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This paper constructs a fine-grained scientific data indicator framework using LLMs to conduct knowledge

mining in a specific field of natural science and technology, with empirical analysis carried out in the domain
of carbon dioxide conversion and utilization technology. Firstly, based on the characteristics of the technical
field, we systematically established four key scientific data dimensions: products, technologies, materials, and
performance. Subsequently, six key scientific data indicators were selected to characterize these dimensions.
Finally, the extracted scientific data were employed to analyse research hotspots and gaps in the field. This
approach effectively addresses the inherent limitations of traditional technology topic analysis, such as overly
coarse metric granularity and the lack of quantitative features. Moreover, since these scientific data
dimensions and indicators are generalizable to natural science and technology fields aimed at product
development, the proposed methodology demonstrates broad applicability.

1 INTRODUCTION

Identification of research hotspots and gaps is essential
for understanding disciplinary dynamics, optimizing
resource allocation, and formulating policies.
Scientific papers hold significant academic value and
function as indicators of a field’s developmental level.
Consequently, the hotspots and cutting-edge directions
of disciplinary research can be achieved through
knowledge mining of scientific papers.

Existing studies typically integrate thematic
dimensions (e.g., methodologies, products, research
mechanisms) to uncover the aggregation and
evolution, they exhibit two critical limitations: a)
Inability to conduct detailed, in-depth analyses of
specific key scientific data indicators; b) Neglect of
fine-grained performance parameters in hotspot/gap
identification. With the rapid growth of scientific
publications, intelligence research now demands
more refined and intelligent methods to process and
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analyze vast bibliographic data. Recent advances in
natural language processing (NLP) techniques,
specifically fine-grained data mining and large
language models (LLMs), offer novel approaches for
intelligence studies. Fine-grained data indicators
provide deeper insights into research specifics.
Leveraging their proficiency in scientific text
comprehension,  knowledge  reasoning, and
multimodal processing, LLMs are capable of
undertaking sophisticated tasks related to text
generation and information extraction.

This study aims to construct a multi-level
knowledge network for specific scientific research
area and leverage large language models to extract
fine-grained, multi-labeled scientific data, thereby
forming a research dataset of key domain indicators.
Furthermore, we establish an analytical framework
for identifying research hotspots and gaps based on
fine-grained scientific indicator data. Through an
empirical analysis in the research area of carbon
capture, utilization and storage (CCUS), the

473

Identifying Research Hotspots and Research Gaps in Specific Research Area Based on Fine-Grained Information Extraction via Large Language Models.

DOI: 10.5220/0013824900004000
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 17th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2025) - Volume 1: KDIR, pages 473-480

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.



KDIR 2025 - 17th International Conference on Knowledge Discovery and Information Retrieval

effectiveness of the proposed framework is validated.
This study enriches the methods and perspectives of
knowledge mining in disciplinary fields.

2 LITERATURE REVIEW

2.1 Identification of Research Hotspots
and Discovery of Research Gaps

Traditional approaches primarily include keyword
co-occurrence analysis, citation network analysis and
topic models.

Keyword co-occurrence analysis can reveal
thematic clusters and evolution by extracting
frequently co-occurring terms. Wang et al. (Wang et
al., 2023) conducted bibliometric analysis on 4,922
articles in the field of carbon neutrality based on the
Web of Science (WoS) database, using Citespace and
Bibliometrix functions for descriptive statistics and
co-occurrence analysis of keywords. Xu et al. (Xu et
al., 2016) combined keyword co-occurrence with a
cosine similarity algorithm, integrating academic
papers and patents to identify research frontier
hotspots in the LED field.

Citation network analysis uncover core research
and directional evolution through highly cited
publications and citation chains. Morris et al. Morris
et al.,2003) employed bibliographic coupling analysis
to construct a timeline of anthrax-research hotspots,
visualizing the evolution of active themes. Chang et
al. (Chang et al, 2015) combined keywords,
bibliographic-coupling and co-citation analyses to
explore the evolution of hotspots in library and
information science over two decades.

Topic models automatically identify latent topic
distributions from enormous text by applying various
text analysis techniques. The predominant method is
the Latent Dirichlet Allocation (LDA) model. Liu
(Liu, 2025) applied the LDA model to 559 articles on
biosecurity legislation (1996-2023) and identified
nine key hotspots and significant trends. Tan and
Xiong (Tan and Xiong, 2021) extracted topics via
LDA model from core data-mining journals in CNKI
and Web of Science, combining topic life cycles with
time-slicing to map evolutionary paths.

Based on their activity levels and persistence,
research hotspots can be categorized into three kinds:
sustained, emerging, and potential hotspots. Liu et al.
(Liu et al., 2023) identified sustained hotspots in
computer science by measuring keywords survival
metrics (time/frequency), applying logistic regression
to analyse influencing factors of keyword survival
patterns. Hu et al. (Hu et al., 2024) leveraged the
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global blockchain patent literature, integrating LDA,
Word2Vec and BERT to construct a fine-grained
topic-mining framework that surfaced emerging
technological hotspots. Thakuria and Deka (Thakuria
and Deka, 2024) utilized topic modelling to identify
prevalent potential hotspots in Library and
Information Science (LIS) journals between 2013 and
2022, and reveal unknown research themes.

Gap Analysis is a strategic analysis method used to
evaluate the differences between the current state and
the expected or target state. In this paper, research gaps
refer to important issues that have not been adequately
studied, received insufficient attention, or have become
disconnected from policy or industry expectations in
the existing literature. Currently, the main approaches
to identifying research gaps include systematic
literature reviews (Anton et al.,, 2022) and expert
consultation (Mohtasham et al., 2023). However, these
qualitative methods suffer from strong subjectivity and
low efficiency, making it difficult to rapidly and
accurately pinpoint gaps within the massive body of
literature. Some data-driven quantitative techniques
have also been applied to gap analysis. Westgate et al.
(Westgate et al., 2015) employed LDA model and
statistical methods (cluster analysis, regression, and
network analysis) to investigate trends and identify
potential research gaps within the scientific literature.

The common limitation of existing hotspot
identification methods is that they mainly rely on a
single type of data (such as keywords, citation
relationships or subject terms), and the analytical
perspective is concentrated on the macro aggregation
of disciplinary themes. There is a lack of in-depth
mining of fine-grained performance indicators that
support these macro themes, as well as an overall
correlation framework for integration analysis of
multi-dimensional indicators. Quantitative analytical
methods for identifying research gaps remain scarce.
Existing strategies mostly adopt qualitative approaches
that infer “under-studied” areas from bibliographic
coverage or topic popularity. Quantitative comparison
between the specific performance parameters reported
in the literature and the targets set by policy plans,
industry technical standards, or real-world application
is rarely considered. Consequently, substantial
performance gaps at the technology level cannot be
pinpointed with precision.

2.2 Fine-Grained Information
Extraction Based on Large
Language Models

Information Extraction typically consists of three sub-
tasks: Named Entity Recognition (NER), Relation
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Extraction (RE), and Event Extraction (EE). Fine-
grained information extraction (FGIE) can extract
semantically specific and application-oriented data
(e.g., research methods, experimental data,
performance metrics) from massive academic
literature. These granular data indicators provide deep
technical insights.

Early approaches relied mainly on manually
defined rules and pattern matching, which were
highly interpretable but had poor generalization
ability. With the rise of deep learning, neural-
network-based methods (e.g., LSTM, BiLSTM,
CNN) the automatically learn textual features have
become mainstream. Yu et al. (Yu et al., 2019)
improved the Bootstrapping algorithm and built a
deep learning model to extract four fine-grained
knowledge units from the abstracts of 17,756 ACL
papers. Onishi et al. (Onishi et al.,2018) constructed
a weakly supervised ML framework that uses CNNs
trained on a materials-microstructure corpus to
extract  “processing-structure-property”  triplets.
Rodriguez et al. (Rodriguez et al.,2022) proposed an
attention mechanism based on the noun-type
syntactic elements, combining BPEmb vectors and
the Flair model to address two sub-tasks of fine-
grained NER: Named Entity Detection and Named
Entity Typing.

Based these advances, pre-trained encoder models
such as BERT and RoBERTa marked a new stage in
FGIE. By pre-training on large general corpora and
fine-tuning on task-specific datasets (e.g., SQUAD).
They achieved stronger transferability and became
the dominant approach for entity-centric extraction.
Domain-adapted variants such as MatSciBERT have
further demonstrated effectiveness in specialized
areas like materials science (Gupta et al., 2022).
Similarly, RoBERTa-based architectures have been
widely applied in fine-grained biomedical IE and
radiology text analysis (Datta & Roberts, 2022; Yin
et al., 2021). This pre-train—fine-tune paradigm
greatly reduced reliance on handcrafted rules and
task-specific feature engineering, and for a time they
became the mainstream solution for FGIE. However,
these encoder-only models still had critical
limitations: they required large-scale labelled data for
downstream adaptation, had limited zero-shot
generalization, and captured domain-specific
knowledge only weakly.

Recently, large language models such as GPT-
3.5/4, PalLM 2, DeepSeek and Claude have developed
powerful language understanding and generation
capabilities, enabling them to efficiently extract key
fine-grained information from scientific literature.
Fine-grained information extraction based on LLMs

Language Models

mainly includes the following methods: a) Prompt
engineering, designing appropriate prompts to guide
LLMs to directly extract the required information
from the text in zero-shot or few-shot scenarios. For
instance, Wu et al. (Wu et al.,2025) enhanced LLMs
for miRNA information extraction through
diversified prompt strategies and systematically
compared the performance of GPT-40, Gemini, and
Claude in NER and RE. b) Task decomposition,
breaking down complex outputs into a series of
simpler questions and answers, which enhances the
reasoning ability of LLMs. Wei et al. (Wei et al.,
2023) implemented zero-shot FGIE via ChatGPT
multi-turn question answering (QA), decomposing
the complex IE task into two conversation rounds: a)
identifying entity, relation, and event types in a
sentence; b) converting unlabelled text directly into
fine-grained structured knowledge through chain-of-
question templates. Qiao et al. (2025) introduced a
novel FGER-GPT method, which employs multiple
inference chains and a hierarchical strategy for
recognizing fine-grained entities, significantly
enhancing the performance of LLM in fine-grained
entity recognition and effectively alleviating the
problems of label lack and hallucination. c) Fine-
tuning, further training the general LLMs on specific
scietific research area labeled data to adapt it to
specific IE tasks. Dagdelen(2024) utilized fine-tuned
LLMs such as GPT-3 and Llama-2 for joint named
entity and relation extraction from scientific texts,
and verified its effectiveness on materials science
texts.

Overall, neural network methods advanced the
automation of fine-grained information extraction by
learning textual features directly, while pre-trained
encoder models such as BERT and RoBERTa further
improved performance through large-scale pre-
training and task-specific fine-tuning, reducing the
need for handcrafted features. However, these
approaches typically depend heavily on large labelled
datasets and exhibit limited zero-shot generalization.
In contrast, large language models offer far greater
flexibility and contextual understanding, enabling
effective fine-grained information extraction without
task-specific supervision, though the issue of
hallucination in their outputs remains a critical
challenge.

The LLM-driven FGIE framework introduced in
this study transforms the descriptive macro analysis
of research hotspots into a fine-grained quantitative
assessment, and compares literature data with policy
demands to accurately identify research gaps. By
integrating prompt engineering and progressive
optimization strategies, the method reduces the
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Figure 1: The research framework of this paper.
reliance on labelled data and enhancing the complex Despite  empirical  validation within CO-

text processing capability of LLMs. This approach
offers a transferable pathway for specific scientific
research knowledge mining.

3 RESEARCH FRAMEWORK

We have chosen the technology research and
development field with product as the research object.
Based on the scientific data characteristics of these
specific fields, we developed a four scientific data
dimensions that including products, technology,
materials and key performance. Then, based on the
characteristics of specific technology research and
development fields and expert consultation, we
further selected specific scientific data indicators that
can characterize the above dimensions.

Leveraging semantic understanding techniques,
the DeepSeek-V3 large language model was
employed to automate indicator extraction,
establishing a comprehensive specific scientific
research fine-grained database. This database enables
multidimensional ~ bibliometric  analyses  of
methodological innovation, material applications,
product development, and their interdisciplinary
intersections. Concurrently, it facilitates comparative
analysis between research metrics and policy targets,
systematically evaluating alignment with current
research trajectories. Figure 1 presents the research
framework.
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conversion and utilization, the framework exhibits
high modularity and prompt-level portability,
enabling analogous fine-grained indicator extraction
and knowledge mining across product-oriented
technology  research  area—notably  chemical
engineering and materials discovery.

3.1 Data Source

Data were extracted from the Web of Science Core
Collection (WOS). A systematic retrieval was
conducted for Science Citation Index (SCI) and
Social Sciences Citation Index (SSCI) articles (2020-
2024), resulting in a total of 15,695 publications. We
additionally collected 81 strategic planning
documents related to CCUS from the official
government website of major economies (e.g., the
United States, the European Union, the United
Kingdom, Germany, and France).

3.2 Key Indicator Entity

Focusing on CO» conversion and utilization as an
empirical testbed, through expert consultation, we
further selected six key scientific data indicators to
characterize the four dimensions mentioned above
(Table 1). Specifically, The final product of CO,
conversion in research papers is used as a product
such as methanol, ethanol, ethylene, etc; the
technological pathway for CO conversion is
characterized by techniques such as electrocatalysis,
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photocatalysis, etc; catalysts are used to characterize
materials; three indicators including faradic
efficiency, target product selectivity, and conversion
rate are used to characterize performance.

Table 1: Key dimensions and indicators.

No. Dimensions Indicators
1 Products Conversion Products
2 Technology Technical Pathways
3 Materials Catalyst
4 Faradic Efficiency
5 Performance Target P.r qduct

Selectivity

6 CO: Conversion Rate

3.3 LLM-Based Entity Extraction

To compare the performance of a BERT-style pre-
trained model and a large language model on FGIE,
we conducted a preliminary experiment focusing on
a single entity type, namely product. Using a unified
question answering (QA) framework, the document
was provided as context, and the extraction target was
expressed as a natural-language query (e.g., “What
products are formed from CO: conversion?”’). Within
this setup, RoOBERTa (Liu et al., 2019) achieved only
around 42% exact-match accuracy, whereas
DeepSeek-V3 (zero-shot) reached close to 99%,
corresponding to a +57 percentage-point and 2.4x
relative improvement (Table 2). Although this is only
a pilot study restricted to one entity type, the results
already highlight the substantial advantage of large
language models over BERT-style encoders in QA-
based FGIE.

Table 2: Comparison of product-recognition performance
between DeepSeek and RoBERTa.

Model Accuracy(%) Diffrence(%)
RoBERTa 41.89 —
DeepSeek-V3 | 98.65 +56.76

Leveraging the large language model DeepSeek-
V3, we construct a target entity extraction system
using prompt engineering (Figure 2). Our three-stage
progressive optimization strategy includes: First, the
model learns basic extraction paradigms using a small
set of sample examples, with prompts iteratively
refined through manual verification. Next, building
upon the verified baseline model, incremental
optimization is performed using a medium-sized
sample set. This stage involves dynamically adjusting
the prompt and supplementing it with 5% sampling
for quality verification. Finally, the full dataset is
processed automatically, supported by a 2% sampling

Language Models

review mechanism to ensure output stability. This
phased optimization approach significantly enhances
the model’s adaptability to complex texts.

Role Definition: You are a professional information extraction model, proficient in precisely extracting performance
indicators and their parameters related to CO, conversion and utilization from scientific literature abstracts. Your
task ...........
Indicator Extraction System:
1. Product": { "Definition": "Converting CO, into high-value products such as chemicals, fuels, and building materials",
"Reference Keywords": “product, CO: reduction to, CO: to, production, formation of, C1, C2+,chemicals, fuels, methanol,
formic acid........" } ...
Task Requirements:
"1. Semantic Analysis Prioritized: Prioritize semantic
relying solely on keyword matching.", .....
Learning Example:...........
Output Specification:........
"Structure": "{'n \"Conversion Products\": [], \n \"Technical Method\": []\n \"Catalyst"": [1n \"Faradaic Efficiency\": [1.\n
"Target product Selectivity\": [1.\n \" CO, Conversion Rate\": [1,}",

Papers text

To address the challenges of excessive emission of CO, , development of highly efficient electrocatalysts based on earth-

abundant metals and non-metals for CO, reduction is of great importance. Herein, we report a novel @C:N/Ci:0 Fe0 )
talyst £ €O, reduction10{CO_Jwith a maximum Faradaic effidiency of
¢ onset overpotential of -0.24 V vs. normal hydrogen HE). Moreover, the turnover frequency for
to CO reached 10300 bl with a high selectivity o /AgCl, corresponding to a
overpotential of -0.865 V vs. NHE. The excellent 11 to CO can be attributed to the intimate
on befsyeen the oxides (Cus and the higher electrocHemically active surface area
oxide heterostructurg as a novel and fefficient

g to identify indicator-related rather than

Therefore, this tes the use of a
nanocomposite|

Conversion “Technical Target ’roduct | CO: Conversion
Products Method Selectivity Rate
co FETEANnES £CN/Cu,0FeO % 963% =

Figure 2: LLM-based prompt engineering for named entity
extraction in scientific literature.

3.4 Knowledge Graph Construction

Within diverse technological pathways for CO:
conversion and utilization, catalyst selection and
design exhibit significant differences. Different
conversion methods (such as electrocatalysis,
photocatalytic, thermocatalytic, and bioconversion)
require specific types and properties of catalysts due
to their distinct reaction mechanisms, operating
conditions, and target products. Therefore, clarifying
the applicable types of efficient, stable catalysts for
each technical pathway is critical to optimizing
reaction performance, lowering energy consumption
and costs, and advancing the practical application of
specific CO: conversion routes. By extracting the
entity associations between technical methods and
catalysts and conducting network visualization using
Gephi software, we have successfully constructed a
knowledge graph illustrating the interconnections
between them.

4 RESULTS AND ANALYSIS

4.1 Research Hotspots Analysis

Statistical analysis of the conversion products (Figure
3) reveals that C1 compounds dominate, accounting
for 72% of the publications surveyed, significantly
higher than the share for C2+ products (28%). Among
C1 products, carbon monoxide (CO), methane (CHa),
methanol (CHsOH), formic acid (HCOOH), and
formate are the most extensively studied. Research on
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CO: conversion to C2 products primarily focuses on
ethylene, ethanol, cyclic carbonates, acetate,
dimethyl ether, acetic acid, and ethane.

others
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Figure 3: Research hotspots of CO2 conversion products.

From the technical method—catalyst knowledge
map (Figure 4), we can identify the main catalysts
employed by different technologies. It can be
observed that different CO: conversion technologies
prioritize distinct types of catalysts, owing to
variations in their reaction mechanisms and
operational  conditions.  Electrocatalysis  CO:
reduction primarily employs metals (e.g., Cu, Ag) and

their oxides, bimetallics, metal-organic frameworks
(MOFs), molecular catalysts (e.g., metal porphyrins),
and nitrogen-doped carbon materials. Photocatalytic
CO: reduction uses metal oxides (e.g., TiO2, Cuz20),
nitrides (e.g., g-CsNa), sulfides (e.g., CdS), MOFs,
molecular complexes (e.g., phthalocyanines), and
hybrid heterojunctions. CO- hydrogenation relies on
metal oxides (e.g., CeO2, In20s), metals (e.g., Cu, Fe,
Ru), bifunctional zeolites, bimetallic/ternary catalysts
(e.g., Cu/ZnO/AL:0s), and carbides. Cycloaddition
catalysts include ionic liquids, MOFs, porous
polymers, metal complexes, and covalent organic
frameworks (COFs). CO: bioconversion utilizes
enzymes (e.g, formate dehydrogenase, carbonic
anhydrase) and microbial cells (e.g., Clostridium,
engineered strains).

4.2 Research Gap Analysis

Through bibliometric analysis, this study identifies
key characteristics and persistent challenges in
current CO: conversion research. The product
distribution reveals a pronounced focus on Cl
chemicals (carbon monoxide, methane, and
methanol), while industrially critical higher-carbon
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Figure 5: Faraday efficiency, selectivity, conversion rate distribution.

compounds  (e.g., olefins, aromatics like
toluene/xylene, and synthetic fuels) remain
understudied. Performance metrics (Figure 5) reveal
significant limitations: only 12% of studies achieve>
99% product selectivity (predominantly for Cl1
species), while advanced carbon products exhibit
substantially lower selectivity. CO: conversion
efficiencies exceed 90% occur in merely 4% of cases,
and full conversion (100%) in merely 1%. Notably,
only 37% of catalytic systems demonstrate Faradaic
efficiencies above 90%, indicating substantial energy
efficiency deficits.

The current technical status lags significantly
behind the strategic objectives of major economies.
For instance, Japan’s updated Carbon Recycling
Technology Roadmap prioritizes commercializing
polycarbonate and bio-jet fuel by 2030, followed by
industrial-scale olefin, aromatic compound, and
synthetic fuel production by ~2040. The significant
gap between current research progress and these
industrial targets underscores fundamental hurdles in
CO: conversion, particularly in precise selectivity
control, energy utilization optimization, and
multicomponent product.

S CONCLUSION AND PROSPECT

This study integrates LLM-based semantic parsing
with prompt engineering for in-depth knowledge
mining in the specific research area. The
effectiveness of the method has been empirically
verified in the research area of CO: conversion and
utilization. By developing a multi-stage prompt
framework, we systematically extracted key scientific
indicators to construct a fine-grained research area
database. Based on this methodological system, we
have identified some new research hotspots and gaps
in the field of carbon dioxide conversion and
utilization, which is of great significance for
optimizing the research layout and direction in this
area. This approach effectively overcomes limitations

of traditional technical theme analysis, such as coarse
indicator granularity and insufficient quantitative
characterization, and enriches the methods and
perspectives of knowledge discovery in the field of
scientific research.

Current limitations include suboptimal accuracy
in extracting specific key performance indicators.
Further research will prioritize optimizing prompt
engineering to enhance extraction precision.
Additionally, while this study focuses on academic
literature, we plan to expand data sources to include
patents and industrial reports, thereby building a more
comprehensive dataset. Leveraging this foundation,
we will advance knowledge graph development for
CO: conversion technology, emphasizing core
functionalities such as technology development
roadmap and patent-technology correlation analysis,
ultimately supporting strategic advancements in this
critical field.
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