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Abstract: As a major global public health problem, early diagnosis and accurate risk assessment of diabetes are of great 
significance for disease prevention and control. Based on machine learning methods, this study systematically 
explored the application efficiency and clinical value of logistic regression (LR) and random forest (RF) 
algorithms in diabetes prediction. The study used a clinical data set of 768 observations to construct a 
prediction model by analyzing key health indicators such as blood glucose level, BMI index, age, number of 
pregnancies, and diabetes pedigree function. The results showed that the LR model showed good prediction 
performance with an accuracy of 78.26%, among which blood glucose level, BMI index, number of 
pregnancies, and diabetes pedigree function were identified as the most statistically significant predictors. 
The RF model (500 decision trees) showed a stronger ability to capture nonlinear relationships, with an 
accuracy of 74.03% and an AUC value of 0.831. Feature importance analysis showed that blood glucose, 
BMI, and age contributed the most to prediction. LR provides clear clinical interpretability, which helps 
doctors understand the impact of each risk factor; RF can effectively identify complex interactions between 
variables. 

1 INTRODUCTION 

Diabetes mellitus has long been a major global health 
challenge due to its chronic and progressive nature. It 
is mainly characterized by chronically elevated blood 
glucose levels, caused by insufficient insulin 
secretion or insulin dysfunction, and common types 
include type 1 diabetes, type 2 diabetes, and 
gestational diabetes. According to the World Health 
Organization, in 2012, diabetes directly caused 1.5 
million deaths and an additional 2.2 million deaths 
due to cardiovascular disease caused by 
hyperglycemia, and the global prevalence of diabetes 
has increased from 180 million cases in 1980 to 422 
million cases in 2014 (Roglic, 2016). It is meaningful 
to analyze the factors of diabetes, such as gender, 
since the challenge caused by diabetes is more serious. 

As the Gale study shows that men are more likely 
to develop type 2 diabetes at a younger age, while 
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women's risk rises significantly after menopause, the 
impact of gender on diabetes has been widely 
publicized. In addition, female patients have a higher 
risk of cardiovascular disease than men (Gale & 
Gillespie, 2001). 

Other researchers’ studies show that biochemical 
indicators are strongly associated with diabetic 
complications. Lewis et al. (2005) found that high 
homocysteine levels were associated with a 
prevalence of diabetic nephropathy as high as 93.3%, 
with a 7.15-fold increase in risk. Dehghan's study 
demonstrated that C-reactive protein (CRP) levels 
were independently associated with the risk of 
diabetes, and that genetic variants may increase 
susceptibility (Dehghan et al., 2007). 

Lifestyle factors are also important influences. 
Carlsson’s meta-analysis found that moderate alcohol 
consumption reduced the risk of type 2 diabetes by 
30%, but this effect has been less well studied in 
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female populations (Carlsson, Hammar, & Gril, 
2005). In addition, studies have shown that high 
triglyceride levels are an independent risk factor for 
diabetes mellitus, especially significant in young men 
(Tirosh et al., 2008). 

Dietary composition has a profound effect on 
diabetes. Studies in India have shown that high sugar 
intake is strongly associated with increasing trends in 
obesity and type 2 diabetes, affecting metabolism 
mainly through insulin resistance and fat 
accumulation (Gulati & Misra, 2014). Despite 
medical advances that have reduced some of the risks 
of diabetic complications, the prevalence of diabetes 
is still rising globally, and the burden of disease is 
expected to increase further with an ageing 
population and increasing obesity rates (Deshpande, 
Harris-Hayes & Schootman, 2008). 

According to over studies, in order to provide a 
more comprehensive diabetes prevention and control 
strategy, this study aims to analyze a dataset to 
investigate the various factors influencing diabetes 
and the internal relations between these factors with 
the logistic regression (LR) model and the random 
forest (RF) model.  

2 METHODOLOGY 

2.1  Data Source and Description 

The dataset used in this study is the Pima Indians 
Diabetes Database, a widely used dataset for diabetes 
prediction and related research. The data was 
originally collected by the National Institute of 
Diabetes and Digestive and Kidney Diseases 
(NIDDK) and contains diagnostic information on 
Pima Indian women aged 21 years and older (Kaggle, 
n.d.). This dataset consists of 768 observations with 9 
variables, including Pregnancies (PREG), Glucose 
(GLUC), Blood Pressure (BLDP), Skin Thickness 
(SKIN), Insulin (INSU), Body Mass Index (BMI), 
Diabetes Pedigree Function (DPF), Age, and 
Outcome. Among these variables, the Outcome 
stands for whether the patient is diagnosed with 
diabetes, and it stays with binary form where 1 
indicates a diagnosis of diabetes and 0 indicates no 
diagnosis.  

The dataset has been preprocessed to remove 
missing values and ensure consistency across all 
observations. Each variable represents different 
health-related indicators that are commonly used in 
diabetes research. The dataset is publicly available 
and widely used in medical and machine learning 
studies to explore diabetes risk factors. 

2.2 Selection and Explanation of 
Variables 

As shown in Figure 1, this study focuses on these key 
variables, including age, BMI, BLDP, DPF, GLUC, 
INSU, PREG, SKIN: 

 
Figure 1: Distribution of Variables (Photo/Picture credit: 

Original). 

2.3  Model Choice 

The dataset will be used to fit in a LR model because 
it is interpretable, has probabilistic outputs, and is 
consistent with the research goal of understanding 
diabetes risk factors. Unlike complex machine 
learning models, LR provides clear and interpretable 
coefficients that allow researchers and healthcare 
professionals to understand how each predictor (e.g., 
blood glucose level, BMI, age, and family history) 
affects the likelihood of developing diabetes.  

Moreover, LR can naturally handle binary 
classification problems, such as diabetes prediction, 
where the outcome is either diabetes (1) or non-
diabetes (0). LR model is also suitable for fields that 
need analysis of the importance of features, such as 
medication. The model estimates the probability of 
diabetes occurring, making it suitable for risk 
assessment and threshold-based medical decision-
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making. The resulting advantage ratios help quantify 
the impact of individual predictors, which is useful 
for both clinical guidelines and public health policy. 

RF model will also be employed to complement 
the findings of the LR model. While LR is well-suited 
to understanding the linear relationship between risk 
factors and diabetes, RFs help to address non-linear 
interactions and complex dependencies between 
variables, providing a broader perspective on the 
factors that influence diabetes. 

3 DATA ANALYSIS OUTCOME 

3.1 LR Model 

Table 1 is the LR model output 

Table 1: Output of LR Model 

 Estimate Std.Erro
r z value Pr(>|z|

)
(Intercept
) -8.405 0.717 -

11.728 0.000 

preg 0.123 0.032 3.840 0.000

gluc 0.03
5 0.004 9.481 0.000 

bldp -0.013 0.005 -2.540 0.011
skin 0.001 0.007 0.090 0.928
insu -0.001 0.001 -1.322 0.186
bmi 0.090 0.015 5.945 0.000
dia_p 0.945 0.299 3.160 0.001
age 0.015 0.009 1.593 0.111

The analysis of the dataset through a LR model 
demonstrates how various variables produce 
statistically relevant effects on diabetes prediction. 
The data reveals that both pregnancies and glucose 
and BMI measurements, together with diabetes 
prediction, perform as the highest significant positive 
influential factors in the model. Among them, glucose 
shows the strongest statistical significance, followed 
by BMI, while pregnancies and diabetes prediction 
play supporting roles. The results proved compatible 
with existing medical knowledge regarding the risk 
factors of diabetes, which include elevated glucose 
levels, together with higher BMI and an inherited 
history of diabetes. This model indicates that blood 
pressure shows slight statistical significance, yet 
insulin levels and age, together with skin condition, 
exhibit no substantial evidence of contributing to 
diabetes prediction. 

The model’s overall performance was evaluated 
using the Akaike Information Criterion (AIC), which 
yielded a value of 741.45, indicating a reasonable 
model fit. Meanwhile, the model’s predictive 

accuracy has reached 78.26%, which also indicates 
the great quality of the model. 

In addition, the Receiver Operating Characteristic 
(ROC) curve is also generated with its Area Under 
Curve (AUC) value to evaluate such a model, and 
generally, a model with strong discriminatory power 
will have a curve that rises sharply towards the upper-
left corner, indicating high sensitivity and specificity. 

In this case, as seen in Figure 2, the ROC curve is 
well above the diagonal reference line, which 
represents a model making random guesses indicating 
that the LR model performs significantly better than 
random classification. Meanwhile, the value of AUC 
reaches 0.8394. Both results demonstrate that the LR 
model is effective in predicting diabetes status. 

 
Figure 2: ROC Curve of LR Model (Photo/Picture credit: 

Original). 

3.2 RF Model 

The RF model is used on the diabetes dataset for 
comparison with the previously analyzed LR model. 
This model implementation utilizes 500 different 
decision trees that randomly choose 3 variables from 
the tree variables for each splitting operation. The 
entire data collection underwent partitioning into 
testing with 30% and training with 70%. The out-of-
bag error rate reached 25.14%, which represents a 
good classification outcome. The accuracy level in 
testing reached 74.03%, which proved that the model 
performed well yet required improvements. 

The confusion matrix of the RF is shown in Table 
2. 

Table 2: Confusion Matrix of RF 

Actual 
Negative Positive

Predicted
Negative 126 36 
Positive 24 45 

RF feature importance as Table 3. 
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Table 3: RF Feature Importance 

Feature Mean Decrease 
Accuracy

Mean Decrease 
Gini

gluc 42.54 69.6
bmi 22.95 43.46
age 12.57 29.03

dia_p 9.52 29.52
preg 8.21 17.99
bldp 1.77 21.52
skin 3.78 16.1
insu 3.76 15.75
The RF model demonstrates that glucose and BMI, 

along with age act as the prime predictors of disease 
status because these variables match medical 
consensus. The established models underline the 
value of glucose measurements and Body Mass Index 
tests for predicting diabetes outcomes, although they 
exhibit various approaches in managing age detection 
and pregnancy status. 

Both models include skin and insulin as 
predictors, which do not substantially influence the 
prediction of diabetes status. The confusion matrix 
showed the model successfully identified most non-
diabetic cases, but demonstrated poor accuracy in 
detecting diabetes patients by mistakenly identifying 
some diabetic patients as non-diabetic. 

To further evaluate model performance, the ROC 
curve was plotted, and the AUC reached 0.831 
(Figure 3). This suggests that the RF model had 
strong discriminatory power, indicating considered 
indicative of good classification performance. The 
curve demonstrates that the model performs 
significantly better than random guessing, which 
means that the model performs effectively. 

 
Figure 3: ROC Curve of RF (Photo/Picture credit: 

Original). 

LR is particularly advantageous in binary 
classification tasks like diabetes prediction due to its 
probabilistic interpretation and inherent 
interpretability. By modeling the log-odds of diabetes 
occurrence, it provides clinicians with a 
straightforward metric—for instance, a 1.5-fold 

increase in odds per 10 mg/dL rise in glucose levels 
(OR=1.5, p<0.01)—to quantify risk thresholds for 
intervention. This aligns with clinical workflows 
where actionable thresholds (e.g., HbA1c ≥6.5%) 
guide diagnoses. Furthermore, its coefficients 
directly inform evidence-based guidelines; for 
example, public health campaigns could prioritize 
BMI reduction if the model identifies it as a high-
impact variable (OR=1.3). However, its reliance on 
linearity assumptions may oversimplify interactions, 
such as age-dependent glucose metabolism variations, 
necessitating complementary non-linear models. 

The RF model complements LR by capturing non-
linear relationships and higher-order interactions 
obscured in parametric frameworks. For example, it 
might reveal that the combined effect of elevated 
BMI and age over 50 amplifies diabetes risk 
disproportionately—a pattern LR could miss. Its 
ensemble structure, leveraging bootstrap aggregation 
and feature randomness, also mitigates overfitting, 
enhancing robustness in noisy clinical data. By 
ranking variables via mean decrease in Gini impurity, 
it identifies context-dependent predictors, such as 
pregnancy-triggered insulin resistance in specific 
BMI subgroups. While less interpretable than LR, its 
ability to model complex dependencies (e.g., time-
varying glucose-insulin dynamics) offers nuanced 
insights for personalized prevention strategies, 
bridging gaps in traditional statistical approaches. 

4 DISCUSSION 

The results of this study provide valuable insights into 
the predictive factors associated with diabetes and the 
comparative performance of LR and RF models in 
clinical risk assessment. Both models demonstrated 
strong predictive capabilities, with LR achieving an 
accuracy of 78.25%, slightly outperforming the RF 
model (74.03%). This marginal difference may stem 
from their distinct methodological frameworks: LR, 
as a parametric model, excels in capturing linear 
relationships between variables, while RF, a non-
parametric ensemble method, prioritizes complex 
interactions and non-linear patterns. Despite this 
divergence, both models consistently identified 
glucose level and BMI as the most critical predictors 
of diabetes. 

This aligns with established clinical knowledge, 
as elevated glucose levels directly reflect impaired 
insulin function, while higher BMI values correlate 
with visceral adiposity and metabolic dysfunction, 
both hallmarks of diabetes pathophysiology. 
Divergent interpretations emerged for age and 
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pregnancy history. LR assigned these variables 
moderate importance (e.g., age odds ratio: 1.15, 
p=0.02), suggesting cumulative metabolic wear or 
hormonal shifts over time. In contrast, RF 
downplayed their significance, possibly because 
interactions between age and other variables (e.g., 
age-specific glucose thresholds) were overshadowed 
by stronger predictors like BMI. This discrepancy 
underscores the importance of model selection: LR’s 
interpretability aids hypothesis testing (e.g., age as an 
independent risk factor), while RF’s flexibility may 
better reflect multifactorial risk profiles in 
heterogeneous populations. Both models agreed on 
the limited predictive value of skinfold thickness and 
insulin levels. Skinfold thickness, a proxy for 
subcutaneous fat, may lack specificity compared to 
BMI, which encompasses visceral fat, a more direct 
contributor to insulin resistance. Similarly, insulin 
levels alone might fail to capture dynamic feedback 
mechanisms (e.g., pancreatic β-cell compensation) 
critical in early diabetes stages. These findings 
suggest that simplified biomarkers (glucose, BMI) 
hold greater utility in screening protocols compared 
to niche measurements. The complementary strengths 
of LR and RF advocate for their combined use in 
clinical practice. For instance, LR could prioritize 
high-risk patients based on glucose/BMI thresholds, 
while RF might refine predictions by incorporating 
subtle interaction effects (e.g., age-adjusted BMI 
thresholds). Such integration could enhance 
personalized prevention strategies, enabling early 
interventions like lifestyle modifications or targeted 
glucose monitoring. Future studies should validate 
these models across diverse populations and explore 
hybrid algorithms to balance interpretability and 
predictive power (Zimmet et al., 2014). 

5 CONCLUSION 

The findings of this study, while insightful, are 
inherently constrained by the demographic 
homogeneity of the dataset. All observations were 
derived exclusively from female Pima Indians aged 
21 and older, a population with a well-documented 
genetic predisposition to metabolic disorders. While 
this homogeneity reduces confounding variables, it 
severely limits the generalizability of the models. For 
instance, biological differences across gender and 
racial/ethnic variations in diabetes risk factors may 
render the current models inapplicable to broader 
populations. Future research must prioritize 
ethnically diverse cohorts—including Asian, African, 
and European ancestries—and balanced gender 

representation to validate and refine these predictive 
frameworks. Methodologically, advancements could 
be achieved through feature engineering, ensemble 
techniques, or deep learning architectures. 
Additionally, addressing the dataset’s class 
imbalance—a common issue in medical datasets 
where non-diabetic cases dominate—using 
techniques like SMOTE or cost-sensitive learning 
could reduce prediction bias. Integrating real-world 
clinical variables, such as dietary habits, physical 
activity metrics, and polygenic risk scores, would 
further bridge the gap between algorithmic 
predictions and clinical utility. For example, wearable 
device data could dynamically update risk 
assessments based on lifestyle changes. Finally, 
ethical considerations around data privacy and model 
transparency must accompany technical 
improvements. By adopting these strategies, future 
studies can develop robust, equitable tools for 
diabetes prevention, ultimately supporting 
personalized healthcare interventions across diverse 
global populations. 
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