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Abstract: This study aims to compare the application effects of traditional econometric models and machine learning 
models in portfolio return prediction and risk management, and selects Apple's daily return as sample data. 
First, the Augmented Dickey-Fuller test is used to confirm the data stationarity. The optimal ARIMA model 
is constructed under the AIC and BIC criteria, and its in-sample return is predicted. In order to further 
characterize the return volatility characteristics, ARCH-LM test and residual square ACF analysis are 
performed on the ARIMA model residuals, and then the GARCH model is established to obtain the in-sample 
volatility forecast. Based on this, an LSTM model with 25-order lag as input is constructed, and the model is 
trained using the full sample data to generate the in-sample forecast of the return. Finally, under the premise 
of controlling the confidence level to 95% and uniformly using the GARCH volatility forecast results, the 
Value at Risk (VaR) is calculated using the normal distribution assumption, and the VaR of the ARIMA, 
LSTM models and real return data are compared and analysed. The research results show that the LSTM 
model is more sensitive to the ARIMA model under extreme market volatility conditions, but both have the 
limitation of underestimating extreme risks, which provides a direction for the introduction of methods such 
as heavy-tailed distribution or extreme value theory in the future.

1 INTRODUCTION 

As the continuous development of the global financial 
market and the increasing complexity of financial 
assets, portfolio management and risk control have 
become key concerns for financial institutions and 
investors. Traditional time series methods, such as 
econometric models represented by Autoregressive 
Integrated Moving Average (ARIMA) model are 
widely used in forecasting portfolio returns due to 
their advantage in capturing linear dependencies.  

However, ARIMA model may only be applicable 
to specific seasonal patterns and its utility in long-
term decision making and forecasting is limited 
(Shumway and Stoffer, 2016; Devi and Alli, 2013). 
On the other hand, in recent years, with the 
continuous advancement of machine learning 
technologies, models such as Long Short-Term 
Memory (LSTM) and random forests have been 
widely applied to financial time series analysis (Ho et 
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al., 1997). These models demonstrate significant 
advantages in capturing the nonlinear structures in 
data and complex interactions among variables, 
providing a new technical approach for forecasting 
portfolio returns (Feng et al., 2018). In particular, 
LSTM model can learn from the time dependencies 
in the environment and, without explicitly employing 
activation functions within its components, each 
LSTM unit is capable of collecting information over 
long or short time spans (Girsang et al., 2020). 
However, despite the power of deep learning, it 
requires substantial data and computational 
resources, making ARIMA model potentially more 
efficient for small-scale problems (Kontopoulou et 
al., 2023). Bollerslev emphasized that in terms of risk 
measurement, traditional time series and econometric 
models are based on the assumption of constant 
variance (Bollerslev, 1986). In contrast, the volatility 
characteristics of actual financial markets make 
simple mean forecasts inadequate for fully reflecting 
risk levels. The Generalized Autoregressive 
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Conditional Heteroskedasticity (GARCH) model, as 
a classical tool for modeling market volatility, can 
effectively characterize these time-varying risk 
features (Engle and Patton, 2001).  

In addition, Value at Risk (VaR) is an important 
tool for risk management and provides a standardized 
risk measurement framework, but it needs to be 
combined with other methods to fully assess risks 
(Duffie and Pan, 1997). Moreover, Alexander and 
Baptista illustrated that the minimum VaR portfolio 
only exists when the confidence level is high enough, 
while a low confidence level will lead to irrational 
decisions and market imbalance (Alexander and 
Baptista, 2002). In extreme risk scenarios, flexible 
GARCH models combined with leptokurtic 
distributions can significantly improve the accuracy 
of VaR predictions. Therefore, by integrating return 
forecasting with GARCH volatility modelling, the 
VaR calculation can reflect a stronger sensitivity to 
risk and enhanced practical applicability. 

Current research has been limited to either 
comparing the predictive performance of ARIMA 
models with machine learning models or focusing 
solely on VaR calculation and forecasting using 
GARCH models. Although these studies provide 
valuable insights into individual model performance, 
there is a clear lack of research that integrates all three 
modeling approaches into a cohesive framework for 
application in real investment portfolios. This 
disjointed approach leaves a gap in understanding 
how these models can complement each other in 
practical, risk-sensitive forecasting environments.  

Based on this background, the present study aims 
to bridge this gap by conducting a comprehensive 
comparison of ARIMA models and typical machine 
learning methods in forecasting portfolio returns. The 
research will then incorporate GARCH models for 
volatility modeling, leveraging the strengths of each 
approach to achieve an accurate estimation of 
portfolio VaR. In this integrated framework, 
comparing the ARIMA model's capacity to capture 
linear trends and seasonality with the machine 
learning methods' ability to uncover complex 
nonlinear patterns, can provide a more robust and 
nuanced forecast of returns. Meanwhile, the GARCH 
model's proven track record in modelling volatility 
clustering in financial time series will be instrumental 
in refining the risk measurement process.  

This study can provide a deeper understanding of 
the adaptability and limitations of these different 
models in real-world forecasting scenarios. By 
systematically integrating these models, the research 
aims to offer both theoretical and quantitative support 
for asset allocation and risk control. The findings are 

expected to contribute to the development of more 
sophisticated risk management tools that can be 
applied by financial institutions and portfolio 
managers, enhancing decision-making processes in 
environments characterized by uncertainty and 
market volatility. 

2 METHODOLOGY 

In this part, the data resources used in this study, 
variables involved and specific methods will be 
introduced. 

2.1 Data Source 

The data utilized in this study is sourced from the 
Yahoo Finance platform, an international financial 
information platform. The database is accessed and 
extracted through Python programming language. 
The daily stock data set extracted from the Yahoo 
Finance platform contains important indicators such 
as opening price, closing price, and returns, which can 
clearly reflect the daily changes of the stock. To 
verify the performance of the ARIMA model and 
LSTM model in portfolio returns prediction and risk 
measurement, this study selected the historical stock 
price data of Apple Inc. (stock code: AAPL) as the 
research object, with a time span of January 1, 2015 
to February 28, 2025, covering significant market 
stages such as Covid-19 and the Russian-Ukrainian 
War. As a world-renowned technology company, 
Apple's stock has high market liquidity and 
representativeness, which can better reflect the 
dynamic characteristics of market risk and return. 

2.2 Variables Selection and Description 

In this study, the daily returns extracted from the 
stock data were selected as the basic indicator, 
comprising approximately 2,553 observations. 
Subsequent data processing on this variable yielded 
three additional variables. Ultimately, these variables 
were utilized to compute the VaR using two different 
prediction models and GARCH model, leading to the 
corresponding risk estimates. 

2.3 Method Interpretation 

In this study, Augmented Dickey-Fuller (ADF) test 
was first conducted on the extracted daily returns of 
Apple Inc. to examine the presence of unit roots 
within the time series. Upon confirming the 
stationarity of the daily returns, an optimal ARIMA 
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model was constructed based on the Akaike 
Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC), and in-sample forecasts 
were generated to obtain the corresponding expected 
return predictions. 

      𝛻ௗ𝑥௧ = 𝑐 + ∑ 𝜙௜௣௜ୀଵ 𝛻ௗ𝑥௧ି௜ + ∑ 𝜃௜௤௜ୀ଴ 𝜖௧ି௜           
(1) 

 
where 𝛻ௗ𝑥௧ is the value of the time series 𝑥௧ after d 
differences, 𝑐  is the constant term, 𝑝 represents the 
order of the autoregressive component, 𝜙௜  denotes 
the autoregressive coefficients, and 𝛻ௗ𝑥௧ି௜ indicates 
the lagged value at period 𝑖 of the differenced series, 𝑞  represents the order of the moving average 
component, 𝜃௜  denotes the moving average 
coefficients, and 𝜖௧ି௜  indicates the lagged value at 
period i of the error term (Kontopoulou et al., 2023). 

Building on the optimal ARIMA model, the 
ARCH-LM test on its residuals was conducted to 
assess the presence of ARCH effects. In addition, the 
ACF of the squared residuals was plotted to further 
examine the significance of these effects. Following 
this, a GARCH (1,1) model was established, and in 
sample forecasts were conducted to derive volatility 
predictions. 

        𝜎௧ଶ = 𝑎଴ + ∑ 𝑎௜௤௜ୀଵ 𝜖௧ି௜ଶ + ∑ 𝑏௝௣௝ୀଵ 𝜎௧ି௝ଶ                   
(2) 

 
where ∑ 𝑎௜௤௜ୀଵ + ∑ 𝑏௝௣௝ୀଵ < 1.  

Additionally, a machine learning approach was 
employed by constructing an LSTM model with a lag 
order of 25. This model was trained using the full 
sample of data, and in-sample forecasts were 
produced to generate expected return predictions.  

For the final stage of the analysis, VaR estimates 
were computed under normal distribution. To ensure 
a fair comparison of the portfolio VaR performance 
between the ARIMA model and the LSTM model, a 
set of control variables was maintained, including the 
adoption of a unified confidence level of 95%, and the 
use of volatility forecasts derived from the GARCH 
model. The results were then visualized for 
comparative observation. 

     𝑉𝑎𝑅 = −൫𝜇 + 𝑧௣𝜎൯                            (3) 

where 𝜇  represents the returns, 𝜎  denotes the 
standard deviation of returns, and 𝑧௣ is the quantile of 
the standard normal distribution corresponding to the 
confidence level p. 

3 RESULTS AND DISCUSSION 

This section will elaborate on the process and final 
results of the ARIMA model, GARCH model and 
LSTM model used in this study in data processing, 
model construction and forecasting analysis. In 
addition, the prediction effects of the ARIMA model 
and the LSTM model are further compared in a 
quantitative manner through the VaR calculation 
results. Table 1 presents the dataset of daily returns 
from 2015-01-05 to 2025-02-27 of Apple Inc. 

Table 1: Apple Inc. Daily Returns.  

Date Return 
2015-01-05 -0.028 
2015-01-06 0.000 
2015-01-07 0.014 
2015-01-08 0.038 
2015-01-09 0.001 

… … 
2025-02-21 -0.001 
2025-02-24 0.006 
2025-02-25 -0.000 
2025-02-26 -0.027 
2025-02-27 -0.013 

 

3.1 ARIMA Model Consequence 

The figure 1 is a time series plot of the rate of return 
over time. The result of the ADF test on the sample 
time series data is that the test value (ADF Statistic) 
is -15.806, and the p-value is close to 0.00, indicating 
that the null hypothesis of "the existence of a unit root 
in the time series dataset" can be rejected at an 
extremely low significance level, which means the 
time series is statistically stationary and does not 
require further differential processing to meet the 
requirements of subsequent modelling. 
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Figure 1: Apple Inc. Daily Return Time Series Plot 2015-01-05 to 2025-02-27 (Picture credit: Original)

According to the ACF and PACF plots of the 
residuals of the ARIMA models based on the AIC and 
BIC criterion presented in Figure 2 and Figure 3, it 
can be found that the residuals of the two optimal 
models, the ARIMA(3, 0, 5) by AIC and the 
ARIMA(0, 0, 1) by BIC, lie within the range of the 
confidence intervals for each lag period, with no sign 
of significant deviation from the zero axis. This 
indicates that the residuals of both models exhibit 

stochastic characteristics close to white noise, 
suggesting that the models fit the linear structure of 
the data more adequately. However, considering the 
model complexity and the number of parameters, the 
ARIMA(0,0,1) model chosen by the BIC is more 
concise and more practical, and therefore the 
ARIMA(0,0,1) model of the BIC is taken as the final 
optimal model. 

 

Figure 2: ACF and PACF Plots of ARIMA Model Residuals Based on AIC Criteria (Picture credit: Original)
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Figure 3: ACF and PACF Plots of ARIMA Model Residuals Based on BIC Criteria (Picture credit: Original)

The established optimal ARIMA model was tested for 
fitness and the SARIMAX results are shown in Table 
2 and Table 3. According to the results, both the 
constant term, const=0.0011, and the MA(1) term, 
ma.L1=-0.0663, are significant, indicating that the 
studied return series is characterized by a significant 

level of average daily returns and short-term negative 
autocorrelation. In addition, the Ljung-Box test of the 
model residuals, Prob(Q)=0.99, shows that there is no 
significant autocorrelation in the residuals, indicating 
that the model has effectively captured the linear 
autocorrelation structure of the dataset. 

Table 2: ARIMA(0, 0, 1) SARIMAX Results (1) 

 coef std err z P>|z| [0.025 0.975] 

const 0.0011 0.000 3.162 0.002 0.000 0.002 

ma.L1 -0.0663 0.013 -5.172 0.000 -0.091 -0.041 

stigma2 0.0003 0.000 62.401 0.000 0.000 0.000 

 

Table 3: ARIMA(0, 0, 1) SARIMAX Results (2) 

Ljung-Box (L1) (Q) 0.00 Heteroskedasticity (H) 1.33 

Prob (Q) 0.99 Prob (H) (two-sided) 0.00 

Finally, the established model is utilized to perform 
in-sample prediction on the dataset. The results are 
shown in Table 4. 

As can be observed from the figure 4, the actual 
returns (blue line) are significantly more volatile and 
exhibit significant volatility aggregation.  
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Table 4: ARIMA Model Returns Prediction Results  

Date Return ARIMA
2015-01-05 0.020028
2015-01-06 0.020421
2015-01-07 0.019741
2015-01-08 0.019295
2015-01-09 0.020509

… … 
2025-02-21 0.015236
2025-02-24 0.014822
2025-02-25 0.014470
2025-02-26 0.014094
2025-02-27 0.015101

In contrast, the overall volatility of the returns 
predicted by the ARIMA model (red line) is small and 
close to zero, indicating that the model lacks the 
ability to effectively capture extreme volatility in 
financial market returns. In addition, the 95% 
confidence intervals (light blue area), while covering 
most of the actual return data points to a certain extent, 
are too conservative in the vicinity of extremes, such 
as the sharp fluctuations in the early 2020s (Covid-19 
time shock), and do not fully reflect the true level of 
risk in the market. 
 

Figure 4: ARIMA Model Forecast vs. Actual Returns (Picture credit: Original) 

3.2 GARCH (1,1) Model Consequence 

According to the results shown in Table 3, the 
heteroscedasticity test (Prob(H)=0.00) also indicates 
the presence of significant conditional 
heteroscedastic effects in the residuals. To ensure the 
effective establishment of a GARCH model, an 
ARCH-LM test was conducted on the residuals of the 
ARIMA(0,0,1) model. The ARCH-LM test p-value is 
0. Besides, from the squared residuals ACF plot, it is 
clear to observe that for many lag orders, the 
correlation coefficients remain outside the range 
under the null hypothesis of no autocorrelation-
particularly pronounced in the first few lags. These 

results indicate that the ARIMA(0,0,1) model has not 
fully captured the volatility of the return series, and 
significant ARCH effects persist in its residuals. 
Therefore, the GARCH (1,1) model was constructed 
and the in-sample volatility prediction is shown in 
Table 5. 
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Table 5: GARCH (1,1) Model Prediction Results 

Date Volatility GARCH
2015-01-05 0.020 
2015-01-06 0.020 
2015-01-07 0.020 
2015-01-08 0.019 
2015-01-09 0.021 

… … 
2025-02-21 0.015 
2025-02-24 0.015 
2025-02-25 0.014 
2025-02-26 0.014 
2025-02-27 0.015 

The variation of in-sample volatility prediction 
demonstrated in figure 5 indicates that the volatility 
estimated by the GARCH (1,1) model shows 
significant time-varying characteristics throughout 
the sample period, and exhibits an obvious "volatility 
clustering" phenomenon: when there are large shocks 
or major events in the market, such as the extreme 
market conditions in early 2020, the volatility will 
rise significantly, even reaching above 0.05, while in 
relatively stable market periods, it will remain at a 
low level, approximately in the range of 0.01 to 0.02. 

 

Figure 5: GARCH (1,1) Model In-Sample Volatility Prediction (Picture credit: Original)

3.3 LSTM Model Consequence 

The LSTM model in-sample prediction result is 
shown in Table 6. 

Table 6: LSTM Model Returns Prediction Results 

Date Return LSTM
2015-02-10 0.001 
2015-02-11 0.001 
2015-02-12 0.001 
2015-02-13 0.001 
2015-02-17 0.001 

… … 
2025-02-21 0.000 
2025-02-24 -0.000 
2025-02-25 0.000 
2025-02-26 -0.000 
2025-02-27 -0.000 

According to the prediction results depicted in Figure 
6, it is clear to see the LSTM model’s in-sample 
predictions for returns generally align with the actual 
returns (blue line) in terms of overall trends. However, 
during periods of significant market fluctuations or 
extreme events, such as the Covid-19 outbreak in 
early 2020, the model’s predictions (red line) fall 
short of capturing the substantial swings in actual 
returns, leading to some degree of underestimation or 
overestimation. Overall, while the LSTM model 
demonstrates feasibility in capturing routine volatility 
and trends, it still shows certain limitations in 
handling abnormal shocks and extreme market 
conditions. 
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Figure 6: LSTM Model Forecast vs. Actual Returns (Picture credit: Original) 

3.4 LSTM Model Consequence 

The VaR of the portfolio is calculated based on the 
in-sample data and all the collected forecast data, and 
the results are shown in Table 7. 

Table 7: Calculated VaR Results 

Date Var-In Sample VaR-ARIMA VaR-LSTM 

2015-02-10 0.010 0.029 0.029 
2015-02-11 0.006 0.030 0.028 
2015-02-12 0.017 0.030 0.029 
2015-02-13 0.024 0.029 0.029 
2015-02-17 0.023 0.028 0.028 

... ... ... ... 
2025-02-21 0.026 0.024 0.025 
2025-02-24 0.018 0.023 0.025 
2025-02-25 0.024 0.023 0.023 
2025-02-26 0.050 0.022 0.023 
2025-02-27 0.038 0.022 0.025 

According to the VaR variation trend in Figure 7, it 
can be seen that the VaR calculated based on real 
returns (light pink curve) showed large fluctuations 
during the sample period, especially reaching a peak 
in the extreme market environment in early 2020, 
reflecting the huge risks faced by the market. In 
contrast, the VaR obtained by the ARIMA model 
(blue line) is relatively stable overall. Although it can 
remain stable during regular volatility periods, it 

appears to be insufficiently responsive when facing 
extreme market events and fails to fully capture the 
increase in extreme risk exposure. The LSTM model 
(red line) is between the two. Its VaR estimate is not 
much different from ARIMA in normal situations, but 
it shows higher and sharper jumps when facing more 
drastic volatility environments, indicating that it has 
a more sensitive response to sudden fluctuations to a 
certain extent. 
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Figure 7: Calculated VaR Results Comparison (Picture credit: Original)

4 CONCLUSION 

In conclusion, based on the result of the VaR 
estimation performance of the ARIMA and LSTM 
models, it can be concluded that the LSTM model 
demonstrates greater sensitivity to extreme market 
volatility, offering a relatively superior capability in 
capturing tail risks compared to ARIMA.  

However, this study is still subject to certain 
limitations. The VaR calculation employed in this 
research relies on the assumption of normal 
distribution, which may not adequately represent the 
skewness and fat-tail characteristics commonly 
observed in financial markets, potentially resulting in 
underestimation of tail risks during extreme market 
conditions. Besides, the models utilized only a single 
dataset, ignoring the impact of multi-dimensional 
information on risk such as macroeconomic 
indicators, industry information, and market 
sentiment. In addition, the LSTM model has a high 
demand for data volume during training and 
parameter tuning, and if the data quality or quantity is 
insufficient, it also affects the robustness and 
generalization ability of the model. 

Therefore, in future research, the models can 
integrate with more flexible methods such as heavy-
tailed distributions into the VaR estimation 

framework to more accurately reflect tail risk in 
extreme market environments. Additionally, for the 
dataset, it is possible to further integrate multi-source 
data, such as macroeconomic indicators, company 
financial data, news public opinion and social media 
sentiment, etc., which are heterogeneous information. 
This will provide the model with richer risk signals, 
with the aim of improving the accuracy and 
robustness of the prediction. Moreover, the study can 
be extended to a wider range of risk measures, 
including Expected Shortfall, Max Drawdown, etc., 
or to explore how model uncertainty measures can be 
combined for more comprehensive risk management, 
helping regulators and investment managers better 
understand and utilize risk predictions from model 
outputs. 
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