data stored in
the dataset are pre-processed according to the proce-
dure reported in Sect. 2.5. Using the DMA, the net-
work now takes into consideration v while predicting
the next state, which ameliorates the performance of
the MA at higher velocities. In order to confirm this
thesis, the DMA is evaluated on the same test set as
the SMA’s, i.e. using the same 110 line trajectories.
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Figure 4: Comparison between the static and the dynamic
model approximators, in terms of RMSE, as the EE velocity
increases.

Table 3: Average RMSE of static and dynamic model ap-
proximators across trajectories — η indicates the improve-
ment factor of DMA over SMA.

Velocity RMSE [N]
ηηη[m/s] SMA DMA

0.01 0.0154 0.0397 0.3877
0.05 0.0135 0.0203 0.663
0.1 0.0155 0.022 0.7029

0.15 0.0203 0.0228 0.8893
0.2 0.0312 0.0207 1.511

0.25 0.0456 0.0165 2.7628
0.3 0.0557 0.0225 2.4777

0.35 0.0684 0.0216 3.1683
0.4 0.0819 0.0188 4.3528

0.45 0.0936 0.0196 4.7841
0.5 0.104 0.0188 5.5422

3.2.3 Model Approximators Comparison

Fig. 4 reports the Root Mean Square Error (RMSE)
between the predicted and measured force, when ei-
ther the SMA or DMA is employed, for increasing
EE tangential velocity v. As expected, the plot re-
veals a better generalization ability of the DMA over
the SMA to higher EE velocities. While the results
are comparable at low speed, as v increases the SMA
showcases lower prediction accuracy, in terms of both
mean and variance across trajectories.

This qualitative analysis is quantitatively con-
firmed by Table 3, which also reports the numerical
improvement factor η of DMA over SMA. As v in-
creases, the former outperforms the latter by up to
454%, in terms of average RMSE recorded across tra-
jectories at the same velocity.
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(Petrone et al., 2025) and VAICAM (ours) at v = 0.2m/s.

3.3 Experiment II: Control Algorithm
Validation

Once the SMA and the DMA are trained, the three
control algorithms — DFC (Roveda and Piga, 2021),
ORACLE (Petrone et al., 2025), and VAICAM (ours)
— can be tested against a test set aiming to prove that
VAICAM outperforms its competitors. The optimizer
parameters are tuned as α = 25, β = 200, and ρ =
0.003m for both ORACLE and VAICAM.

As can be seen from Fig. 5, the average force-
tracking RMSE for VAICAM is approximately con-
stant for v ∈ [0,0.35] m/s, and starts increasing for
v > 0.35m/s. Thanks to the exploitation of the novel
DMA, VAICAM outperforms both ORACLE and the
base DFC. A sample trajectory is considered in Fig. 6,
visually showing that ORACLE’s uncertainty at mod-
erate velocities (due to the limited SMA) translates
into worse force-tracking capabilities. Furthermore,
Fig. 5 shows that VAICAM also enhances the DFC
performance, although with a lower improvement fac-
tor compared to ORACLE. Lastly, it is worth noticing
that VAICAM’s RMSE standard deviation is lower
than DFC’s, thus manifesting a superior robustness
w.r.t. the experimental conditions.

Table 4: Average RMSE of baseline DFC (Roveda and
Piga, 2021), ORACLE (Petrone et al., 2025), and VAICAM
(ours) across trajectories — η indicates the improvement
factor of VAICAM over DFC or ORACLE.

Velocity RMSE [N] ηηη

[m/s] DFC ORACLE VAICAM DFC ORACLE
0.01 2.0579 2.1222 2.0676 0.9953 1.0264
0.05 2.0602 2.1867 1.8917 1.0891 1.1559
0.1 2.1022 2.2118 2.0259 1.0377 1.0918
0.15 2.1563 3.135 2.0528 1.0504 1.5272
0.2 2.199 3.5081 2.0697 1.0624 1.695
0.25 2.3638 3.8424 2.0362 1.1609 1.887
0.3 2.4995 4.3858 2.1098 1.1847 2.0788
0.35 2.6919 4.6601 2.0553 1.3097 2.2673
0.4 2.973 4.883 2.3837 1.2472 2.0485
0.45 3.1873 4.978 2.5117 1.269 1.982
0.5 3.3923 5.4201 2.8123 1.2062 1.9273

To confirm the improvement of VAICAM over
both DFC and ORACLE, Table 4 displays the numer-
ical results by reporting the average RMSE of these 3
strategies for each velocity. As η confirms, VAICAM
surpasses the DFC by up to 31% (at v = 0.35m/s),
while the improvement over ORACLE at maximum
experimental speed (v = 0.5m/s) reaches 127%.

4 CONCLUSIONS

This paper introduced VAICAM, a controller improv-
ing the state-of-the-art of robot-environment interac-
tion tasks that require dynamic trajectories. It makes
use of an FFNN ensemble that acts as a model approx-
imator considering the tangential velocity of the EE.
The controller is based on an impedance controller to
ensure a compliant behavior, and a DFC to guarantee
the desired force tracking characteristics. An ensem-
ble of FFNNs is developed, trained, and tested along
the work. The networks are able to predict the force
that the manipulator will exert on the environment,
allowing the computation of an optimal residual ac-
tion. The latter is then added to the action of a base-
line DFC to improve its force-tracking capabilities, by
correcting the next commanded position. Tested in a
simulated environment, VAICAM outperformed the
baseline DFC (Roveda and Piga, 2021) and a similar
algorithm from recent literature (Petrone et al., 2025).

Possible future improvements of the proposed
strategy are: (i) extending the comparison with other
controllers from the literature, e.g. (Iskandar et al.,
2023); (ii) assessing whether these controllers can
benefit from a MA like the one developed in this
work to improve their performance; (iii) deploying
the algorithm on real hardware, for a complete val-
idation of VAICAM’s performance; (iv) extending
the state space to include tangential position com-
ponents, to tackle variable-stiffness environments;
(v) including the DMA in optimal planning algo-
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rithms foreseeing robot-environment interaction tra-
jectories (Petrone et al., 2022).
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