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Abstract: This study evaluates the performance of multiple linear regression (MLR) and random forest regression (RFR) 
models in predicting PM2.5 concentrations across twelve air quality monitoring stations in Beijing, China, 
using hourly meteorological and pollution data from 2013 to 2017. The analysis reveals that RFR significantly 
outperforms MLR, with R² values improving from 0.11 to 0.22 (MLR) to 0.29–0.41 (RFR), demonstrating 
better handling of non-linear interactions. However, both models exhibit critical limitations, particularly in 
predicting extreme pollution events (PM2.5 > 300 µg/m³), where systematic underprediction occurs. 
Geographical disparities in model accuracy are evident, with suburban stations (e.g., Dingling, Huairou) 
exhibiting lower errors than urban-industrial sites (e.g., Dongsi, Aotizhongxin), likely due to the complexity 
of emission sources and microclimates. Dew point temperature emerges as the most influential predictor, 
while precipitation shows limited impact. These findings underscore the challenges in air quality forecasting 
and advocate for localised, hybrid modelling approaches integrating real-time emission data to enhance 
predictive reliability for public health applications. 

1 INTRODUCTION 

Air pollution, particularly that 2.5 microns or smaller 
(PM2.5), seriously threatens the environment and 
people's health worldwide. Air pollution, including 
PM2.5, directly impacts people's health, which may 
cause heart problems and breathing difficulties 
(Brook et al., 2010). Additionally, it harms the setting 
and the essence (Li et al., 2019). To better formulate 
recommendations for cleaner environments and 
lessen the damaging effects of air pollution, people 
must be aware of how these issues impact PM2.5. 

PM2.5 deposition in the air significantly impacts 
weather conditions, such as temperature, humidity, 
and wind speed. For instance, higher temperatures 
can increase PM2.5, while higher humidity can make 
it easier to create tiny antigens (Li et al., 2019; Perrino 
et al., 2011). The drizzle of pollutants depends on 
wind speed. PM2.5 particles are typically higher 
because the air doesn't mix well when the wind blows 
(Tai et al., 2010). PM2.5 costs may be accurately 
predicted because of how connected these elements 
are. Besides weather conditions, personal activities, 
especially retreat-related, can drastically change 
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PM2.5. Individuals move more during holidays, 
corporations may work differently, and more 
situations take place, which may affect air quality. 
For example, during major festivals like Chinese New 
Year, there are fewer factory activities and cars on the 
road, which makes the air fresh for a short time 
(Wang et al., 2014; Wang et al., 2017). 

On the other hand, trips that involve more travel 
and tourism may produce more pollutants from 
transportation and places to stay, leading to higher 
levels of PM2.5 (Zhang et al., 2015). It is crucial to 
understand how PM2.5 costs and air quality change. 
Using this data, better air quality management 
strategies can be created during the lively holidays. 

Some studies have examined how PM2.5 prices, 
weather conditions, and actions are connected in 
various locations worldwide. In a study conducted in 
Beijing, China, the wind's temperature, humidity, and 
wind speed significantly impacted the amount of 
PM2.5 provided. When the weather and the wind 
were cooler, PM2.5 costs increased (Zhang et al., 
2017). A study in the United States found that 
weather conditions played a key role in modifying 
PM2.5 levels, with temperature and wind speed being 
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the most important aspects (Perrino et al., 2011). Due 
to the large number of people using lights and 
increased traffic on the roads, a study in India found 
that during the Diwali festival, the levels of harmful 
PM2.5 in the air significantly increased (Guo et al., 
2014). When measuring PM2, these analyses 
demonstrate that. 5, both weather conditions and 
specific activities should be taken into account. 

Despite numerous studies, People still aren't 
aware of the relationship between PM2.5 levels, 
temperature, and holidays. Most studies focused on 
PM2's impact on a single cultural problem (Pope and 
Dockery, 2006). Not many studies have examined 
how various weather conditions interact with one 
another to alter it (Pope & Dockery, 2006).  
Moreover, people don't understand how weather 
conditions and breaks affect PM2.5 (Wang et al., 
2017). 

To remove these deficiencies, this study will 
examine how PM2.5 charges relate to weather 
conditions and falls in a particular area. The 
assessment uses information on air quality and 
weather conditions to observe how PM2.5 (a type of 
air pollution) rates change over weather changes. To 
improve air quality management and develop better 
rules and regulations, the research may utilise 
multiple linear regression analysis to examine the 
effects of weather conditions. 

Complex components, like the environment and 
the lives of women, are affected by PM2.5 exposure. 
Knowing how these factors affect PM2.5 rates is 
crucial to making effective air quality management 
strategies. This research hopes to raise the 
consciousness by understanding how PM2.5 rates, 
temperature, and holidays relate to a specific area. 
Policymakers and professionals can comprehend 
these issues because of this (Tai et al., 2010; Zhang et 
al., 2015). 

2 METHODOLOGY 

2.1 Data Source and Description 

The dataset used in this study was obtained from 
Kaggle, comprising hourly air quality measurements 
from twelve monitoring stations in Beijing, China, 
spanning from March 1st, 2013, to February 28th, 
2017. 

2.2 Indicator Selection and Description 

Meteorological variables-TEMP, DEWP, PRES, and 
RAIN-were chosen as independent variables for their 

established influence on PM2.5 dispersion and 
formation (as showing in Table 1). For instance, 
PM2.5 concentrations exhibit considerable 
variability, with hourly readings ranging from 3 to 
500 µg/m³, highlighting the severity of pollution 
episodes. Temperature and dew point display 
seasonal trends, while precipitation events are 
sporadic but critical for pollutant scavenging. Table 1 
lists all the variable names and their descriptions, and 
ranges. 

Table 1: Descriptions and ranges of variables 

Variable Description Range 
PM2.5 Fine particulate matter 

concentration (µg/m³) 
2.0 to 999.0 

TEMP Temperature (°C) -19.9 to 42.6 
DEWP Dew point temperature (°C) -43.3 to 29.1 
PRES Atmospheric pressure (hPa) 982.4 to 1042.8 
RAIN Precipitation (mm) 0.0 to 72.5 

2.3 Methodology 

The analysis employs two regression techniques: 
multiple linear regression (MLR) and random forest 
regression (RFR). 

Multiple Linear Regression (MLR): MLR 
establishes baseline relationships between PM2.5 and 
meteorological factors, providing interpretable 
coefficients for each predictor. The model is 
formulated as: PM2.5 =  𝛽଴ + 𝛽ଵ TEMP + 𝛽ଶ DEWP + 𝛽ଷ PRES + 𝛽ସRAIN +  𝜖 , where 𝛽଴  is 
the intercept, 𝛽ଵ  to 𝛽ସ  are coefficients, and 𝜖  is the 
error term. 

Random Forest Regression (RFR): RFR, a 
machine learning approach, captures non-linear 
interactions and improves predictive accuracy. The 
model uses bootstrap aggregation and random feature 
selection, with hyperparameters (e.g., ntree = 500) 
tuned via cross-validation to prevent overfitting. Key 
advantages include handling non-linearity and 
robustness to outliers. Normalisation was included to 
address scale differences and remove missing values 
(na.omit). 

The analytical workflow began with a stratified 
data approach. Each station's dataset was divided into 
training (70%) and testing (30%) subsets. Both MLR 
and RFR models were then trained on the training 
subsets. This study used three evaluation indices (the 
coefficient of determination (R²), root mean squared 
error (RMSE) and mean absolute error (MAE)) to 
compare the performance of MLR and RFR models 
in predicting PM2.5 concentrations across Beijing's 
monitoring stations. 
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3 RESULTS AND DISCUSSION 

3.1 Multiple Linear Regression 

By using the R code, this paper constructs the 
multiple linear regression model of the 12 stations. 
The regression coefficients are shown in Table 2. 

Table 2: Multiple Linear Regression Coefficients by 
Station 

Statio
n 

Interc
ept 

PRES TEMP DEW
P 

RAIN 

Aotizh
ongxi

n 

1407.
088 

-1.243 -5.819 4.005 -3.686 

Chang
ping 

1039.
030 

-0.903 -4.621 3.260 -4.126 

Dingli
ng 

1016.
191 

-0.885 -4.611 3.342 -3.747 

Dongs
i 

2048.
266 

-1.858 -6.647 4.300 -6.038 

Guany
uan 

1335.
387 

-1.172 -5.770 4.047 -5.724 

Guche
ng 

1373.
740 

-1.208 -5.801 3.843 -6.324 

Huair
ou 

490.3
54 

-0.379 -3.600 2,885 -3.180 

Nongz
hangu

an 

1886.
982 

-1.698 -6.840 4.300 -6.392 

Shuny
i 

1258.
115 

-1.100 -5.488 3.907 -4.653 

Tianta
n 

1935.
161 

-1.755 -6.278 3.960 -5.063 

Wanli
u 

1341.
457 

-1.182 -5.534 3.722 -2.901 

Wans
houxi
gong 

1889.
810 

-1.705 -6.570 3.939 -6.647 

 
From the results provided by the R code, this paper 
can summarise the coefficient ranges and offer some 
possible explanations for these results. The summary 
will be shown in Table 3 below.  

As table 3 shows, RAIN (mm) -6.65 to -3.18 
Rainfall significantly reduces PM2.5, with urban 
stations (e.g., Wanshouxigong) showing stronger 
effects. This is possibly due to rain efficiently 
depositing PM2.5. 

Urban stations (e.g., Dongsi, Nongzhanguan) 
exhibit larger coefficients for PRES, TEMP, and 
RAIN, suggesting that meteorological factors play a 
more pronounced role in PM2.5 variability in densely 
populated areas. Suburban stations (e.g., Huairou, 
Dingling) show weaker relationships, possibly due to 
fewer local emissions and greater influence of 

regional transport. Huairou Station has the smallest 
coefficients (e.g., PRES: -0.38, TEMP: -3.60). This is 
possibly because of its location in a rural, 
mountainous area, which reduces the sensitivity of 
PM2.5 to local weather. 

Table 3. MLR Coefficient Ranges and Interpretations 

Variables Range Explanation 
Intercept 490.35 

to 
2048.27 

Intercepts of PM2.5 are 
significantly different from 
station to station. Urban sites 
(e.g., Dongsi, Nongzhanguan) 
have higher intercepts, likely 
due to more substantial local 
emissions. 

PRES 
(hPa) 

-1.86 to 
-0.38 

Higher atmospheric pressure 
will lead to lower PM2.5. This 
is possible because stable 
weather conditions suppress 
vertical spread. But the effect is 
weaker in suburban stations.

TEMP 
(°C) 

-6.84 to 
-3.60 

Temperature has a negative 
effect. This is possible because 
warmer conditions enhance 
atmospheric mixing, and 
seasons have higher 
temperatures, like summer 
reduce coal heating emissions.

DEWP 
(°C) 

2.89 to 
4.30 

Higher dew point strongly 
increases PM2.5. This is 
possibly caused by moisture-
enhanced secondary aerosol 
formation and stagnant air 
masses. 

RAIN 
(mm) 

-6.65 to 
-3.18 

Rainfall significantly reduces 
PM2.5, with urban stations 
(e.g., Wanshouxigong) showing 
stronger effects. This is 
possibly due to rain efficiently 
depositing PM2.5. 

 
Dongsi Station shows the strongest negative effect of 
TEMP (-6.647), potentially linked to its central urban 
setting, where temperature inversions trap pollutants. 
The negative RAIN coefficients align with Beijing’s 
observed "post-rain blue sky" phenomenon, where 
precipitation removes particulate matter. The stronger 
effect at urban stations (e.g., coefficient of -6.65 at 
Wanshouxigong) may reflect higher initial PM2.5 
concentrations available for wet deposition. 

3.2 Random Forest Regression 

This study also uses R code to construct a random 
forest regression model (RFR) and calculate the 
importance score (IncMSE) of these variables.  
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Table 4: Variable Importance Score (IncMSE) 

Variable 
 

RAIN 
(%) 

DEWP 
(%) 

TEMP 
(%) 

PRES 
(%)

Aotizhongxin 42.5 24.5 18.6 14.4
Changping 33.9 29.1 19.2 17.7
Dingling 39.9 30.2 16.6 13.3
Dongsi 38.3 24.2 19.2 18.3

Guanyuan 39.6 23.3 17.9 19.2
Gucheng 36.2 25.1 18.7 20
Huairou 32.9 26.5 20.9 19.8

Nongzhanguan 39.1 21.9 18.2 20.7
Shunyi 33.9 24.7 19.1 22.3
Tiantan 31 29.7 22.3 17
Wanliu 44.9 23 17.9 14.2

Wanshouxigong 40.9 24.4 18.5 16.2
 
The variable importance scores (IncMSE) from 
Random Forest Regression reveal distinct patterns in 
how meteorological factors influence PM2.5 
concentrations across Beijing's monitoring stations 
(Table 4). The results highlight both consistent trends 
and notable spatial variations in atmospheric 
processes affecting air quality. RAIN emerges as the 
most important predictor at all stations (31.0-44.9% 
importance), particularly at Wanliu (44.9%) and 
Aotizhongxin (42.5%). This reflects Beijing's 
reliance on wet deposition for particulate removal, 
where precipitation effectively scavenges aerosols 
from the atmosphere. The stronger effect at urban 
stations suggests higher initial PM2.5 loading 
available for removal. DEWP shows moderate 
importance (21.9-30.2%), peaking at Dingling 
(30.2%) and Tiantan (29.7%). This importance likely 
represents moisture-enhanced secondary aerosol 
formation and stagnant conditions during high 
humidity episodes. TEMP (16.6-22.3%) and PRES 
(13.3-22.3%) show more variable importance across 
stations. For example, Tiantan station shows 
unusually high TEMP importance (22.3%), possibly 
due to its location near parks where temperature 
inversions may trap pollutants. 

Urban stations (Dongsi, Nongzhanguan) show 
balanced importance across all variables. Suburban 
stations (Huairou, Shunyi) display elevated PRES 
importance (19.8-22.3%), suggesting the greater 
influence of synoptic weather patterns. Wanliu 
Station shows extreme RAIN dominance (44.9%) 
with low DEWP importance (23.0%), possibly due to 
its location near water bodies enhancing rain effects. 
Tiantan Station has unusually high TEMP importance 
(22.3%), potentially reflecting the urban heat island 
effect in this cultural landmark area. Huairou Station 
demonstrates the most balanced distribution, 
consistent with its rural location, where no single 
factor dominates. 

The strong RAIN importance suggests that 
weather modification (e.g., cloud seeding) could be 
particularly effective during pollution episodes. High 
DEWP importance indicates that humidity control 
measures might help reduce secondary aerosol 
formation. Urban stations may benefit most from 
emission controls before forecasted precipitation 
events. Suburban stations require more attention to 
pressure systems and temperature variations. 

The IncMSE results demonstrate that while 
rainfall universally dominates PM2.5 variability 
across Beijing, the relative importance of other 
factors varies substantially by location. This spatial 
heterogeneity underscores the need for tailored air 
quality management strategies that account for local 
meteorological sensitivities. The outlier behaviour at 
stations like Wanliu and Tiantan suggests that 
microclimate effects may significantly modify 
pollution-weather relationships in specific urban 
contexts. Future work should incorporate finer-scale 
topographic and land-use data to better explain these 
station-level differences. 

3.3 Model Performance Metrics  

Table 5 lists all the R², RMSE and MAE of the 12 
stations. The evaluation metrics reveal several key 
patterns in the performance of MLR and RFR models 
across Beijing's air quality monitoring stations.  

Both models show limited predictive power 
overall, with test R² values ranging from 0.112-0.225 
for MLR and 0.287-0.411 for RFR, indicating that 
meteorological factors alone explain less than half of 
PM2.5 variability. This suggests that additional 
predictors like wind patterns, emission sources, or 
temporal factors may be necessary for improved 
accuracy. The RFR models consistently outperform 
MLR in training data (R² 0.425-0.509 vs 0.117-
0.220), but this advantage diminishes in test data, 
revealing moderate overfitting, particularly at stations 
like Aotizhongxin where the train-test R² gap exceeds 
0.12. This overfitting likely stems from the RFR's 
complexity of capturing noise in the training data. 

Spatial patterns in model performance reflect 
Beijing's air pollution dynamics. Urban stations 
(Dongsi, Nongzhanguan) show the highest R² values 
for both models, with Nongzhanguan's RFR 
achieving the best test performance (R²=0.406). This 
urban advantage may result from stronger, more 
consistent relationships between meteorological 
conditions and local emissions in built-up areas. In 
contrast, suburban stations like Huairou demonstrate 
the poorest performance (test R²=0.287 for RFR), 
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likely because regional transport of pollutants 
weakens local weather-PM2.5 correlations. 

Table 5: Model Performance Metrics (R²/RMSE/MAE) 

Stati
on 

Mo
del 

R2
_T
rai
n 

R2
_T
est 

RM
SE_
Trai

n 

RM
SE_
Test 

MA
E_T
rain 

MA
E_T
est 

Aoti
zho
ngxi

n 

ML
R 

0.1
88 

0.1
78 

74.0
21 

74.5
37 

53.9
44

53.
836

RF
R 

0.4
61 

0.3
37 

65.1
33 

69.1
23 

47.4
68

49.
970

Cha
ngpi
ng 

ML
R 

0.1
55 

0.1
51 

65.9
41 

67.9
54 

48.4
91

49.
303

RF
R 

0.4
57 

0.3
40 

56.2
16 

61.5
23 

41.0
79

44.
279

Din
glin

g 

ML
R 

0.1
53 

0.1
45 

67.1
05 

65.4
78 

48.6
90

48.
192

RF
R 

0.4
74 

0.3
35 

56.7
18 

59.0
53 

40.9
56

43.
165

Don
gsi 

ML
R 

0.2
13 

0.2
19 

76.7
42 

76.7
22 

55.8
33

55.
340

RF
R 

0.5
01 

0.4
11 

67.2
63 

70.5
84 

48.9
59

51.
219

Gua
nyu
an 

ML
R 

0.1
91 

0.1
85 

73.0
75 

72.5
07 

52.9
45

52.
631

RF
R 

0.4
63 

0.3
66 

64.9
45 

67.0
30 

47.1
60

49.
145

Guc
hen
g 

ML
R 

0.1
75 

0.1
78 

75.2
72 

74.9
26 

53.9
18

53.
742

RF
R 

0.4
54 

0.3
56 

65.9
84 

68.7
39 

47.5
81

49.
774

Hua
irou 

ML
R 

0.1
17 

0.1
12 

67.2
77 

66.2
98 

49.2
68

48.
953

RF
R 

0.4
32 

0.2
87 

57.3
53 

60.3
62 

41.6
64

44.
030

Non
gzha
ngu
an 

ML
R 

0.2
20 

0.2
25 

76.3
51 

75.5
19 

55.2
29

55.
291

RF
R 

0.5
09 

0.4
06 

67.0
77 

69.7
87 

48.3
95

51.
138

Shu
nyi 

ML
R 

0.1
73 

0.1
73 

74.0
18 

73.6
08 

53.6
96

53.
561

RF
R 

0.4
53 

0.3
50 

64.3
62 

67.3
06 

46.4
36

48.
655

Tian
tan 

ML
R 

0.2
10 

0.2
06 

72.2
70 

71.3
82 

52.2
63

52.
236

RF
R 

0.4
88 

0.3
74 

63.7
72 

66.2
89 

46.4
57

48.
765

Wan
liu 

ML
R 

0.1
66 

0.1
64 

75.0
71 

74.2
80 

54.6
59

54.
362

RF
R 

0.4
25 

0.3
34 

66.8
81 

68.8
77 

48.6
28

50.
350

Wan
shou
xigo
ng 

ML
R 

0.2
01 

0.2
10 

76.7
75 

76.6
97 

54.9
94 

55.
165 

 

The models' relative performance varies spatially too-
at Dingling, RFR reduces test RMSE by 9.8% 
compared to MLR, while at Wanshouxigong the 
improvement is just 6.1%. 

Notable anomalies include Dongsi station, where 
MLR unexpectedly matches RFR's test performance 
(R²=0.219 vs 0.411), suggesting linear relationships 
may suffice at this urban location. Meanwhile, 
Wanliu shows unusually poor RFR performance 
despite its urban setting, possibly due to microclimate 
effects from nearby water bodies. The consistent 
MAE values (45-55 μg/m³ across stations) indicate 
both models struggle with extreme PM2.5 events, a 
critical limitation for pollution warning systems. 
These results underscore that while RFR generally 
outperforms MLR, its advantages are modest and 
station-specific, highlighting the need for localised 
model tuning in Beijing's heterogeneous airshed. The 
persistent low R² values across all stations suggest 
that effective PM2.5 forecasting requires 
incorporating non-meteorological predictors like 
real-time emission data. 

4 CONCLUSION 

This comprehensive evaluation of MLR and RFR 
models for PM2.5 prediction across Beijing's 
monitoring network yields several important insights 
with significant implications for air quality 
management. The analysis reveals that while both 
models demonstrate limited predictive capability 
using only meteorological variables, the Random 
Forest approach consistently outperforms traditional 
linear regression, albeit with notable spatial variations 
in performance. The urban stations, particularly 
Nongzhanguan and Dongsi, show relatively better 
model performance (test R² up to 0.41), likely due to 
a stronger coupling between local emissions and 
meteorological conditions in densely populated areas. 
In contrast, suburban stations like Huairou exhibit 
poorer performance, suggesting that regional 
pollutant transport and other non-local factors play a 
more dominant role in these locations. The consistent 
gap between training and test performance in RFR 
models (average ΔR² of 0.12) indicates moderate 
overfitting, emphasising the need for more robust 
regularisation or inclusion of additional relevant 
predictors. 

The spatial patterns in model performance reflect 
Beijing's complex air pollution dynamics, where 
urban-scale processes appear more predictable than 
regional-scale phenomena. The superior performance 
of RFR models, particularly in urban settings, 
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suggests that nonlinear relationships between 
meteorological factors and PM2.5 concentrations are 
important to capture. However, the modest absolute 
performance levels (R² < 0.5 even for the best 
models) strongly indicate that meteorological 
variables alone are insufficient for accurate PM2.5 
prediction. This limitation is particularly evident 
during extreme pollution events, as shown by the 
consistently high MAE values (45-55 μg/m³). The 
station-specific variations in model performance, 
such as the unexpectedly strong showing of MLR at 
Dongsi or the poor RFR performance at Wanliu, 
highlight the importance of localised model 
development that accounts for microclimate effects 
and unique station characteristics. 

These findings have several important 
implications for both research and air quality 
management. First, they underscore the need to 
incorporate additional predictors beyond basic 
meteorological variables, particularly emission-
related indicators and wind pattern data. Second, they 
suggest that different modelling approaches may be 
warranted for different parts of the metropolitan area, 
with more sophisticated techniques like RFR being 
prioritised for urban core stations. Finally, the results 
indicate that current models have limited capability in 
predicting extreme pollution events, which should be 
a focus area for future model improvement. Future 
research directions should include testing more 
advanced machine learning architectures, 
incorporating real-time emission data, and 
developing ensemble approaches that combine the 
strengths of different modelling paradigms. 
Ultimately, while meteorological factors provide a 
useful foundation for PM2.5 prediction in Beijing, 
significant improvements in forecasting accuracy will 
require a more comprehensive approach that accounts 
for the full range of physical and chemical processes 
governing air pollution in this complex urban 
environment. 
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