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Abstract: This study utilizes multivariate linear regression (MLR) and random forest (RF) models to predict smartphone 
market trends, analyzing a dataset of 930 models with specifications like Random Access Memory (RAM), 
cameras, battery capacity, and regional prices. The goal is to decode how hardware features and pricing 
strategies influence market dynamics, offering data-driven insights for industry stakeholders. MLR was 
applied to explore linear relationships between features and China launch prices, while RF modeled non-
linear patterns. The dataset was split into 80% training and 20% test subsets, evaluated via R² and RMSE. 
Feature importance in RF highlighted key predictors. Findings show MLR identifies RAM, mobile weight, 
and screen size as significant linear predictors but with limited explanatory power. RF outperforms, 
demonstrating stronger training fit and generalization, with front camera and RAM as top drivers. Complex 
interactions emerge, such as positive effects of screen size/weight and negative impacts of battery capacity 
on prices. Conclusively, RF excels in capturing non-linear trends, while MLR provides foundational linear 
insights. Both models underscore RAM, camera specs, and screen size as critical pricing determinants. The 
results guide manufacturers in feature prioritization and pricing strategies, with R² and RMSE validating 
model robustness for market trend analysis. These insights enhance data-informed decision-making in the 
dynamic smartphone industry. 

1 INTRODUCTION 

In an era marked by rapid technological advancement 
and intense competition in consumer electronics, the 
smartphone industry faces growing pressure to 
decipher how hardware specifications and pricing 
strategies shape market trends. With billions of 
devices sold globally each year, the ability to predict 
consumer preferences and price dynamics has 
become critical for manufacturers, investors, and 
policymakers alike. Social trends such as the rise of 
mobile photography, remote work-driven demand for 
multitasking performance, and sustainability 
concerns have further complicated this landscape, 
necessitating sophisticated analytical tools to unravel 
complex relationships between features and market 
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outcomes (Wang et al., 2018; Everingham et al., 
2016). 

Within the academic and industrial research 
domain, smartphone market analysis has increasingly 
relied on data-driven models to address these 
challenges. Traditional approaches like multivariate 
linear regression (MLR) have provided foundational 
insights into linear associations, such as the impact of 
screen size or Random Access Memory (RAM) on 
launch prices (Uyanık and Güler, 2013). For example, 
studies applying MLR to single-region datasets have 
identified significant linear relationships between 
hardware features and pricing, though these models 
often suffer from limited explanatory power due to 
their reliance on linear assumptions and inability to 
capture non-linear interactions (Čeh et al., 2018). In 
contrast, machine learning algorithms like random 
forest (RF) have emerged as powerful alternatives in 
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fields ranging from traffic forecasting to agricultural 
yield modeling, demonstrating superior performance 
in handling high-dimensional data and non-linear 
patterns (Liu and Wu, 2017). In the smartphone 
context, RF has been used to prioritize feature 
importance, such as identifying camera resolution and 
processor speed as key drivers of price variation 
while mitigating overfitting risks (Smith et al., 2013). 

Despite these advancements, several research 
gaps persist. Most studies focus on single markets, 
overlooking how consumer priorities for hardware 
features differ across regions-for instance, price 
sensitivity to RAM in emerging markets versus a 
premium placed on camera quality in developed 
economies (Hengl et al., 2018). Additionally, the 
comparative utility of MLR and RF in a hybrid 
modeling framework remains underexplored, 
limiting insights into how linear and non-linear 
approaches can complement each other. Existing 
literature also often neglects to analyze interactions 
between multi-faceted features (e.g., battery capacity 
and screen size), which collectively influence pricing 
strategies in ways that linear models cannot capture 
(Grömping, 2009; Kalaivani et al., 2021). 

This study addresses these gaps by systematically 
comparing MLR and RF models using a 
comprehensive dataset of 930 smartphone models 
across five regions (China, USA, Pakistan, India, 
Dubai). The research integrates MLR’s 
interpretability with RF’s capability to handle 
complex interactions, aiming to identify key drivers 
of price variation, evaluate model performance in 
capturing regional market nuances, and provide data-
driven guidance for feature optimization and pricing 
strategies. By leveraging both methodologies, the 
study bridges traditional econometric approaches 
with modern machine learning to offer a more holistic 
understanding of market dynamics. 

The significance of this work lies in its dual 
contributions to theory and practice. Theoretically, it 
advances understanding of how hybrid modeling can 
enhance predictive accuracy in technology markets, 
where feature interactions and regional variations are 
prevalent (Smith et al., 2013). Practically, the study 
offers manufacturers actionable insights into regional 
preferences-such as prioritizing camera upgrades in 
premium markets or optimizing battery capacity in 
cost-sensitive regions-using metrics like Root Mean 
Squared Error (RMSE) to validate model robustness 
(Wang et al., 2018). Its novelty resides in the 
integration of multi-regional data, systematic 
comparison of MLR and RF, and focus on feature 
interactions, which have been understudied in prior 
research (Speiser et al., 2019). 

Guided by these objectives, the study addresses 
three key research questions: What linear 
relationships exist between hardware features and 
prices in diverse markets? How effectively can RF 
models capture non-linear patterns and regional 
nuances? And which model demonstrates superior 
generalizability across different market conditions? 
To answer these, the research employs MLR to assess 
linear associations and RF to model non-linear 
interactions, using an 80% training–20% test dataset 
split and feature importance analysis. This approach 
rigorously evaluates both models’ strengths in 
capturing market dynamics, from linear trends in 
RAM and screen size to non-linear synergies between 
camera quality and processor performance (Liu and 
Wu, 2017). 

These results not only provide data-driven support 
for manufacturers to optimize regional pricing 
strategies (e.g., emphasizing RAM cost-effectiveness 
in emerging markets and camera innovation in 
premium segments) but also offer methodological 
references for academia by validating the synergistic 
value of traditional econometrics and machine 
learning in technology market analysis through 
comparative metrics like R² and RMSE. Future 
research could further expand to cross-annual 
dynamic data to explore the impact of technology 
iteration cycles on model stability, or incorporate 
unstructured data such as consumer sentiment 
analysis to more comprehensively reveal the driving 
forces behind market trends. The analytical 
framework established in this study is expected to 
facilitate the smart hardware industry in forming a 
closed loop of "data insight-strategy optimization-
market validation," enabling enterprises to achieve 
precise product positioning and resource allocation in 
rapidly evolving global competition. 

2 METHODOLOPGY 

2.1 Data Source 

This paper found some data from Kaggle to explore 
factors that influence phone prices. The dataset 
involves 930 samples. The research concentrates on 6 
factors: “Front camera”, “Back camera”, “Processor”, 
“Mobile weight”, “Screen size” and “Battery 
capacity”. 

2.2 Multiple Linear Regression 

The Multiple Linear Regression (MLR) model is used 
in the predictive research to forecast the phone price. 
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This paper primarily constructs the general form of 
MLR. 𝑌 = 𝛽଴ ൅ 𝛽ଵ𝑋ଵ ൅ 𝛽ଶ𝑋ଶ ൅ ⋯ ൅ 𝛽௣𝑋௣ ൅ 𝜖       (1) 

 
This equation predicts the price of different phones in 
China. In this equation, Y is the price of the phone. Xଵ, … , X୮  are the feature variables such as back 
camera, screen size, etc. β଴ is the intercept term, 
representing the expected value of the phone 
price when all feature variables are 
zero.  βଵ, … , β୮  are the regression coefficients, 
representing the change in the phone price for a one-
unit change in the corresponding independent 
variable, holding all other variables constant.ϵ is the 
error term, accounting for the variability in phone 
price not explained by the independent variables. It is 
assumed to be normally distributed with mean zero 
and constant variance. 

2.3 Random Forest 

The random forest primarily inputs data from the 
original training dataset. Secondly, it generates k 
subsets by random sampling with replacement (each 
subset = N samples with some of them repeated). For 
each of the subsets, a decision tree is constructed by 
recursively splitting nodes based on random selection 
to choose m features by using Gini impurity or Mean 
Squared Error (MSE) criteria. When all k trees are 
built, the outputs are aggregated to make predictions: 
majority voting for classification or averaging for 
regression. Finally, the model adapts to training and 
reduces the variance while maintaining low bias. 
Figure 1 shows the process (Wang et al., 2018). 

 

Figure 1: Flow chart of the random forest method (Wang et al., 2018) 

2.4 Evaluation Parameters 

Formula 2 is Root Mean Squared Error (RMSE). 
Here, N is the number of data points.  represents the 
actual phone price value at the 𝑖 -th point, 
and  represents the phone price value predicted by the 
regression tree at the 𝑖 -th point. RMSE is used to 
assess the error of the regression tree in predicting 
phone prices. It has the same unit as the phone price, 
which makes it convenient for directly gauging the 
average magnitude of the prediction error in the 
context of phone price values. 𝑅𝑀𝑆𝐸 = ටଵே ∑ ሺ𝑦௜ − 𝑦ො௜ሻଶே௜ୀଵ                (2) 

Formula 2 is the coefficient of determination. The 
Sum of Squares of Residuals (𝑆𝑆௥௘௦) represents the 
sum of the squared differences between the observed 
phone price values and the values predicted by the 
model. Total Sum of Squares (𝑆𝑆௧௢௧) is the sum of the 
squared differences between the observed phone 

price values and the mean of the observed phone price 
values. R² is used to measure the proportion of the 
phone price fluctuation that the model can explain. Its 
value ranges from 0 to 1. The closer R2 is to 1, the 
better the model fits the data, indicating that a larger 
proportion of the variability in phone prices is 
accounted for by the model. 𝑅ଶ = 1 − ௌௌೝ೐ೞௌௌ೟೚೟                           (3) 

3 RESULTS AND DISCUSSION 

3.1 Multiple Linear Regression Results 

After the datasets had been input, SPSSAU produced 
the results in Table 1:  
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Table 1: Results of Linear Regression 

 

Non-normalized 
coefficients 

Normalization 
factor

t p 

Colinearity 
diagnosis

B Standard Error Beta VIF Tolerance
constant 112.992 7.379 - 15.312 0.000** - - 

RAM -3.518 0.446 -0.246 -7.887 0.000** 1.132 0.884 
Front Camera -0.646 0.169 -0.119 -3.830 0.000** 1.118 0.895 
Back Camera -0.240 0.043 -0.171 -5.546 0.000** 1.106 0.904

Processor -0.021 0.017 -0.036 -1.187 0.235 1.062 0.941 
Mobile Weight 0.283 0.045 0.217 6.336 0.000** 1.363 0.734 

Screen Size 0.136 0.065 0.071 2.106 0.035* 1.306 0.766
Battery Capacity -0.277 0.042 -0.226 -6.591 0.000** 1.372 0.729 

R² 0.207
Adjust R² 0.201 

F F (7,922)=34.320,p=0.000 
D-W values 1.419

* p<0.05 ** p<0.01 

The linear regression analysis in Table 1 examines the 
relationship between smartphone launch prices in 
China (dependent variable) and seven independent 
variables: RAM, Front Camera, Back Camera, 
Processor, Mobile Weight, Screen Size, and Battery 
Capacity. The model equation is defined 
as  𝐿𝑎𝑢𝑛𝑐ℎ𝑒𝑑 𝑃𝑟𝑖𝑐𝑒 =  112.992 −  3.518𝑅𝐴𝑀 −⋯ −  0.277𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦. 
With an R-squared value of 0.207, these variables 
collectively explain 20.7% of the variation in prices. 
The model’s statistical significance is confirmed by 
the F-test (F = 34.320, p < 0.05), indicating that at 
least one of the predictors significantly influences the 
price. 

Further analysis of individual coefficients reveals 
distinct patterns. RAM shows a significant negative 
effect (coefficient = -3.518, t = -7.887, p < 0.01), 
suggesting that higher RAM configurations correlate 
with lower prices. Similarly, Front Camera 
(coefficient = -0.646, t = -3.830, p < 0.01), Back 
Camera (coefficient = -0.240, t = -5.546, p < 0.01), 
and Battery Capacity (coefficient = -0.277, t = -6.591, 
p < 0.01) also demonstrate significant negative 
relationships, implying that advancements in camera 
technology or battery capacity may unexpectedly 
reduce market prices. In contrast, Mobile Weight 
(coefficient = 0.283, t = 6.336, p < 0.01) and Screen 
Size (coefficient = 0.136, t = 2.106, p < 0.05) exhibit 
positive effects, indicating that heavier devices or 
larger screens are associated with higher prices. 
However, the Processor’s coefficient (coefficient = -
0.021, t = -1.187, p = 0.235) is statistically 
insignificant, showing no measurable impact on 
pricing. 

At the same time, the table shows that the model 
has an R-squared value of 0.207, indicating that 
RAM, Front Camera, Back Camera, Processor, 
Mobile Weight, Screen Size, and Battery Capacity 
collectively explain 20.7% of the variation in 
Launched Price (China). This suggests that these 
variables account for a moderate proportion of the 
observed price differences, while the remaining 
variation is likely influenced by factors not included 
in the model. In addition, the values of the VIF of 
these seven variables are all less than 5, which means 
that there is no relevance between these variables. 
This means the model has no collinearity problem. 
Also, the p-values of these variables are all smaller 
than 0.05, which means the results of the model are 
meaningful. 

In summary, Mobile Weight and Screen Size 
positively influence smartphone prices, while RAM, 
Front Camera, Back Camera, and Battery Capacity 
exert significant negative effects. The Processor’s 
role, however, remains negligible within this model. 
These results highlight the complex interplay of 
hardware features in pricing strategies, with certain 
technological improvements paradoxically linked to 
cost reductions, potentially reflecting market trends 
or consumer preferences not captured by the model. 

3.2 Random Forest Results 

After the input of the same datasets of mobile markets 
in 2025 from Kaggle, with the same independent 
variables selected, SPSSAU has formed the results 
automatically in Table 2: 
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Table 2: Feature Weight Values 

Item Weight value 

Mobile Weight 0.123 
RAM 0.202 

Front Camera 0.215 
Back Camera 0.072 

Processor 0.189 

Battery Capacity 0.074
Screen Size 0.124

The feature weights, which represent the relative 
importance of each variable in contributing to the 
model and sum to a total value of 1, demonstrate the 
following distribution based on the table. The Front 
Camera holds the highest weight at 21.50%, 
indicating its critical role in shaping the model's 
outcomes. Following closely, RAM accounts for 
20.21%, making it the second most influential feature 
in the model's construction. The Processor and Screen 
Size contribute 18.91% and 12.44%, respectively. 
Combined, these four features-Front Camera, RAM, 
Processor, and Screen Size-collectively represent 

73.05% of the total weight, underscoring their 
dominant impact on the model. In contrast, the 
remaining three variables-Mobile Weight, Battery 
Capacity, and Back Camera-show comparatively 
lower contributions, with weights of 12.33%, 7.42%, 
and 7.20%, respectively, totalling 26.95%. This 
distribution highlights the disproportionate influence 
of camera specifications, processing components, and 
display size in determining the model's predictions, 
while factors such as physical device weight and 
battery capacity play a relatively minor role.  

 

Table 3: Model Evaluation Results  

Index Training set Test set 

R-squared value 0.931 0.578 
Mean absolute error value MAE 5.768 14.481 

Mean square error (MSE). 102.757 654.613 
Root mean square error RMSE 10.137 25.585 
Median absolute error MAD 3.316 7.353 

Mean absolute percentage error MAPE 3.197 2.078 
Interpretable variance EVS 0.931 0.580 

Root mean square logarithmic error MSLE 0.163 0.476 

Table 3 presents the evaluation results of the random 
forest model, where the model’s generalization 
capability and goodness-of-fit are comprehensively 
assessed using the metrics listed in the table. This 
study systematically analyzes the statistical 
characteristics and potential issues of the random 
forest model implemented in SPSSAU based on its 
performance across training and test datasets. As 
shown in the table, the training set achieves a high R-
squared value (0.931) and an explained variance 
score (EVS, 0.931), indicating that the model 
captures approximately 93.1% of the variance in the 
training data. However, the test set’s R-squared value 
drops significantly to 0.578, accompanied by a 

marked increase in mean squared error (MSE) from 
102.757 to 654.613 and a rise in root mean squared 
error (RMSE) from 10.137 to 25.585. These results 
strongly suggest the presence of overfitting, where 
the model excessively adapts to the training data but 
fails to generalize effectively to unseen data. This 
issue is further corroborated by the substantial 
discrepancy in mean absolute error (MAE) between 
the training set (5.768) and the test set (14.481). 

From the perspective of error distribution 
robustness, the median absolute deviation (MAD) 
increases from 3.316 in the training set to 7.353 in the 
test set, reflecting a broader deviation in the central 
tendency of predictions. Notably, the mean absolute 
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percentage error (MAPE) decreases to 2.078% in the 
test set (compared to 3.197% in the training set), 
which may be attributed to reduced sensitivity of the 
percentage-based metric to outliers due to 
heterogeneous error distributions. Additionally, the 
mean squared logarithmic error (MSLE) rises from 
0.163 to 0.476, highlighting the model’s amplified 
penalty for underpredicted samples in the test set and 
further exposing its limited generalization capacity. 
From a statistical inference standpoint, while the test 
set’s R-squared value remains above 0.5-indicating 
residual explanatory power, the model requires 
refinement through regularization or feature 
optimization to mitigate overfitting. In conclusion, 
model evaluation must holistically balance goodness-
of-fit and generalization performance, avoiding 
reliance on singular metrics, thereby ensuring reliable 
engineering applications of probabilistic and 
statistical models. 

3.3 Comparison Results 

Table 4 compares the predictive performance of the 
Random Forest and Linear Regression models. The 
Random Forest model achieves an R² (coefficient of 
determination) of 0.578, indicating that it explains 
approximately 57.8% of the variation in the target 
variable. In contrast, the Linear Regression model 
yields a substantially lower R² of 0.207, accounting 
for only 20.7% of the data variability. This disparity 
highlights the superior ability of the Random Forest 
to capture complex relationships within the data, 
likely due to its ensemble learning approach, such as 
aggregating predictions from multiple decision trees, 
and its flexibility in modelling nonlinear patterns. 

Table 4: Comparison of Model Evaluation Results 

Models R² RMSE 
Random Forest 0.578 25.585
Linear Regression 0.207 34.578 

 
Regarding prediction accuracy, the Random Forest 
model demonstrates a Root Mean Squared Error 
(RMSE) of 25.585, which is notably lower than the 
Linear Regression model’s RMSE of 34.578. The 
34% reduction in RMSE underscores the Random 
Forest’s higher precision, making it more suitable for 
scenarios requiring tight error margins. For instance, 
in predicting smartphone prices, the Random Forest’s 
smaller error range could translate to more reliable 
pricing strategies compared to Linear Regression, 
which may struggle with real-world data complexities 

due to its rigid assumption of linear relationships 
between variables. 

4 CONCLUSION 

This study set out to investigate the factors driving 
smartphone launch prices in China by applying two 
predictive models: Multiple Linear Regression and 
Random Forest. The analysis showed that the 
Random Forest model was better than the Linear 
Regression model at predicting smartphone launch 
prices in China. The Random Forest model had an R² 
value of 0.578 and an RMSE of 25.585, while the 
Linear Regression model had an R² of 0.207 and an 
RMSE of 34.578. This means the Random Forest 
model is good at finding complex, non-linear 
connections between variables like RAM, camera 
specifications, and screen size, which are important 
for smartphone prices. On the other hand, the Linear 
Regression model assumes a simple linear connection 
between variables, which made it less effective at 
explaining the data, as shown by its lower R² value. 

However, the Random Forest model’s R² of 0.578 
shows that 42.2% of the price differences are still not 
explained. This suggests other factors, such as brand 
reputation, market demand, or software features, 
might also affect prices but were not included in the 
model. Also, the Random Forest model had a problem 
with overfitting, as it performed much better on the 
training set (R² of 0.931) than on the test set. To 
improve predictions, future studies could add more 
variables or test other methods, like Gradient 
Boosting. In summary, this study shows that 
predicting smartphone prices in China is challenging 
and needs more research to understand all the 
influencing factors. 
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