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Abstract: The paper presents a modification of the classical algorithm of adaptive output control in order to guarantee 
that the signal is found in the set specified by the developer at any moment of time. The paper extends the 
algorithm to systems with arbitrary relative degree. The aim of current research is to design a control law that 
will ensure that the error between the output and the reference signal will be in the following set. The 
effectiveness of the proposed method is illustrated with mathematical modelling. 

1 INTRODUCTION 

Adaptive control is widely used in control with 
parametric uncertainty of plant and external bounded 
disturbances. Often, the goal of adaptive control is to 
stabilise the output of plant in a limited set for a finite 
time (Anderson,1985), (Annaswamy, 2021). To date, 
new adaptive algorithms have been developed to 
improve the quality of transients and reduce 
computational costs (Narendra, 2012), (Ioannou, 
2012).  

Plants with unit relative degree are often studied 
in the literature and can describe the process of liquid 
filling in tanks (Arslan, 2001), transmission dynamics 
in a mechanical gearbox (Farza, 2009), dynamics of 
oscillating systems (Khalil, 2001), etc. It is important 
that the same structure of the adaptive control law can 
be obtained for such objects by different control 
methods (direct compensation method, velocity 
gradient method (Chopra, 2008), (Campion, 1989) 
etc.), (Gnucci, 2021).  

Nonlinear control methods (Furtat, 2021) have 
been proposed earlier with the guarantee of finding 
the output variables in the given sets. However, these 
methods are applicable under the conditions of known 
parameters of the plant, the model of which has unit 
relative degree. 

The paper is organized as follows. Section 2 
formulates the problem of adaptive tracking with 
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constraints on the output variable. In Section 3, a 
control law is first synthesized under the assumption 
that the derivatives of the plant's output signal are 
available for measurement. This solution is then 
generalized to the case when these derivatives are 
unmeasurable. Section 4 presents a numerical 
simulation that demonstrates the effectiveness of the 
proposed solution. 

2 PROBLEM STATEMENT 

Consider the dynamical system 
 

( ) ( ) ( ) ( ) ( ),Q p y t kR p u t f t= +  (1)
  

where 𝑡 ≥ 0, 𝑢(𝑡) ∈ ℝ is the control signal, 𝑦(𝑡) ∈ℝ  is the measurable output signal, 𝑓(𝑡) ∈ ℝ  is a 
bounded disturbance, 𝑄(𝑝)  and 𝑅(𝑝)  are linear 
differential operators with constant coefficients and 
orders 𝑛 and m respectively, the coefficients of 𝑄(𝑝) 
and 𝑅(𝑝)  are unknown, 𝑘 > 0  is a known high-
frequency gain, 𝑝 = 𝑑/𝑑𝑡 , and the plant (1) is 
minimum-phase. 

Consider the reference model: 
 

( ) ( ) ( ),m m rT p y t k g t=  
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where 𝑇(𝑝)  is a known normalized Hurwitz 
polynomial with real coefficients, 𝑔௥(𝑡)  is a 
piecewise continuous, bounded reference signal, 𝑦௠(𝑡) is the output of the reference model, 𝑘௠ > 0 

The aim of the research is to design a control law 
that will ensure that the output error signal 𝑒(𝑡) =𝑦(𝑡) − 𝑦௠(𝑡) is found in the following set of 

 
{ }( ) ( ) ( ) for any 0,E g t e t g t t= < < ≥  (2)

 
where g(t) and g(t) are bounded functions with their 
first time derivatives. These functions are chosen by 
the designer based on the requirements of the system 
operation. 

For example (see Figure 1), one can guarantee 
transients in a given tube whose boundaries 
monotonically converge to the neighbourhood of zero 
in a given time 𝑇. The description will be clearly 
demonstrated in the appendix at the end of the paper. 

 
Figure 1: An illustration of output error. 

3 SOLUTION 

Let us represent the operators in (1) as the following 
sums: 

 
( ), ( )( ) ( ) ,m mR p Q Qp R p Q pR = + = +Δ Δ (3)

 
where 𝑅௠(𝑝)  and 𝑄௠(𝑝)  are known differential 
operators of orders m and n, respectively, and 𝑅௠(𝜆) 
and 𝑄௠(𝜆) are Hurwitz operators, 𝛥𝑄(𝑝) and 𝛥𝑅(𝑝) 
are polynomials of orders not exceeding 𝑛 −1 and 𝑚 − 1, respectively. 

For plant (1), we define a reference model of the 
form 

 
( ) ( ) ( ) ( ),m m m m rQ p y t k R p g t=  (4)

 
Let the control law be 
 

( ) ( ) ( ),u t T p tυ=  (5)
 

where T(p) is chosen so that the transfer function ோ೘(௣)்(௣)ொ೘(௣) = ଵ௣ା௔ has unit relative degree. Considering 
(3), (5), let us rewrite (1) as 
 

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),
( ) ( )

)

( )

( m m

m m m

m m

m m m m

m

m m

kR p T p kR p T p R pt t
Q p T p Q p R p T p

kR p T p kR p T p Q pf t y t
Q p R p T p Q p R p T p

kR p T p t
Q p R p T p

y t υ

∈

υΔ+ +

Δ− +

+

=  

(6)

where (𝑡) is the exponentially decaying function 
due to nonzero initial conditions. 

Substituting (5) into (6), we obtain 

1 ( )( ) ( )
( ) ( ) (

(
)

( ) 1 1( ) ( ) ( ) .
( ) ( ) ( ) ( ) ( ) ( )

)
m

m m m

k pt t
p a T p R p T p

p y t f t t
R p T p R p T p R

R

p T

t

Q
p

y υ υ

∈

Δ
+ −+ 

+Δ−

=


+ 



(7)

 
Having isolated the integer part in the summand ௱ொ(௣)ோ೘(௣)்(௣) 𝑦(𝑡) = с଴ଵ𝑦(𝑡) + ௱ொ෨(௣)ோ೘(௣)்(௣) 𝑦(𝑡), we 

transform (7) to the form of 
 

01
( )( ) ( ) ( )
( )

( ) (

( )

) ( ) ( ) ,
( ) ( )

m

m

k pt t y t
p a R p

p y t f t t
R p

Ry t с

Q
T p

υ υ

∈


+ −Δ −+ 


− +

=

Δ + 




 
(8)

 
where 𝑐଴ଵ is the integer part remaining when dividing Δ𝑄(𝑝)  to 𝑅௠(𝑝)𝑇(𝑝), 𝑐଴ଶ  are coefficients of the 
polynomial 𝛥𝑄෨(𝑝) , 𝑐଴ଷ  are coefficients of the 
polynomial 𝛥𝑅(𝑝) taken with opposite sign. 𝑓̅(𝑡) =ଵோ೘(௣)்(௣) 𝑓(𝑡) is a new bounded disturbance due to 
the boundedness of the original function 𝑓(𝑡)  and 
Hurwitz polynomial 𝑅௠(𝜆)𝑇(𝜆).  𝜁௩(𝑡) = ଵோ೘(௣) 𝑣(𝑡) 

and 𝜁௬(𝑡) = ଵோ೘(௣)்(௣) 𝑦(𝑡)   represent the filtered 
signals at the output of the respective systems. When 
dealing with the tracking problem, we additionally 
consider the filter 𝜁௚(𝑡) = ଵ்(௣) 𝑔௥(𝑡). 

Given (7), let us rewrite (8) as 
 

01 02

03

( ) ( ) ( )

( ) ( ) ( ) .

T

T

y
k с сy t y t t

p a

t f tс tυ

υ ζ

ζ ∈

= − − −+

− + + 

 
(9)

 
Let us introduce the notations 
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0 01 02 03 ,

,

, , ,

( ) ( ) ( ) ( ), ( ), ,

( ) ( ) ( ),

T T T m

m

T
y rt t

kc c c c
k

y t g tt

e t y t y t
υζ ζω

 
  
 =  

= −

= −

 (10)

 
where 𝑐଴  is the vector of constant unknown 
parameters, 𝜔(𝑡)  is the regression vector. 

Taking into account (9) and (10), let us write the 
dynamics of the error 𝑒(𝑡) as follows 

 

0( ) ( ) ( ) ( ) () )( .Te t ae t k f tct t tυ ω ∈ = − + − + +  (11)
 

According to (Annaswamy, 1998) and (Furtat, 
2021) to solve the control problem with given 
constraints, we introduce a replacement of the output 
variable 𝑦 in the form of 

 
( ) ( )

( ) ( ( ), )
1

,
g t e g t

e t t t
e

ε

εε
+

= Φ =
+

 (12)

 
where 𝜀(𝑡) ∈ ℝ  is a continuous-differentiable 
function with respect to 𝑡, Φ(𝜀, 𝑡) satisfies the 
following conditions: 

(a) g(𝑡) < Φ𝜀(𝑡) < g(𝑡)  for any 𝑡 ≥ 0  and 𝜀(𝑡) ∈ ℝ; 
(b)  there exists an inverse mapping 𝜀(𝑡) =Φିଵ(𝑒, 𝑡)  for any  𝑒 ∈ 𝐸 and 𝑡 ≥ 0; 
(c)  the function Φ(𝜀, 𝑡) is continuous-

differentiable with respect to 𝜀 and 𝑡 and ப஍(ఌ,௧)பఌ ≠ 0 
for any 𝑒 ∈ 𝐸  and 𝑡 ≥ 0; 

(d) the function ப஍(ఌ,௧)ப௧  is bounded at 𝑡 ≥ 0 for any 𝜀(𝑡) ∈ ℝ. In that case ப஍(ఌ,௧)பఌ = ௘ഄ(gିg)(௘ഄାଵ)మ according to 
(12). 

Now let us determine the dynamics on the variable 𝜀 to investigate the stability of the closed-loop system. 
For this purpose, we find the full time derivative of 
(12) as 

 
( , ) ( , )( ) .t te t

t
ε εε
ε

∂Φ ∂Φ= +
∂ ∂

  

 
Since ப஍(ఌ,௧)பఌ ≠ 0, taking into account (12), let us 

rewrite the last equality as 
 

(
1

0
( , ) ( )( ) ( )

( , )( ) ( ) .

Tt ae t t t

tt

c

f t
t

εε υ ω
ε

ε∈

−∂Φ  = − + −  ∂ 
∂Φ 

+

+ + −  ∂ 

  
(13)

 
That is, by using the coordinate transformation 

(13), the original problem with constraints is reduced 
to a problem without constraints. Now it is necessary 
to synthesise a control law 𝑢 that provides input-state 
stability of the system (11).  

Suppose that the derivatives of 𝑒(𝑡) are available 
for measurement. Let us define an estimation of 
axillary control signal 𝑣෤(𝑡). Then consider the control 
law in the form of 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

,
1 ( , )( ) ,T

u t T p t

tt t t ae t t
k t

c

υ
ευ ω αε

=

∂Φ = + − ∂ 
+


(14)

 
where 𝑐(𝑡)  is bounded vector of adjustable 
parameters, 𝑎 > 0. 

Substituting (14) into (13), we obtain 

( )
1

0
( , ) ( ) ( ) ( ) .( ) ( )Tt t t f tc c tεε αε ω ∈
ε

−∂Φ   = − + +   ∂ 
− + (15)

 
Let us formulate a theorem, the result of which 

will be valid with the assumption that the derivatives 
of 𝑦(𝑡) are measurable. 

Theorem 1: Let the conditions (a)-(d) be satisfied, డФ(ఌ,௧)డఌ  for any 𝜀 and 𝑡, and 𝑠𝑢𝑝 ቄడФ(ఌ,௧)డఌ ቅ < ∞ and the 
derivatives of 𝑒(𝑡)  are measurable for the 
transformation (12) and bounded. Then for any 𝛼 > 0, 𝛽 >  0, 𝛾 >  0, the control law (14) together with 
the adaptation algorithm 

 
1( , )( ) ( ) ( ) ( )tc t t t с tεβ ε ω γ

ε

−∂Φ = − − ∂ 
  (16)

 
guarantees that the output error signal 𝑒(𝑡) belongs to 
the set (2). 

Let us rewrite the control law (14) taking into 
account that the derivatives of 𝑒(𝑡)  are not 
measurable: 
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( ) ( ) ( )
( )
( ) ( ) ( )

( ) ( ) ( ) ( )
0 0

2
0

11 2
0 2 1

,
( )

( ) ( )
1 ( , )( ) .

0
,

0 0

, , ..., ,

T

T

u t T p t

t L t

t G t D t t

tt t t ae t t
k t

I
G

ddD

c

d

γ

γ
γ

υ
υ ξ

ξ ξ υ υ
ευ ω αε

μ μ μ

−

−
−

=

=

= + −

∂Φ = + − ∂ 
 

=  
 
 

= − − −

+


 




   

(17)

 
where the numbers 𝑑ଵ, … , 𝑑ఊିଵ are chosen so that the 
matrix 𝐺 = 𝐺଴ − 𝐷𝐿 is Hurwitz, 𝐷் =ൣ𝑑ଵ, … , 𝑑ఊିଵ൧, 𝜇 > 0 is a sufficiently small number. 

Let us introduce vectors 𝜃்(𝑡) = ൣ𝑣(𝑡), . . . , 𝑣(௡)(𝑡)൧  and 𝜂(𝑡) = 𝛤ିଵ൫𝜉(𝑡) −𝜃(𝑡)൯,  𝛤 = 𝑑𝑖𝑎𝑔ሼ𝜇ఊିଶ, . . . , 𝜇, 1ሽ. 
Finding the derivative of 𝜂(𝑡), we obtain 
 

2( )
( ), (1 ) ( ) (( ) ( ) ( ).)t G t b L tt t t t

γγ
η η μ ηυ

μ
υ υ υ

−

Δ = − == −  (18)

 
Let us rewrite the equation with respect to the output 𝛥𝜐(𝑡): 
 

2

( ), ( )1( ) ( ) ( ).tt G Ltt b t
γ

η η υ
μ

υ μ η
−

Δ == −   (19)

 
Here 
 

( 1)

2
1 1

1( ) ( ) , 2,..., 1,

( ) ( ), [1 / ,0,...,0]

( ) /

.

i
i

i i
T

t t i

t b

t

t

γ

γ

η η μ γ
η η

υ
μ

−

−

−
−= − = −

= =
 

 
Then, based on the control law (17), we reduce the 
error equation (16) to the form 
 

0

2

( ) ( ) ( ) ( )

( )) ( ) ( .

Te t aе t k t t

f t t

c

kL tγμ

υ

∈ η

ω
−

+= − + −
+ + +

  (20)

 
Theorem 2: Let the conditions (a)-(d) be satisfied 

for the transformation (17), డ஍(ఌ,௧)డఌ > 0 for any 𝜀 and 𝑡, and 𝑠𝑢𝑝 ቄడФ(ఌ,௧)డఌ ቅ < ∞ and the derivatives of 𝑒(𝑡) 
are not measurable. Then there exists such 𝜇 < 𝜇଴ 
that for any 𝛼 > 0, 𝛽 > 0, 𝛾 > 0, the control law (17) 
together with the adaptation algorithm (16) 
guarantees that the output error signal e(𝑡) belongs to 
set (2). 

4 EXAMPLES 

Consider the plant (1) with Q(p) and R(p) given in the 
form of 

( ) ( ) ( )21   и  3,Q p p R p= − =  

The disturbance is represented as 𝑓(𝑡) = 7 +5 𝑠𝑖𝑛( 3𝑡) + 4 𝑐𝑜𝑠( 2𝑡) + 𝑑(𝑡),  where 𝑑(𝑡) =𝑠𝑎𝑡൛𝑑መ(𝑡)ൟ, 𝑠𝑎𝑡ሼ⋅ሽ is the saturation function, 𝑑መ(𝑡) is 
white noise modelled in Matlab Simulink using the 
‘Band-Limited White Noise’ block with a noise 
power of 1 and a sampling period of 0.2. The 
disturbance is passed through a first order aperiodic 
filter for smoothing. The graph of the disturbance is 
shown in Figure 2a. 

The reference model is given in the form  

2
1 ( ), ( ) 5cos(1.7 3)sin(0.5 ).

( 1)
( ) r rm g t g t t t

p
y t =

+
= +  

We choose 𝑇(𝑝) = 𝑝 + 1. Hence the number 𝑎 in 
(17) is 1, and the filters 𝜁(𝑡) take the form: 

1 1( ) , ( ) .
1 1y gt t

p p
ζ ζ= =

+ +
 

One filter is eliminated since deg 𝑅௠(𝑝) = 0. 
The regression vector is then equal to 
 

, ,( ) ( ) ( ) ( ), ( ) ,T
y rt tt ty g tυζ ζω  =  

 

 
Let's form the control action (17) as 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1( ) ( )
0.01

1 ( , )( ) ,

1.

T

t t t t

tt t t ae t t
k t

u t

c

ξ ξ ξ υ

ευ ω αε

ξ

= − −

∂Φ = + − ∂ 
= +

+


 

 
In (2) we define 𝑔̄(𝑡) = 5𝑒ି଴.ଷ௧ + 0.3,  𝑔̱(𝑡) =0.2𝑒ି଴.ଷ௧ − 0.3. In the control law we set 𝑎 = 1, 𝛼 =10 and 𝑘 = 1. In the adaptation algorithm (16), we 

choose 𝛽 = 10  and 𝛾 = 10.  The initial conditions 𝑦(0) = 𝑦ᇱ(0) = 3 . We take all other initial 
conditions in the closed-loop system as zero. 

Figure 2 shows the graphs: disturbances (a), control 
signal (b), output signal (c), control error 𝑒(𝑡) 
transient with limiting functions (d). 
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a) b) 

c) d) 

Figure 2: Plant 1 - a) graph of disturbances; b) graph of 
control signal; c) graph of output signal; d) graph of output 
signal error with limiting functions 𝑔(𝑡) and 𝑔(𝑡), defining 
the quality of transient.  

The advantage of the proposed algorithm, in 
contrast to (Chopra, 2008), (Campion, 1989), 
(Gerasimov, 2015) and other classical algorithms is 
obvious: the transients are always contained in the 
tube (2), the boundaries of which can define the 
quality of the transients. Thus, the obtained processes 
almost exponentially decay to the limit set (-0.1; 0.1) 
in time 1.5 s., while the algorithms mentioned above 
are not controllable in terms of transient process and 
transient process time, as well as it is impossible to 
determine a priori the quality of the output variable in 
steady state. 

As an example, consider the plant (1) with other 
parameters: 

  

( ) ( )
( ) ( )

3 2

3 2

4 +2 1  and  2,

+6 8 6  and  1.5 0.5.

Q p p p p R p

Q p p p p R p p

= − − =

= − + = +

 

  

The error of the systems are shown in Figure 3 (a) 
and (b) respectively. 

 

a) b) 

Figure 3: Graphs of the output signal error with limiting 
functions 𝑔(𝑡) and 𝑔(𝑡): a) plant 2; b) plant 3. 

5 CONCLUSIONS 

In this paper, the methods of classical adaptive 
control (Fradkov, 1999) and the method of nonlinear 
control (Annaswamy, 2021) are applied, which 
allowed us to create a new method of adaptive control 
that guarantees a given quality of transient throughout 
the whole process. At first, the new method is used to 
transform the problem with constraints to a problem 
without constraints. Then the classical method of 
adaptive control is applied.  

The simulation results confirmed the theoretical 
conclusions and showed that in classical adaptive 
control schemes at different parameters of the plant, 
significantly different uncontrolled transient are 
observed, while in the new control scheme at the 
same parameters, the almost given quality of 
transients is guaranteed. 
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APPENDIX 

Proof of Theorem 1. Let us define a Lyapunov 
function of the form 
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(A1)

where 𝐻 >  0. Let us find the full time derivative of 
(A1) using expressions (13) and (15). As a result, we 
obtain 
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Let us use the following estimates from above and the 
relation: 
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Given (A3), let us evaluate (A2) in the form 
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It follows from the previous equation that if the 
conditions are fulfilled  
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the derivative of the Lyapunov function will be 
negative. Thus, it is clear from the equation that there 
always exist α and H that ensure this condition. It 
follows from condition (b) that the transformation 
(15) guarantees the fulfilment of condition (2). As a 
result, function 𝑉  is bounded and therefore C is 
bounded. Theorem 1 is proved. 
 
Proof of Theorem 2. Let us rewrite equations (19), 
(20) in the form: 
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(A4)

where 𝜇ଵ = 𝜇ଶ = 𝜇. Let us use the lemma (Brusin, 
1994). 

Lemma (Brusin, 1994). If a system is described by 
equation 𝑥ሶ = 𝑓(𝑥, 𝜇ଵ, 𝜇ଶ), 𝑥 ∈ 𝑅,  where 𝑓(𝑥, 𝜇ଵ, 𝜇ଶ) 
is a continuous function that is Lipschitz on 𝑥, and at 𝜇ଶ = 0 has a bounded closed dissipativity area 𝛺ଵ =ሼ𝑥|𝐹(𝑥) < 𝐶ሽ,  where 𝐹(𝑥)  is a positively defined, 
continuous piecewise smooth function, then there 
exists such 𝜇଴ > 0  that at 𝜇ଶ < 𝜇଴  the original 
system has the same dissipativity area 𝛺ଵ if for some 
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numbers 𝐶ଵ  and 𝜇̅ଵ  with 𝜇ଶ = 0  the following 
condition is fulfilled 
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when 𝐹(𝑥) = 𝐶.  

Let us take the Lyapunov function Vଶ =ηത୘(t)Hଶηത(t), Hଶ = Hଶ୘ > 0  is determined from the 
solution of the equation HଶG + G୘Hଶ = −Qଶ, where Qଶ = Qଶ୘ > 0, then considering (A.4) we obtain 𝑉ሶଶ =− ଵஜమ ηത୘(t)Qଶ஗ഥ(t)  with μଶ = 0. It means that at 𝜇ଶ=0 
we obtain the original equations (11), (16) to which 
we add the independent equation 𝜇ଵ𝜂̅ሶ (𝑡) = 𝐺𝜂̅(𝑡) 
with asymptotically stable variable 𝜂̅(𝑡). Hence, for 
the initial system we have a dissipativity region 𝛺 
with an attraction region 𝛺ଵ. 

Let us take the Lyapunov function as a function 𝐹(𝑥)  
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where ℎଵ > 0,  𝐻ଶ, 𝐻ଷ, 𝐻ସ  are positively defined 
symmetric matrices. 

Let us set the number C such that the surface 𝐹(𝑥) = 𝐶, where 𝑥்(𝑡) = ൣ𝑐, 𝜂்̅, 𝜁௬௧ , 𝜁௩௧൧ is boundedly 
closed, is in the area 𝛺  on the variables 𝑥(𝑡) , and 
since the set 𝛺ଵ lies in the open area 𝑉(𝑥) < 𝐶 and 
the system is dissipative, the variables 𝑥(𝑡) will tend 
to attraction area 𝛺ଵ, and hence there exists a number 𝐶ଵ  for which (A5) is satisfied. The rate of 
convergence of the variables 𝜂̅(𝑡) to zero will depend 
on the choice of 𝜇ଵ . Therefore, according to the 
lemma (Brusin, 1994), there exists  𝜇଴ > 0 such that 
at 𝜇 < 𝜇଴  the dissipativity area of the system (17), 
(19), (20) remains the area 𝛺. Theorem 2 is proved. 
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