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Abstract: This paper explores measures of edge augmentation to enhance resilience of strong structural controllability
for control systems modeled as leader-follower networks. Unlike existing methods which typically increase the
number of leaders, the proposed approach achieves resilience by strategically adding edges, thus maintaining
leader sets with a small cardinality. Using the zero forcing method, conditions are derived to enhance resilience
either for specific agents or for the entire network. Numeric simulations validate the approach and show its
effectiveness in large and complex networks.

1 INTRODUCTION

Networked Control Systems (NCS) are integral to
modern engineering, enabling distributed coordina-
tion and scalability in complex systems such as smart
grids, traffic systems, swarms and biological net-
works. In these systems, it is frequently desired to
control the network by injecting control actions only
for a small subset of nodes. This leads to the notion
of leader-follower frameworks, where leaders have a
control input, whereas followers do not have one (Por-
firi and di Bernardo, 2008; Egerstedt et al., 2012).
While this can simplify the control architecture, the
system may get more fragile with respect to malfunc-
tions or attacks, if the loss of an agent and/or its con-
nections significantly impairs the system’s function-
ality (Pasqualetti et al., 2020).

Controllability and resilience are thus important
properties when investigating in how far such systems
can maintain their function if subject to internal or
externally triggered changes. Controllability ensures
the ability to let the system transition from any ini-
tial state to a desired state, while resilience pertains to
the system’s capacity to withstand (or recover from)
disruptions. These properties are crucial, especially
in safety-critical applications where failures can have
catastrophic consequences.

This paper focuses on the notion of strong struc-
tural controllability (SSC) which requires controlla-
bility for varying interconnections of states (and thus
structures) of the system to be controlled. This is par-
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ticularly advantageous in NCS, since controllability
depends on the network topology and the leader set,
rather than only particular weights assigned to con-
stantly existing interconnections. This makes SSC
suitable for real-world applications, in which infor-
mation on edge weights may be uncertain, time-
varying, noisy, or even vanishing (Chapman and Mes-
bahi, 2013; Monshizadeh et al., 2014).

In order to assess SSC of leader-follower networks
as well as its resilience against changing network
topologies, this paper utilizes the method of zero forc-
ing sets, a graph-theoretic approach that is frequently
used in the context of SSC for NCSs (Monshizadeh
et al., 2014; Abbas et al., 2020b; Schmidtke et al.,
2024). In the context of SSC, the following exist-
ing papers have proposed edge augmentation, i.e. the
addition of edges to a graph, as a means to modify
the system structure for enhanced controllability. In
(Chen et al., 2019), minimal edge sets are computed
to render non-SSC systems structurally controllable,
whereas (Abbas et al., 2020a) and (Mousavi et al.,
2021) identify a set of edges that can be added without
violating SSC. These approaches leverage edge aug-
mentation as a design tool to either restore or preserve
controllability.

A certain body of literature in the given con-
text has examined the relationship between graph-
theoretic robustness measures and the minimum num-
ber of required leaders: The most often used mea-
sure is the Kirchoff index, which formulates the sys-
tem’s resilience against disconnection. (Pasqualetti
et al., 2020) and (Abbas et al., 2020b) investigate the
trade-off between an increasing connectivity and the
minimum number of required leader agents, which is
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also discussed as a central controllability measure in
(Egerstedt et al., 2012). The work in (Abbas et al.,
2024) identifies edge additions leading to a reduction
of the required number of leader agents, while in-
creasing the robustness measure. A design procedure
which builds a graph which is SSC with the highest
possible Kirchoff index for specified graph parame-
ters is presented in (Patel et al., 2024).

The notion of robustness addressed in the afore-
mentioned work differs from the approach to re-
silience taken in this paper. Rather than focusing
on graph connectivity, resilience of controllability is
here specifically considered with respect to preserv-
ing SSC in case of structural disruptions such as node
or edge failures. Resilient SSC is addressed only in
very few contributions: In (Schmidtke et al., 2024),
conditions have been specified which allow to check
which agents can be removed from the system, while
maintaining SSC with the current leader set. The pa-
pers (Abbas, 2023) and (Alameda et al., 2024) exploit
methods to specify a set of leader agents which guar-
antees that a certain number of nodes or edges can be
removed, while keeping the system SSC. However,
these methods require the introduction of far more
leader agents – this, on the one hand, leads to leader
selection problems which are known to be NP-hard in
general (Aazami, 2008). On the other hand, this ap-
proach contradicts the goal to have as few leaders as
possible. Thus overall, a significant gap in literature is
the enhancement of resilience without increasing the
number of leader agents. This paper addresses this
gap by proposing schemes to augment the graph by
additional edges in order to achieve strong structural
controllability, including the case that agents leave
and/or join the network.

The paper is structured as follows: Section 2 intro-
duces preliminaries on the system class, the property
of strong structural controllability, and the zero forc-
ing method. Section 3 formally states the problem
of enhancing resilient strong structural controllability
through modifying the edges of the graph. Section 4
presents the main results, while Section 5 provides a
numeric example to illustrate the approach. Finally,
Section 6 concludes the paper, summarizing the find-
ings and their implications.

2 PRELIMINARIES

Networks are in this paper represented by a graph
G̃ = (V ,E ,W ), in which V = {1, . . . ,N} is the set of
agents, E the set of edges, and W the set of weights
assigned to each edge according to wi j : E → R \ 0.
For simplification, it is assumed that (i, j) ∈ E ⇔

( j, i) ∈ E , which simplifies the notation. However,
wi j ̸= w ji is allowed, making the graph directed. It
is important to note, that the upcoming results can
be straightforwardly extended to cases where the as-
sumption of bi-directional edges is dropped. Edges
(i, i) for representing self-loops are permitted. Let all
neighbors of a node i be collected in a set Ni = { j ∈
V |( j, i) ∈ E , j ̸= i}.

The set of agents is divided into a set of leader
agents Vl = {l1, . . . , lml} ⊆ V and the set of follower
agents V \Vl . The ml leaders have a control input
ui(t) and the dynamics:

ẋi(t) = wii · xi(t)+ ∑
j∈Ni

wi j · x j(t)+ui(t), (1)

while the dynamics of the followers:

ẋi(t) = wii · xi(t)+ ∑
j∈Ni

wi j · x j(t) (2)

lacks an input. Note that with this definition the lead-
ers are allowed to interact dynamically with follower
and leader agents. The initial state of any agent is de-
noted by xi(0) = xi,0.

The global dynamics of all agents can be
derived by introducing the state vector x(t) :=
[xT

1 (t),x
T
2 (t), . . . ,x

T
N(t)]

T ∈ RN , the input vector
u(t) := [uT

1 (t),u
T
2 (t), . . . ,u

T
ml
]T ∈ Rml , the weight ma-

trix W with elements wi j, and the leader selection ma-
trix B ∈ [0,1]N×ml according to:

B =

{
bi j = 1 if i = l j

0 otherwise.
(3)

The global dynamics of the network can then by writ-
ten as:

ẋ(t) =Wx(t)+Bu(t), (4)

in which the leader agents can be controlled, whereas
the follower agents only respond to the behavior of
the leader agents.

2.1 Strong Structural Controllability

As is well known, a system (4) is controllable if the
following matrix has full rank (Antsaklis and Michel,
1997):

R(W,B) =
[
B WB . . . W n−1B

]
, (5)

In networked systems, however, edge weights are of-
ten either unavailable or time-varying, rendering the
direct use of (5) impractical. Then, strong structural
controllability (SSC) becomes relevant, as it assesses
controllability solely based on the system’s structure,
independent of the specific edge weights. To define
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SSC, the following family of matrices associated with
a given graph G̃ is considered:

W (G̃) = {W ∈ RN×N : for i ̸= j, wi j ̸= 0 ⇔ ( j, i) ∈ E}.
(6)

This matrix family includes all matrices for which the
nonzero off-diagonal entries correspond exactly to the
edges of G̃. Note that the diagonal elements of every
W ∈ W (G̃) can be arbitrary. With this notation, SSC
can be defined as follows:

Def. 1 (Strong Structural Controllability). A linear
system according to (4) is SSC if and only if the pair
(W,B) is controllable for all W ∈W (G̃), where B rep-
resents the agents through which inputs are applied.

Aiming at SSC according to this definition re-
quires that any possible matrix W of the given dimen-
sion needs to be considered, while the zero entries W
are encoded also by the fact that a corresponding edge
is not defined in E . Thus, it is sufficient (without loss
of generality) from here on to refer the considerations
on SSC to a reduced version G = (V ,E) of the graph
G̃ without weights.

2.2 SSC and Zero Forcing

The use of zero forcing as a method to examine SSC
is motivated by its direct correlation to network con-
trollability on graphs, as explained in (Monshizadeh
et al., 2014), see also Theorem 1. Zero forcing is
defined as follows (AIM Minimum Rank - Special
Graphs Work Group, 2008):

Def. 2 (Zero Forcing). For a graph G = (V ,E), let
V c

0 ⊂ V , |V c
0 |> 0 be chosen arbitrarily as an initial

set of colored nodes. Let then V be partitioned into
V c

0 and a set V u
0 of initially uncolored nodes accord-

ing to V c
0 ∩V u

0 = ∅ and V c
0 ∪V u

0 = V . If a colored
node i then only has one uncolored neighbor j, then j
is forced to be colored by i (denoted by i ⇀ j), i.e. j
is inserted into V c and removed from V u. This color-
ing process continues until no further coloring can be
executed, leading to final colored and uncolored sets
V c

f and V u
f .

F2

DS

ZFC2

ZFC1

VL

G

1 2

3

5

4

Figure 1: Example for zero forcing with V c
0 as ZFS with

minimal cardinality.

Def. 3 (Derived Set). If zero forcing has started from
V c

0 and terminated with V c
f , the latter set is also

called the derived set and is denoted by D(G,V c
0 ) :=

V c
f .

Def. 4 (Zero Forcing Set). If a selected set of initially
colored nodes V c

0 leads to D(G,V c
0 ) = V (i.e. all

nodes are colored at the end of zero forcing), V c
0 is

called zero forcing set (ZFS).

In addition the following terms are introduced:
Def. 5 (Forcing Chain). A forcing chain (FC)
C (G,V c

0 ) contains the list of forces i ⇀ j obtained
during zero forcing for the graph G, where this list is
sorted according to the sequence of forces carried out
during the forcing procedure when starting from V c

0 .

Def. 6 (Forcing Agents). For an agent j ∈ V , the
set F j(G,V c

0 ) contains all forcing agents (FA) i ∈ V ,
which can color j through a force i ⇀ j contained in
any forcing chain C (G,V c

0 ).

An example that illustrates these quantities can
be found in Fig. 1. As shown there, forcing chains
generally lack uniqueness, while the derived set
D(G,V c

0 ) remains unique (AIM Minimum Rank -
Special Graphs Work Group, 2008). For any set of
FA, the inequality |F j(G,V c

0 )| ≤ |N j| is always sat-
isfied because only neighbors are capable of color-
ing an agent. When V c

0 constitutes a ZFS, it en-
sures that |F j(G,V c

0 )| ≥ 1 for all j ∈ V u
0 , guarantee-

ing that at least one FC for every uncolored agent ex-
ists. Accordingly, |F j(G,V c

0 , j)| = 0 for all j ∈ V c
0

since these agents are colored initially.
The following theorem from (Monshizadeh et al.,
2014) establishes that zero forcing can determine if
a leader set Vl guarantees strong structural controlla-
bility for the system defined by the graph G:
Theorem 1 ((Monshizadeh et al., 2014)). System (4)
with W ∈W and B defined by the leader set Vl is SSC
if and only if Vl is a ZFS for G.

2.3 Resilient SSC

In network controllability, resilience refers to the sys-
tem’s ability to remain controllable despite agent mal-
functions or edge failures (Abbas, 2023). In terms of
structural controllability, the concept of a ZFS is ex-
tended to l-leaky forcing sets, defined as follows:
Def. 7 (l-Leaky Forcing Set). The leader set Vl
is a l−leaky forcing set (l−LFS), if ∀i ∈ V \ Vl :
Fi(G,Vl)≥ l +1.

Building on the previous definition, (Abbas, 2023)
demonstrates that an l-LFS provides resilience against
l malfunctions, where a malfunction may involve a
node departure or edge removal. (Note that the case
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Figure 2: In graph G, node 1 has only node 5 as its only one
forcing agent, i.e., the system is no longer SSC if node 1 is
removed from the graph. In G′, which is obtained by adding
the edge indicated by the red dashed line to G, node 5 has
an additional forcing agent, and therefore the graph remains
SSC, if node 1 is removed.

of entering agents is not considered here, but results
on this situation can be found in (Schmidtke et al.,
2024).

3 PROBLEM STATEMENT

While in (Abbas, 2023) the l-LFS guarantees re-
silient SSC by introducing additional leader agents,
the present work aims at improving resilience through
edge augmentation, i.e., by adding new edges to the
graph.

Formally, given a graph G = (V ,E) with a ZFS
Vl , the addressed problem is to enhance resilience by
adding an edge (i, j) (where i, j ∈ V and (i, j) ̸∈ E)
such that:

|Fi(G,Vl)|< |Fi(G′,Vl)|, (7)

for G′ = (V ,E ∪ (i, j)).
This approach, which can be applied iteratively,

follows the principle of the l-LFS methodology by in-
creasing the number of FA for critical nodes. How-
ever, this is achieved through the addition of edges
rather than by expanding the leader set. The method
is particularly well-suited for scenarios in which bot-
tlenecks or vulnerable regions of the network are
known in advance. In such cases, edge augmenta-
tion can be applied in a targeted manner to strengthen
the resilience of specific nodes, thereby improving
resilience without the need to introduce additional
leader agents.

For instance, in scenarios like the one in Fig. 2,
resilience is ensured by leveraging the result from

(Schmidtke et al., 2024): SSC is preserved, when
an agent j leaves G, provided that for all uncolored
neighbors i ∈ N j the following holds:

|Fi(G,Vl)\ j|> 0. (8)

To date, no published method systematically explores
possibilities of modifying the set of FA through leader
selection or edge augmentation. Thus, the following
section proposes a framework for strategically mod-
ifying the network topology to enhance resilience of
SSC.

4 IMPROVING RESILIENCE BY
EDGE AUGMENTATION

The primary objective of this section is to establish
conditions that guarantee (at least locally) enhanced
resilience of SSC by augmenting the set E of the
graph G by an additional edge (i, j). To achieve this,
the notion of a forcing graph is introduced. The latter
enables the analysis of the forcing agents of G by
examining how the addition of the edge affects the
network’s resilience. Based on this analysis, a main
theorem is formulated stating conditions under which
the augmentation leads to improved resilience. Fur-
thermore, this section shows that, under the derived
conditions, a ZFS in G retains the SSC properties,
ensuring that resilience is either globally or locally
enhanced.

A forcing graph is introduced to determine which
nodes are colored before a specific uncolored node,
under the condition that a designated colored node
does not color any other node. The formal definition
is as follows:

Def. 8. Given a graph G = (V ,E), let i ∈ V u be an
uncolored node and j ∈ V c a colored node. A forc-
ing graph Ḡi j = (V̄ , Ē) is constructed by introducing
two dummy nodes, α and β, thus V̄ = {V ∪{α;β}},
and a modified set of edges is obtained from Ē =
{E ∪ {(α, l) | l ∈ Ni} ∪ {(α, j),(β, j)}}. In here, α

is connected to all neighbors of i and to j, while β is
only connected to j.

An example of a forcing graph is shown on the
left hand side of Fig. 3, where the graph from Fig. 2
is expanded by the nodes i = 5 and j = 4.

Note that the forcing graph is a direct extension of
the extended graph, introduced in (Schmidtke et al.,
2024), which is denoted in this paper by Ḡi{}. In
this extended graph, which can be used to determine
the FA of node i over all FC (see (Schmidtke et al.,
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2024)), the node α is only connected to the neighbors
of i, and β has no neighbors.

The following result can be obtained for the de-
rived set of the forcing graph:

Lemma 1. Using a ZFS Vl,1 for G, the following con-
dition holds true for the forcing process on the forcing
graph Ḡi j for every pair (i, j) with i ∈ V u, j ∈ V c:

{α,β, i} ̸∈ D(Ḡi j,Vl,1). (9)

Proof. Based on the definition of Ḡi j, it follows
that Ni ⊂ Nα. Consequently, node i can only be
colored after node α has been colored. Given that
Nα \Ni = { j}, node j is the only node being able to
color α. Furthermore, due to the construction of Ḡi j,
the condition Nβ = { j} always holds. Neither α nor
β are initially colored, and node j cannot color α and
β. Thus (9) follows. ■

The forcing graph can be used to draw conclusions
about the forcing process for G based on the derived
set:

Lemma 2. Consider Vl,1 as a ZFS for G. For all
v ∈ D(Ḡi j,Vl,1) with i ∈ V u and j ∈ V c, an FC
C (G,Vl,1) = {c1, . . . ,c|V |−|Vl,1|} exists with ci = u′ ⇀
v′ such that:

• ∃ ci1 ,ci2 ∈ C (G,Vl,1) with:

ci1 = u′ ⇀ v,ci2 = ṽ ⇀ i, i1 < i2 (10)

• ∄ ci3 ∈ C (G,Vl,1) with:

ci3 = j ⇀ ũ and i3 < i2. (11)

Proof. Lemma 1 states that a forcing graph Ḡi j
for a ZFS of G prevents the coloring of agent i.
Consequently, v ∈ V u ∩ D(Ḡi j,Vl,1) implies the
presence of a FC C (G,Vl,1) in G with the same
leader set Vl,1, where all nodes v are colored prior to
the coloring of node i, according to (10). Moreover in
Ḡi j, node j consistently has two uncolored neighbors
that remain uncolored (as established by Lemma 1),
ensuring that all nodes v can be colored before node
i without node j coloring any of its neighbors. This
directly validates condition (11). ■

Corollary 1. If v ̸∈ D(Ḡi j,Vl,1) with Vl,1 as a ZFS
for G, then ∄ C (G,Vl,1) such that conditions (10) and
(11) are satisfied.

It is shown next how the forcing graph can be used
in order to find an edge (i, j) to specifically add node
j to the set of FA of another node i:

Theorem 2. Consider i ∈ V u, j ∈ V c, i ̸∈ N j and
Vl,1 as a ZFS for G. Adding the undirected edge (i, j)
to G, resulting in G′ = (V ,E ′) with E ′ = {E ∪ (i, j)}

leads to j ∈ Fi(G′,Vl,1) if and only if the following
condition holds for all nodes l ∈ N j:

l ∈ D(Ḡi j,Vl,1). (12)
Proof. Based on Lemma 2, condition (12) satisfied
∀l ∈ N j implies that a FC C (G,Vl,1) exists for which
(10) and (11) holds. This implies that all neighbors of
j can be colored before i is colored, without requiring
j to force any of its neighbors. Thus, the force j ⇀ i
is possible in G′, leading to j ∈ Fi(G′,Vl,1).
To demonstrate the necessity of condition (12), con-
sider the case in which the edge (i, j) is added to G,
while

∃ l′ ∈ N j : l′ ̸∈ D(Ḡi j,Vl,1) (13)
applies. According to Corollary 1, ∄ C (G,Vl,1) such
that l′ is colored while (10) and (11) are true, i.e.
either j ⇀ l′ or i1 > i2 with ci1 : ṽ ⇀ l′, ci2 = u′ ⇀ i.
In the first case, edge (i, j) prevents j ⇀ l′ because
i is an additional uncolored neighbor, making it
impossible for j to color i or l′, consequently
j ̸∈ Fi(G,Vl,1). In the second case, j ̸∈ Fi(G,Vl,1)
follows directly from the fact that i is colored before
l′, implying that up to the point of the coloring of
i, node j has more than one uncolored neighbors,
preventing j ⇀ i. Thus (12) has to apply ∀l ∈ N j
such that j ∈ Fi(G′,Vl,1) after adding (i, j) to graph
G, thereby establishing the necessity of (12). ■

Fig. 3 shows an example in which condition (12)
holds ∀l ∈ N4, such that adding edge (5,4) to the
graph results in 4 ∈ F5(G′,Vl) (as already illustrated
in Fig. 2). Note that the computational complexity of
verifying condition (12) for a specific pair of nodes
is equivalent to that of computing D(Ḡi j,Vl,1), for
which the effort is of order O(N+ |E|) (see (Brimkov
et al., 2019)).

In order to show that adding the edge (i, j) by The-
orem 2 increases the cardinality of the set of FA of i,
as required in (7), the following result is derived first:
Lemma 3. For l ∈ Fi(G,Vl,1), let an edge (i, j) be
added to G under the conditions of Theorem 2, lead-
ing to G′. Then l ∈ Fi(G′,Vl,1) holds.

12
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Figure 3: Left: The forcing graph corresponding to graph G
from Fig 2 with i = 5 and j = 4. Right: The derived set of
the forcing graph with Vl being a ZFS for G.
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Proof. Since l is a forcing agent of i in graph G, l
and all its neighbors except of i are colored before i is
colored. This can be expressed by the forcing graph
(cf. (Schmidtke et al., 2024) Theorem 3):

l ∈ D(Ḡi{},Vl,1) ∧ Nl \ i ⊂ D(Ḡi{},Vl,1). (14)

Theorem 2 ensures that all neighbors of j can be col-
ored by other nodes than j, before i is colored. There-
fore, no coloring in the derived set of the forcing
graph depends on j, implying:

D(Ḡi j,Vl,1) = D(Ḡi{},Vl,1). (15)

From this equality, it directly follows that:

l ∈ D(Ḡi j,Vl,1) ∧ Nl \ i ⊂ D(Ḡi j,Vl,1). (16)

This implies that adding the edge (i, j) does not
change the coloring of all FA l ∈ Fi(G,Vl,1) in G′,
since the coloring of each of these nodes does not de-
pend on the coloring of j, as shown by (15). Thus,
each FA can still be colored before i is colored. This
eventually means that:

l ∈ Fi(G,Vl,1) =⇒ l ∈ Fi(G′,Vl,1), (17)

holds if G′ results from adding (i, j) to G under the
condition of Theorem 2 holds. ■

Lemma 3 shows that all FA in G remain FA in
G′, if the edge is added under the conditions of Theo-
rem 2. Thus, as a consequence of Lemma 3 together
with Theorem 2, the following result can be stated
which directly validates (7):

Corollary 2. If the graph G is augmented by adding
the edge (i, j) and if Theorem 2 holds, then

|Fi(G,Vl,1)|< |Fi(G′,Vl,1)|, (18)

holds true.

While augmenting G with an edge (i, j) under the
conditions of Theorem 2 guarantees an increase in the
number of FA for node i, Corollary 2 does not pro-
vide insights into the set of FA of other nodes. To
address this shortcoming, the following proposition
demonstrates that a ZFS of G remains valid for the
augmented graph G′ under the same conditions:

Proposition 1. If Vl,1 is a ZFS of G and if an edge
(i, j) is added to G accrding to Theorem 2, Vl,1 re-
mains a ZFS for the resulting graph.

Proof. The graph G′ follows from G, by connecting
an uncolored node i with a colored node j, while l ∈
D(Gi j,Vl,1) holds ∀l ∈ N j with Vl,1 being a ZFS for
G. This condition directly implies:

l ∈ D(G{} j,Vl,1) ∀ l ∈ N j, (19)

where G{} j is the forcing graph with α and β only
connected to node j. This means that all neighbors
of j can be colored by other nodes in G{} j, ensuring
that the addition of the edge (i, j) does not disrupt the
zero forcing process initiated by Vl,1. Therefore, Vl,1
remains a ZFS of G′. ■

Since Vl,1 remains a ZFS in G′, the following con-
dition holds true ∀i′ ∈ V u \ i:

Fi′(G
′,Vl,1)≥ 1. (20)

Comparing the set Fi′(G′,Vl,1) of each agent i′ ∈V u\
i to Fi(G′,Vl,1), the following two cases can occur:

|Fi′(G
′,Vl,1)| ≥ |Fi′(G,Vl,1)| ∀i′ ∈ V u \ i or (21)

∃i′ ∈ V u \ i : |Fi′(G
′,Vl,1)|< |Fi′(G,Vl,1)|. (22)

In case (21), the number of FA of all uncolored nodes
stays the same or has increased. This is the desired
case, as the resilience of the whole networked system
has increased. In the second case (22), the number
of FA has decreased for at least one uncolored node
in the graph. This implies that, while the resilience
has increased for at least node i, it has decreased for
at least one other node. Thus, in this case, only a
local increase in resilience is achieved. This can be
advantageous, for instance, when a forcing agent is
added to a node with a small FA set, even if another
node with a large FA set loses one of its FAs in the
process.

Fig. 2 illustrates the case (21). Interestingly, in
this case, the augmentation by the edge (5,4) makes
the leader set Vl = {1;2;3;4;8;9} a 1−LFS of graph
G′, meaning that the system stays SSC despite any
removal of an edge or a node.

Investigating how to ensure the desired case (21)
will be a focus of future work. The following section
investigates how frequently the conditions introduced
hold in random graphs, allowing for the addition of
edges while enhancing resilient strong structural con-
trollability.

5 NUMERICAL EXAMPLE

This section investigates the effectiveness of the pro-
posed approach through numerical experiments for
random graphs. The study proceeds in two parts:
firstly, the proposed approach is evaluated with re-
spect to graph size, network density, and leader set
size, and secondly, the approach is compared to an
existing method from literature.
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5.1 Analysis Across Network
Parameters

The following three questions are addressed through
numerical experiments:

• How frequently can an edge be found that en-
hances resilience, either locally or globally, de-
pending on the size and density of the network?

• Which share of edges contributes to resilience of
the whole network?

• How does the size of the leader set affect the oc-
currence of edges which enhance resilience?

To investigate these questions, Erdös–Rényi graphs
G(N, p) are used, in which N represents the set of
nodes and p denotes the probability of an edge ex-
isting between two nodes (Erdös and Rényi, 1959).
A higher value of p results in a denser network, as it
increases the expected number of edges in the graph.
The analysis focuses on the addition of edges to crit-
ical nodes, defined as nodes with a forcing agent set
of cardinality one, i.e., K : {i ∈ K | Fi(G,Vl) = 1}.
These nodes represent structural bottlenecks in the
sense that SSC depends on a single neighbor to ensure
controllability. The removal of this neighbor results in
a loss of SSC. To mitigate this vulnerability, the pos-
sibility of adding FA by adding edges is examined,
which would enhance resilience without introducing
further leader agents.

The set Ê consists of edges satisfying Theorem 2,
with i ∈ K and j ∈ Vl . The subset of edges that
enhance resilience for the whole network is denoted
by E⋆, meaning that the condition (21) holds when
any edge in E⋆ is added to G. Furthermore, the ratio
|E⋆|/|Ê | reflects the share of added edges for which
condition (21) holds, relative to all edges that can be
added according to Theorem 2. For all of the upcom-
ing tests, 10 instances of graphs are randomly gen-
erated and the average is shown below (considering
only connected graphs G(N, p)). In all tests Vl,min
denotes the leader set with minimal cardinality deter-
mined by exhaustive search.

First, the dependency of the sizes of K , Ê , and
E⋆ on the size |Vl | of the leader set is examined for a
fixed number of agents N = 20 and an edge probabil-
ity of p = 0.2. To increase the size of each leader set,
an additional leader is randomly chosen from among
the uncolored nodes. The results are presented in Ta-
ble 1.

For the leader set Vl,min, only very few edges in
Ê can be identified, and none of them belongs to E⋆.
This occurs because, in the smallest possible leader
set configuration, there is typically not enough redun-
dancy to color the neighbors of a leader if the leader

Table 1: Evaluation of the effect of the size of the leader set
size on the number edges which can be added (according
to Theorem 2) to critical nodes K in random graphs with
N = 20 and p = 0.2.

|K | |Ê | |E⋆| |E⋆| · |Ê |−1

|Vl |= |Vl,min| 7.6 0.5 0 0

|Vl |= |Vl,min|+1 5.8 5.8 2.6 0.45

|Vl |= |Vl,min|+2 3.6 6.6 3.1 0.47

|Vl |= |Vl,min|+3 2.1 5.2 3 0.58

itself is prevented from coloring, as required by The-
orem 2. As a result, edges in Ê are rarely identified
in this setting. Increasing the cardinality of the leader
set leads to a reduction in |K |, while the size of Ê in-
creases. Notably, the portion of edges in Ê that also
belongs to E⋆ appears to grow with the size of the
leader set. Adding just one agent to Vl,min already re-
sults in a significant increase in both |Ê | and |E⋆|. For
this reason, this configuration is used in the following
simulations.

Next, the influence of the network density on the
applicability of Theorem 2 is investigated. To this
end, the edge probability p is varied, where smaller
values result in sparser networks and larger values
correspond to denser topologies. The results for a
fixed number of N = 20 nodes are summarized in Ta-
ble 2.

Table 2: Investigation of the effect of the network density
on the number of edges which can be added according to
Theorem 2, considering critical nodes K in random graphs
with N = 20 and |Vl |= |Vl,min|+1.

p |Vl | |K | |Ê | |E⋆| |E⋆| · |Ê |−1

0.15 6.4 8.6 14.8 7.5 0.51

0.2 7.1 5.8 5.8 2.6 0.45

0.25 8.6 5.8 5.5 4.1 0.75

0.3 9.5 5.1 4.3 3.3 0.77

0.35 10.5 3.4 4.4 1.8 0.41

With increasing network density, a larger leader
set is required to ensure SSC, while the number of
critical nodes K decreases – an effect already ob-
served in Table 1. In contrast, sparser networks allow
for a greater number of edges in Ê , as redundancy
in forcing is easier to establish. The share of edges
in E⋆ also belonging to Ê ranges between 41% and
77%, with the maximum observed at p = 0.3 and the
minimum at p = 0.35. Investigating the cause of this
variation is subject of future work.

Lastly, the influence of the number of nodes N on
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the applicability of Theorem 2 is examined. To this
end, N is varied while keeping the edge probability
p and |Vl | constant. The results are summarized in
Table 3.

Table 3: Effect of the graph size on the number of edges
which can be added according to Theorem 2 for criti-
cal nodes K in random graphs with p = 0.2 and |Vl | =
|Vl,min|+1.

N |Vl | |K | |Ê | |E⋆| |E⋆| · |Ê |−1

10 4.3 3 3.7 2.7 0.73

15 5.5 5.8 8.4 4.6 0.55

20 5.8 5.8 5.8 2.6 0.45

25 10.4 6.2 5.8 2.7 0.47

30 13.3 6.5 7.4 4.2 0.57

As the graph size increases, more leader agents
are required to ensure SSC, and the number of critical
nodes K also grows. However, the size of Ê appears
to be largely independent of N. The same holds for
the ratio |E⋆|/|Ê |, with the highest value observed
for N = 10, followed by N = 30, and the lowest for
N = 20.

In summary, increasing the cardinality of the
leader set slightly beyond Vl,min has the most signifi-
cant impact. The number of edges in Ê increases with
sparser and larger graphs. In contrast, the portion of
edges in E⋆ relative to Ê (i.e., those improving re-
silience at the network level) appears largely indepen-
dent of the graph size and density, ranging between
41% and 77%.

5.2 Comparison of Edge Augmentation
and an LFS Approach

The proposed method is now compared to the use
of a 1-LFS (cf. Section 2.3), i.e., a set of leaders
that guarantees SSC is maintained in the case a sin-
gle agent leaves the network. The evaluation is per-
formed on the Erdös–Rényi graph G with N = 30
and p = 0.12 shown in Fig. 4. A critical node is as-
sumed to be known: with the zero-forcing set Vl =
{1,2,3,4,6,10,20,23,29,30} (of size |Vl,min|+ 1),
node 11 is critical since F11(G,Vl) = {12}. Thus, if
node 12 leaves the graph, node 11 cannot be colored
and the network loses the SSC property.

To evaluate condition (12), the derived set on the
forcing graph Ḡi j is computed for i = 12 and j ∈ Vl .
For j = 1, Theorem 2 holds, implying that adding the
edge (1,11) to the graph expands the set of forcing
agents of node 11 to F11(G′,Vl) = {1,12}. Conse-

quently, even if node 12 leaves, the system remains
SSC since the coloring of no other agent depends
solely on node 12. The evaluation of Theorem 2 re-
quires 60 ms in MATLAB R2021b on a machine with
32 GB RAM and an Intel Core i7-14700 processor.

In contrast, the 1-LFS Vl,1-LFS =
{1,2,4,5,7,10,11,13,14,20,23,30}, obtained
by using the heuristic from (Abbas, 2023), is com-
puted in 4.12 s and introduces two additional leaders
in comparison to Vl . Since the procedure is heuristic,
minimality of the set size is not guaranteed. Using the
integer-programming-based method from (Alameda
et al., 2024) to compute a 1-LFS of minimal cardi-
nality does not produce a solution within one hour
of computation, which illustrates the hardness of the
problem.
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Figure 4: Erdös–Rényi graph G(30,0.12) used for evaluat-
ing resilience. Node 11 is a critical node when considering
the zero-forcing set Vl = {1,2,3,4,6,10,20,23,29,30} (in-
dicated by the black nodes). Adding the dashed edge (1,11)
expands the set of forcing agents of node 11 by including
node 1 to enhance the resilience of the network. The red
nodes indicate a 1−LFS for the network.

6 CONCLUSIONS

Conditions were specified for identifying edges that
can be added to a network in order to enhance resilient
strong structural controllability, either locally or for
the entire network. The proposed method is based on
the notion of forcing graphs, which extend the origi-
nal graph by connecting dummy agents in a specific
manner. Utilizing the concept of zero-forcing, a con-
dition was established that must hold for the neigh-
bors of a leader agent in the forcing graph. This con-
dition ensures that adding an edge from the leader
agent to a follower agent increases the follower’s re-
silience.

Simulation studies demonstrate that such edges
can frequently be identified when the size of the
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leader set exceeds the minimally required size to
achieve strong structural controllability. Furthermore,
the sparser and larger the graph is, the more edges can
be found that enhance network resilience. Notably,
the portion of added edges that improve resilience
globally, rather than just locally, remains independent
of the graph’s sparsity and size.

Future research should explore how the proposed
method can be extended to directly identify edges
which enhance resilient SSC for the entire network.
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