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Abstract: This paper constructs a fine-grained scientific data indicator framework using LLMs to conduct knowledge 
mining in a specific field of natural science and technology, with empirical analysis carried out in the domain 
of carbon dioxide conversion and utilization technology. Firstly, based on the characteristics of the technical 
field, we systematically established four key scientific data dimensions: products, technologies, materials, and 
performance. Subsequently, six key scientific data indicators were selected to characterize these dimensions. 
Finally, the extracted scientific data were employed to analyse research hotspots and gaps in the field. This 
approach effectively addresses the inherent limitations of traditional technology topic analysis, such as overly 
coarse metric granularity and the lack of quantitative features. Moreover, since these scientific data 
dimensions and indicators are generalizable to natural science and technology fields aimed at product 
development, the proposed methodology demonstrates broad applicability. 

1 INTRODUCTION 

Identification of research hotspots and gaps is essential 
for understanding disciplinary dynamics, optimizing 
resource allocation, and formulating policies. 
Scientific papers hold significant academic value and 
function as indicators of a field’s developmental level. 
Consequently, the hotspots and cutting-edge directions 
of disciplinary research can be achieved through 
knowledge mining of scientific papers. 

Existing studies typically integrate thematic 
dimensions (e.g., methodologies, products, research 
mechanisms) to uncover the aggregation and 
evolution, they exhibit two critical limitations: a) 
Inability to conduct detailed, in-depth analyses of 
specific key scientific data indicators; b) Neglect of 
fine-grained performance parameters in hotspot/gap 
identification. With the rapid growth of scientific 
publications, intelligence research now demands 
more refined and intelligent methods to process and 
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analyze vast bibliographic data. Recent advances in 
natural language processing (NLP) techniques, 
specifically fine-grained data mining and large 
language models (LLMs), offer novel approaches for 
intelligence studies. Fine-grained data indicators 
provide deeper insights into research specifics. 
Leveraging their proficiency in scientific text 
comprehension, knowledge reasoning, and 
multimodal processing, LLMs are capable of 
undertaking sophisticated tasks related to text 
generation and information extraction. 

This study aims to construct a multi-level 
knowledge network for specific scientific research 
area and leverage large language models to extract 
fine-grained, multi-labeled scientific data, thereby 
forming a research dataset of key domain indicators. 
Furthermore, we establish an analytical framework 
for identifying research hotspots and gaps based on 
fine-grained scientific indicator data. Through an 
empirical analysis in the research area of carbon 
capture, utilization and storage (CCUS), the 
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effectiveness of the proposed framework is validated. 
This study enriches the methods and perspectives of 
knowledge mining in disciplinary fields. 

2 LITERATURE REVIEW 

2.1 Identification of Research Hotspots 
and Discovery of Research Gaps 

Traditional approaches primarily include keyword 
co-occurrence analysis, citation network analysis and 
topic models. 

Keyword co-occurrence analysis can reveal 
thematic clusters and evolution by extracting 
frequently co-occurring terms. Wang et al. (Wang et 
al., 2023) conducted bibliometric analysis on 4,922 
articles in the field of carbon neutrality based on the 
Web of Science (WoS) database, using Citespace and 
Bibliometrix functions for descriptive statistics and 
co-occurrence analysis of keywords. Xu et al. (Xu et 
al., 2016) combined keyword co-occurrence with a 
cosine similarity algorithm, integrating academic 
papers and patents to identify research frontier 
hotspots in the LED field. 

Citation network analysis uncover core research 
and directional evolution through highly cited 
publications and citation chains. Morris et al. Morris 
et al.,2003) employed bibliographic coupling analysis 
to construct a timeline of anthrax-research hotspots, 
visualizing the evolution of active themes. Chang et 
al. (Chang et al., 2015) combined keywords, 
bibliographic-coupling and co-citation analyses to 
explore the evolution of hotspots in library and 
information science over two decades. 

Topic models automatically identify latent topic 
distributions from enormous text by applying various 
text analysis techniques. The predominant method is 
the Latent Dirichlet Allocation (LDA) model. Liu 
(Liu, 2025) applied the LDA model to 559 articles on 
biosecurity legislation (1996–2023) and identified 
nine key hotspots and significant trends. Tan and 
Xiong (Tan and Xiong, 2021) extracted topics via 
LDA model from core data-mining journals in CNKI 
and Web of Science, combining topic life cycles with 
time-slicing to map evolutionary paths. 

Based on their activity levels and persistence, 
research hotspots can be categorized into three kinds: 
sustained, emerging, and potential hotspots. Liu et al. 
(Liu et al., 2023) identified sustained hotspots in 
computer science by measuring keywords survival 
metrics (time/frequency), applying logistic regression 
to analyse influencing factors of keyword survival 
patterns. Hu et al. (Hu et al., 2024) leveraged the 

global blockchain patent literature, integrating LDA, 
Word2Vec and BERT to construct a fine-grained 
topic-mining framework that surfaced emerging 
technological hotspots. Thakuria and Deka (Thakuria 
and Deka, 2024) utilized topic modelling to identify 
prevalent potential hotspots in Library and 
Information Science (LIS) journals between 2013 and 
2022, and reveal unknown research themes. 

Gap Analysis is a strategic analysis method used to 
evaluate the differences between the current state and 
the expected or target state. In this paper, research gaps 
refer to important issues that have not been adequately 
studied, received insufficient attention, or have become 
disconnected from policy or industry expectations in 
the existing literature. Currently, the main approaches 
to identifying research gaps include systematic 
literature reviews (Anton et al., 2022) and expert 
consultation (Mohtasham et al., 2023). However, these 
qualitative methods suffer from strong subjectivity and 
low efficiency, making it difficult to rapidly and 
accurately pinpoint gaps within the massive body of 
literature. Some data-driven quantitative techniques 
have also been applied to gap analysis. Westgate et al. 
(Westgate et al., 2015) employed LDA model and 
statistical methods (cluster analysis, regression, and 
network analysis) to investigate trends and identify 
potential research gaps within the scientific literature. 

The common limitation of existing hotspot 
identification methods is that they mainly rely on a 
single type of data (such as keywords, citation 
relationships or subject terms), and the analytical 
perspective is concentrated on the macro aggregation 
of disciplinary themes. There is a lack of in-depth 
mining of fine-grained performance indicators that 
support these macro themes, as well as an overall 
correlation framework for integration analysis of 
multi-dimensional indicators. Quantitative analytical 
methods for identifying research gaps remain scarce. 
Existing strategies mostly adopt qualitative approaches 
that infer “under-studied” areas from bibliographic 
coverage or topic popularity. Quantitative comparison 
between the specific performance parameters reported 
in the literature and the targets set by policy plans, 
industry technical standards, or real-world application 
is rarely considered. Consequently, substantial 
performance gaps at the technology level cannot be 
pinpointed with precision.  

2.2 Fine-Grained Information 
Extraction Based on Large 
Language Models 

Information Extraction typically consists of three sub-
tasks: Named Entity Recognition (NER), Relation 
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Extraction (RE), and Event Extraction (EE). Fine-
grained information extraction (FGIE) can extract 
semantically specific and application-oriented data 
(e.g., research methods, experimental data, 
performance metrics) from massive academic 
literature. These granular data indicators provide deep 
technical insights. 

Early approaches relied mainly on manually 
defined rules and pattern matching, which were 
highly interpretable but had poor generalization 
ability. With the rise of deep learning, neural-
network-based methods (e.g., LSTM, BiLSTM, 
CNN) the automatically learn textual features have 
become mainstream. Yu et al. (Yu et al., 2019) 
improved the Bootstrapping algorithm and built a 
deep learning model to extract four fine-grained 
knowledge units from the abstracts of 17,756 ACL 
papers. Onishi et al. (Onishi et al.,2018) constructed 
a weakly supervised ML framework that uses CNNs 
trained on a materials-microstructure corpus to 
extract “processing-structure-property” triplets. 
Rodríguez et al. (Rodríguez et al.,2022) proposed an 
attention mechanism based on the noun-type 
syntactic elements, combining BPEmb vectors and 
the Flair model to address two sub-tasks of fine-
grained NER: Named Entity Detection and Named 
Entity Typing.  

Based these advances, pre-trained encoder models 
such as BERT and RoBERTa marked a new stage in 
FGIE. By pre-training on large general corpora and 
fine-tuning on task-specific datasets (e.g., SQuAD). 
They achieved stronger transferability and became 
the dominant approach for entity-centric extraction. 
Domain-adapted variants such as MatSciBERT have 
further demonstrated effectiveness in specialized 
areas like materials science (Gupta et al., 2022). 
Similarly, RoBERTa-based architectures have been 
widely applied in fine-grained biomedical IE and 
radiology text analysis (Datta & Roberts, 2022; Yin 
et al., 2021). This pre-train–fine-tune paradigm 
greatly reduced reliance on handcrafted rules and 
task-specific feature engineering, and for a time they 
became the mainstream solution for FGIE. However, 
these encoder-only models still had critical 
limitations: they required large-scale labelled data for 
downstream adaptation, had limited zero-shot 
generalization, and captured domain-specific 
knowledge only weakly. 

Recently, large language models such as GPT-
3.5/4, PaLM 2, DeepSeek and Claude have developed 
powerful language understanding and generation 
capabilities, enabling them to efficiently extract key 
fine-grained information from scientific literature. 
Fine-grained information extraction based on LLMs 

mainly includes the following methods: a) Prompt 
engineering, designing appropriate prompts to guide 
LLMs to directly extract the required information 
from the text in zero-shot or few-shot scenarios. For 
instance, Wu et al. (Wu et al.,2025) enhanced LLMs 
for miRNA information extraction through 
diversified prompt strategies and systematically 
compared the performance of GPT-4o, Gemini, and 
Claude in NER and RE. b) Task decomposition,  
breaking down complex outputs into a series of 
simpler questions and answers, which enhances the 
reasoning ability of LLMs. Wei et al. (Wei et al., 
2023) implemented zero-shot FGIE via ChatGPT 
multi-turn question answering (QA), decomposing 
the complex IE task into two conversation rounds: a) 
identifying entity, relation, and event types in a 
sentence; b) converting unlabelled text directly into 
fine-grained structured knowledge through chain-of-
question templates. Qiao et al. (2025) introduced a 
novel FGER-GPT method, which employs multiple 
inference chains and a hierarchical strategy for 
recognizing fine-grained entities, significantly 
enhancing the performance of LLM in fine-grained 
entity recognition and effectively alleviating the 
problems of label lack and hallucination. c) Fine-
tuning, further training the general LLMs on specific 
scietific research area labeled data to adapt it to 
specific IE tasks. Dagdelen(2024) utilized fine-tuned 
LLMs such as GPT-3 and Llama-2 for joint named 
entity and relation extraction from scientific texts, 
and verified its effectiveness on materials science 
texts.   

Overall, neural network methods advanced the 
automation of fine-grained information extraction by 
learning textual features directly, while pre-trained 
encoder models such as BERT and RoBERTa further 
improved performance through large-scale pre-
training and task-specific fine-tuning, reducing the 
need for handcrafted features. However, these 
approaches typically depend heavily on large labelled 
datasets and exhibit limited zero-shot generalization. 
In contrast, large language models offer far greater 
flexibility and contextual understanding, enabling 
effective fine-grained information extraction without 
task-specific supervision, though the issue of 
hallucination in their outputs remains a critical 
challenge. 

The LLM-driven FGIE framework introduced in 
this study transforms the descriptive macro analysis 
of research hotspots into a fine-grained quantitative 
assessment, and compares literature data with policy 
demands to accurately identify research gaps. By 
integrating prompt engineering and progressive 
optimization strategies, the method reduces the  
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Figure 1: The research framework of this paper. 

reliance on labelled data and enhancing the complex 
text processing capability of LLMs. This approach 
offers a transferable pathway for specific scientific 
research knowledge mining. 

3 RESEARCH FRAMEWORK 

We have chosen the technology research and 
development field with product as the research object. 
Based on the scientific data characteristics of these 
specific fields, we developed a four scientific data 
dimensions that including products, technology, 
materials and key performance. Then, based on the 
characteristics of specific technology research and 
development fields and expert consultation, we 
further selected specific scientific data indicators that 
can characterize the above dimensions. 

Leveraging semantic understanding techniques, 
the DeepSeek-V3 large language model was 
employed to automate indicator extraction, 
establishing a comprehensive specific scientific 
research fine-grained database. This database enables 
multidimensional bibliometric analyses of 
methodological innovation, material applications, 
product development, and their interdisciplinary 
intersections. Concurrently, it facilitates comparative 
analysis between research metrics and policy targets, 
systematically evaluating alignment with current 
research trajectories. Figure 1 presents the research 
framework.  

Despite empirical validation within CO₂ 
conversion and utilization, the framework exhibits 
high modularity and prompt-level portability, 
enabling analogous fine-grained indicator extraction 
and knowledge mining across product-oriented 
technology research area—notably chemical 
engineering and materials discovery.  

3.1 Data Source 

Data were extracted from the Web of Science Core 
Collection (WOS). A systematic retrieval was 
conducted for Science Citation Index (SCI) and 
Social Sciences Citation Index (SSCI) articles (2020-
2024), resulting in a total of 15,695 publications. We 
additionally collected 81 strategic planning 
documents related to CCUS from the official 
government website of major economies (e.g., the 
United States, the European Union, the United 
Kingdom, Germany, and France). 

3.2 Key Indicator Entity 

Focusing on CO2 conversion and utilization as an 
empirical testbed, through expert consultation, we 
further selected six key scientific data indicators to 
characterize the four dimensions mentioned above 
(Table 1). Specifically, The final product of CO2 
conversion in research papers is used as a product 
such as methanol, ethanol, ethylene, etc; the 
technological pathway for CO2 conversion is 
characterized by techniques such as electrocatalysis, 
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photocatalysis, etc; catalysts are used to characterize 
materials; three indicators including faradic 
efficiency, target product selectivity, and conversion 
rate are used to characterize performance. 

Table 1: Key dimensions and indicators. 

No. Dimensions Indicators
1 Products Conversion Products
2 Technology Technical Pathways
3 Materials Catalyst
4 

Performance 

Faradic Efficiency

5 Target Product 
Selectivity

6 CO₂ Conversion Rate

3.3 LLM-Based Entity Extraction 

To compare the performance of a BERT-style pre-
trained model and a large language model on FGIE, 
we conducted a preliminary experiment focusing on 
a single entity type, namely product. Using a unified 
question answering (QA) framework, the document 
was provided as context, and the extraction target was 
expressed as a natural-language query (e.g., “What 
products are formed from CO₂ conversion?”). Within 
this setup, RoBERTa (Liu et al., 2019) achieved only 
around 42% exact-match accuracy, whereas 
DeepSeek-V3 (zero-shot) reached close to 99%, 
corresponding to a +57 percentage-point and 2.4× 
relative improvement (Table 2). Although this is only 
a pilot study restricted to one entity type, the results 
already highlight the substantial advantage of large 
language models over BERT-style encoders in QA-
based FGIE. 

Table 2: Comparison of product-recognition performance 
between DeepSeek and RoBERTa. 

Model Accuracy(%) Diffrence(%)
RoBERTa 41.89 —— 
DeepSeek-V3 98.65 +56.76

 

Leveraging the large language model DeepSeek-
V3, we construct a target entity extraction system 
using prompt engineering (Figure 2). Our three-stage 
progressive optimization strategy includes: First, the 
model learns basic extraction paradigms using a small 
set of sample examples, with prompts iteratively 
refined through manual verification. Next, building 
upon the verified baseline model, incremental 
optimization is performed using a medium-sized 
sample set. This stage involves dynamically adjusting 
the prompt and supplementing it with 5% sampling 
for quality verification. Finally, the full dataset is 
processed automatically, supported by a 2% sampling 

review mechanism to ensure output stability. This 
phased optimization approach significantly enhances 
the model’s adaptability to complex texts. 

 
Figure 2: LLM-based prompt engineering for named entity 
extraction in scientific literature. 

3.4 Knowledge Graph Construction 

Within diverse technological pathways for CO₂ 
conversion and utilization, catalyst selection and 
design exhibit significant differences. Different 
conversion methods (such as electrocatalysis, 
photocatalytic, thermocatalytic, and bioconversion) 
require specific types and properties of catalysts due 
to their distinct reaction mechanisms, operating 
conditions, and target products. Therefore, clarifying 
the applicable types of efficient, stable catalysts for 
each technical pathway is critical to optimizing 
reaction performance, lowering energy consumption 
and costs, and advancing the practical application of 
specific CO₂ conversion routes. By extracting the 
entity associations between technical methods and 
catalysts and conducting network visualization using 
Gephi software, we have successfully constructed a 
knowledge graph illustrating the interconnections 
between them. 

4 RESULTS AND ANALYSIS 

4.1 Research Hotspots Analysis 

Statistical analysis of the conversion products (Figure 
3) reveals that C1 compounds dominate, accounting 
for 72% of the publications surveyed, significantly 
higher than the share for C2+ products (28%). Among 
C1 products, carbon monoxide (CO), methane (CH₄), 
methanol (CH₃OH), formic acid (HCOOH), and 
formate are the most extensively studied. Research on 
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CO₂ conversion to C2 products primarily focuses on 
ethylene, ethanol, cyclic carbonates, acetate, 
dimethyl ether, acetic acid, and ethane. 

 
Figure 3: Research hotspots of CO2 conversion products. 

From the technical method–catalyst knowledge 
map (Figure 4), we can identify the main catalysts 
employed by different technologies. It can be 
observed that different CO₂ conversion technologies 
prioritize distinct types of catalysts, owing to 
variations in their reaction mechanisms and 
operational conditions. Electrocatalysis CO₂ 
reduction primarily employs metals (e.g., Cu, Ag) and 

their oxides, bimetallics, metal-organic frameworks 
(MOFs), molecular catalysts (e.g., metal porphyrins), 
and nitrogen-doped carbon materials. Photocatalytic 
CO₂ reduction uses metal oxides (e.g., TiO₂, Cu₂O), 
nitrides (e.g., g-C₃N₄), sulfides (e.g., CdS), MOFs, 
molecular complexes (e.g., phthalocyanines), and 
hybrid heterojunctions. CO₂ hydrogenation relies on 
metal oxides (e.g., CeO₂, In₂O₃), metals (e.g., Cu, Fe, 
Ru), bifunctional zeolites, bimetallic/ternary catalysts 
(e.g., Cu/ZnO/Al₂O₃), and carbides. Cycloaddition 
catalysts include ionic liquids, MOFs, porous 
polymers, metal complexes, and covalent organic 
frameworks (COFs). CO₂ bioconversion utilizes 
enzymes (e.g, formate dehydrogenase, carbonic 
anhydrase) and microbial cells (e.g., Clostridium, 
engineered strains). 

4.2 Research Gap Analysis 

Through bibliometric analysis, this study identifies 
key characteristics and persistent challenges in 
current CO₂ conversion research. The product 
distribution reveals a pronounced focus on C1 
chemicals (carbon monoxide, methane, and 
methanol), while industrially critical higher-carbon  
 

 
Figure 4: The knowledge map of CO2 conversion technical pathways and catalysts. 
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Figure 5: Faraday efficiency, selectivity, conversion rate distribution. 

compounds (e.g., olefins, aromatics like 
toluene/xylene, and synthetic fuels) remain 
understudied. Performance metrics (Figure 5) reveal 
significant limitations: only 12% of studies achieve≥
99% product selectivity (predominantly for C1 
species), while advanced carbon products exhibit 
substantially lower selectivity. CO₂ conversion 
efficiencies exceed 90% occur in merely 4% of cases, 
and full conversion (100%) in merely 1%. Notably, 
only 37% of catalytic systems demonstrate Faradaic 
efficiencies above 90%, indicating substantial energy 
efficiency deficits.   

The current technical status lags significantly 
behind the strategic objectives of major economies. 
For instance, Japan’s updated Carbon Recycling 
Technology Roadmap prioritizes commercializing 
polycarbonate and bio-jet fuel by 2030, followed by 
industrial-scale olefin, aromatic compound, and 
synthetic fuel production by ~2040. The significant 
gap between current research progress and these 
industrial targets underscores fundamental hurdles in 
CO₂ conversion, particularly in precise selectivity 
control, energy utilization optimization, and 
multicomponent product.  

5 CONCLUSION AND PROSPECT 

This study integrates LLM-based semantic parsing 
with prompt engineering for in-depth knowledge 
mining in the specific research area. The 
effectiveness of the method has been empirically 
verified in the research area of CO₂ conversion and 
utilization. By developing a multi-stage prompt 
framework, we systematically extracted key scientific 
indicators to construct a fine-grained research area 
database. Based on this methodological system, we 
have identified some new research hotspots and gaps 
in the field of carbon dioxide conversion and 
utilization, which is of great significance for 
optimizing the research layout and direction in this 
area. This approach effectively overcomes limitations 

of traditional technical theme analysis, such as coarse 
indicator granularity and insufficient quantitative 
characterization, and enriches the methods and 
perspectives of knowledge discovery in the field of 
scientific research. 

Current limitations include suboptimal accuracy 
in extracting specific key performance indicators. 
Further research will prioritize optimizing prompt 
engineering to enhance extraction precision. 
Additionally, while this study focuses on academic 
literature, we plan to expand data sources to include 
patents and industrial reports, thereby building a more 
comprehensive dataset. Leveraging this foundation, 
we will advance knowledge graph development for 
CO₂ conversion technology, emphasizing core 
functionalities such as technology development 
roadmap and patent-technology correlation analysis, 
ultimately supporting strategic advancements in this 
critical field. 
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