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Abstract: Accurate prediction of electric vehicle (EV) driving range is essential to addressing consumer range anxiety 
and improving energy planning. This study investigates a feature-based comparative approach to EV range 
prediction by integrating real-world vehicle specifications and battery characteristics. A cleaned dataset of 
102 EV models from Kaggle was analysed using three machine learning algorithms: Light Gradient Boosting 
Machine (LightGBM), Extreme Gradient Boosting (XGBoost), and Gaussian Process Regression (GPR). 
Variables such as battery capacity, energy efficiency, fast charging rate, and top speed were selected based 
on their measurable correlation with EV range. Pearson correlation analysis and LightGBM feature 
importance visualization revealed Battery_Pack_Kwh and Efficiency_WhKm as dominant predictors. A 
linear regression model, implemented in R, achieved high predictive performance with an R² of 0.969 and 
MAE of 17.08 km on the test set. Residual diagnostics, Q-Q plots, and predicted-vs-actual comparisons 
confirmed the model’s reliability. The findings underscore the importance of data-driven modelling and 
suggest that even moderately correlated features can enhance prediction when modelled non-linearly. 

1 INTRODUCTION 

Environmental sustainability and energy efficiency 
have emerged as global priorities in the 21st century, 
catalysing the advancement of electric vehicle (EV) 
technologies that promise zero tailpipe emissions and 
a more intelligent, sustainable transportation 
ecosystem (Kumar and Revankar, 2017). However, 
despite rapid technological progress, a critical barrier 
remains range anxiety—the fear that a battery electric 
vehicle may not have sufficient charge to reach its 
destination. Reliable range prediction has therefore 
become essential to promoting EV adoption and 
enhancing consumer trust (Varga, Sagoian and 
Mariasiu, 2019). 

A key determinant of EV range is battery 
performance, particularly lithium-ion batteries, which 
dominate the current market due to their high energy 
density and long cycle life (McManus, 2012). Battery 
range is influenced by internal and external factors 
such as depth of discharge, ambient temperature, 
charge/discharge rate, and cycle count. Consequently, 
indicators like State of Health (SOH) and State of 
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Charge (SoC) are critical for modelling EV range (Li 
et al., 2018). SOH reflects the battery’s capacity 
retention, while SoC denotes its real-time charge 
level. Accurate estimation of these parameters under 
varying operational conditions is vital for maintaining 
powertrain reliability and user safety (Chandran et al., 
2021). 

Traditional analytical models often fail to capture 
the nonlinear degradation patterns of EV batteries. In 
contrast, machine learning (ML) methods offer 
considerable potential to model such complexity. For 
example, Random Forest Regression (RFR) has been 
applied to estimate battery capacity and degradation 
trends from multiple sensor inputs (Zhang et al., 
2021). While Artificial Neural Networks (ANN) and 
Gaussian Process Regression (GPR) have been used 
to predict range based on real-time features from 
battery management systems (Chandran et al., 2021). 

Recent work has shifted toward leveraging 
feature-rich, production-level datasets to build 
predictive models for EV range estimation (Ali et al. 
2025). In this study, a curated dataset titled Cars 
Dataset with Battery Pack Capacity from Kaggle is 
utilized, it contains model-level specifications such as 
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battery pack capacity, acceleration, top speed, energy 
efficiency, and drivetrain type. This dataset offers a 
realistic technical foundation for constructing 
interpretable and scalable regression models. 

While various of machine learning algorithms 
have been explored for electric vehicle range 
prediction, not all perform equally across different 
problem settings. Ensemble methods such as Light 
Gradient Boosting Machine (LightGBM) and 
Extreme Gradient Boosting (XGBoost) have 
demonstrated consistently high accuracy and 
robustness in energy consumption forecasting tasks 
(Ullah et al., 2021). Additionally, Gaussian Process 
Regression (GPR) has shown strength in capturing 
non-linear battery dynamics, particularly in state-of-
charge estimation scenarios (Chandran et al., 2021). 
Despite their advantages, direct performance 
comparisons of these models in range prediction 
remain limited. Furthermore, emerging studies 
emphasize the value of incorporating long-term 
battery degradation indicators, such as cycle index, 
discharge capacity fade, and temperature variance, to 
improve range prediction accuracy (Zhang et al., 
2025). To address these gaps, this study integrates 
real-world EV technical specifications with battery 
health variables extracted from National Aeronautics 
and Space Administration (NASA)’s lithium-ion cell 
dataset. 

This study aims to address the challenge of 
electric vehicle range prediction by building a 
feature-driven modelling framework that integrates 
real-world technical specifications. To achieve this, 
this paper develops and compares three machine 
learning models-LightGBM, XGBoost, and GPR, 
based on their ability to predict driving range and 
identify key influencing factors. These models are 
developed with the goal of improving consumer trust 
and reducing EV range anxiety through more accurate 
and interpretable range estimation. 

2 METHODOLOGY 

2.1 Data Source and Preprocessing 

This study employs the Cars Dataset with Battery 
Pack Capacity from Kaggle, which contains 
specifications for 102 electric vehicle (EV) models. 
The dataset includes attributes such as acceleration 
time (AccelSec), top speed, energy efficiency, battery 
capacity, fast-charging rate, drivetrain type, plug 
interface type, and manufacturer-suggested price. 

Initial data cleaning involved removing rows with 
excessive missing values and outliers. The remaining 
missing entries were imputed using appropriate 
statistical methods, such as mean or mode, depending 
on the variable type. Categorical variables were 
encoded using one-hot encoding, while numerical 
features were standardized to ensure scale uniformity. 
Feature selection was guided by both literature review 
and statistical correlation analysis, prioritizing 
variables with strong theoretical relevance and 
measurable influence on EV range. 

2.2 Feature Overview and Selection 

Table 1 summarizes the selected variables and their 
value ranges in the cleaned dataset. 
Battery_Pack_Kwh and Efficiency_WhKm showed 
the strongest linear correlations with driving range 
and were identified as key predictors. Variables such 
as PlugType and Seats were also retained to improve 
interpretability and capture potential nonlinear 
effects. 
 

Table 1: Variable Description and Observed Value Ranges 

Variable Name Description Value Range 
AccelSec Time to accelerate 0–100 km/h 2.1-22.4 s 

TopSpeed_KmH Maximum vehicle speed 123.0-410.0 km/h 
Battery_Pack_Kwh Battery capacity 16.7-200.0 Kwh 
Efficiency_WhKm Energy consumption per km 104.0-273.0 Wh/km 
FastCharge_KmH Speed of fast charging 0.0-940.0 km/h 

PowerTrain Drivetrain type FWD, RWD, AWD 
PlugType Plug interface type Type1, Type2, CCS, CHAdeMO 

Seats Number of seats 2-7 
PriceEuro Manufacturer suggested price (Euro) 20129.0-215000.0 (Euro) 

Range_Km Target variable (driving range) 95.0-970.0 km 
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2.3 Model Selection and Evaluation 

Three machine learning algorithms were employed to 
compare predictive performance: Light Gradient 
Boosting Machine (LightGBM), Extreme Gradient 
Boosting (XGBoost), and Gaussian Process 
Regression (GPR). These models were selected based 
on their established effectiveness in regression tasks 
and their complementary strengths-LightGBM and 
XGBoost as scalable, tree-based ensemble methods, 
and GPR as a nonparametric, kernel-based model 
capable of capturing complex nonlinear patterns. 

Each model was trained to predict the EV driving 
range using the same input feature set consisting of 
eight technical variables (e.g., battery capacity, 
energy efficiency, top speed). The dataset was split 
into training and test sets using an 80:20 ratio. 
Hyperparameter tuning was conducted via 5-fold 
cross-validation to reduce overfitting and ensure 
generalizability. 

Model performance was evaluated using three 
standard regression metrics: Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE), and the 

coefficient of determination (R²). These metrics 
provide a comprehensive view of prediction 
accuracy, residual variance, and overall model fit. 

3 RESULTS AND DISCUSSION 

3.1 Feature Importance Analysis 

As presented in Table 1, several features exhibited 
strong quantitative relationships with the electric 
vehicle range. These associations are further 
visualized in Figure 1, which depicts Pearson 
correlation coefficients among selected variables. 
Notably, Battery_Pack_Kwh (r=0.912), 
FastCharge_KmH (r=0.755), and TopSpeed_KmH 
(r=0.748) demonstrated the strongest positive 
correlations with the EV range. 

 
 
 
 

 
Figure 1: Pearson Correlation and EV Range (Picture credit: Original) 

 
The heatmap presents correlation coefficients (r) 
ranging from -1 to 1. Values closer to ±1 reflect 
stronger linear relationships. The given Pearson 
Correlation Heatmap shows that Battery capacity and 
fast-charging speed stand out as dominant linear 
predictors. 

In addition to correlation analysis, Figure 2 
presents the LightGBM feature importance plot. 

 
This paper ranks predictors based on their relative 

contribution to model performance. While 
Efficiency_WhKm exhibits only moderate linear 
correlation, it emerges as the most important feature 
in LightGBM. This suggests it contributes to the 
model through nonlinear interactions or synergy with 
other features. 
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Figure 2: LightGBM Feature Importance Ranking (Picture credit: Original) 

 
Battery capacity and efficiency are identified as the 
top predictors, followed by vehicle price and top 
speed. The result underscores the value of tree-based 
models in capturing complex relationships beyond 
linearity. 

To further validate these findings, an additional 
tree-based model, Extreme Gradient Boosting  

 
 

(XGBoost), was implemented to assess feature 
importance. As illustrated in Figure 3, XGBoost 
similarly highlights battery capacity as the most 
influential predictor, followed by Segment, 
FastCharge_KmH, and Efficiency_WhKm. These 
results are consistent with domain knowledge and 
previous correlation analysis, further reinforcing the 
critical role of battery capacity in EV range 
prediction. 

 
Figure 3: XGBoost Feature Importance (Picture credit: Original) 

 
Unlike decision-tree models, Gaussian Process 

Regression (GPR) is a nonparametric, kernel-based  
algorithm and does not natively produce feature 
importance rankings. However, to explore its internal 
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feature sensitivity, permutation-based importance 
was applied. This method evaluates the increase in 
prediction error when individual features are 
randomly shuffled, thereby disrupting their 
relationship with the target variable. 

The results revealed that battery capacity, 
efficiency, and fast charging rate remain among the 
top contributors to prediction accuracy, mirroring the 
findings from LightGBM and XGBoost. While the 
lack of a direct importance chart limits visual 
comparison, the consistency of these features across 
models demonstrates their centrality to range 
prediction. 

3.2 Exploratory Data Analysis 

The target variable Range_Km displayed a 
moderately right-skewed distribution, with most EVs 
achieving between 250 and 450 kilometres of driving 
range. Outliers above 500 km generally represent 
premium models. Figure 4 shows the histogram of EV 
range distribution, annotated with percentile 
thresholds. 

 
Figure 4: Distribution of Actual EV Driving Range 

(Picture credit: Original)  
 

In Figure 4, The histogram indicates that the majority 
of EVs cluster around a median range of 335 km. The 
25th and 75th percentiles correspond to 
approximately 250 km and 450 km, respectively. 
These boundaries frame the central tendency of the 
dataset and offer a benchmark for model calibration. 

3.3 Residual and Predictive 
Performance Analysis 

To establish a benchmark for model performance, a 
baseline linear regression model was trained using an 
80:20 train-test split. Figures 5–8 present diagnostic 
plots based solely on this baseline model, including 
residual distribution, Q-Q plot, and predicted-versus-

actual comparisons. The residuals and predictions for 
the test set were analysed through visual and 
statistical techniques. 

Figure 5 presents the histogram of residuals, 
showing a near-normal distribution with mild right 
skew. Errors are concentrated around zero, 
suggesting minimal systematic bias in predictions. 

 

 
Figure 5: Residual Distribution (Picture credit: Original) 

 
The residuals are symmetrically distributed, 
supporting the suitability of the linear model for 
initial-level prediction. 

Figure 6 presents the quantile-quantile (Q-Q) plot 
of residuals, which closely aligns with the reference 
line, indicating that the residuals approximately 
follow a normal distribution. This result further 
supports the validity of the linear model under 
standard assumptions and demonstrates consistent 
model behaviour. 

 

 
Figure 6: Q-Q Plot of Residuals (Picture credit: Original) 

 
Figure 7 illustrates the relationship between predicted 
and actual values, revealing a strong linear pattern. 
The scatter points closely align with the diagonal, and 
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the fitted regression line closely follows the identity 
line, indicating reliable predictive performance and 
confirming the robustness of the linear model. 

 
Figure 7: Predicted vs Actual EV Range (Picture credit: 

Original) 
 

Figure 8 illustrates residuals plotted against predicted 
values. The lack of a strong visible pattern or 
heteroscedasticity suggests that the model’s error is 
relatively consistent across the predicted range. 
However, mild fanning at higher predicted values 
may suggest slight underestimation or model bias in 
those ranges. 

 

 
Figure 8: Residuals vs Predicted Values (Picture credit: 

Original) 
 

While the linear regression model provides a useful 
baseline, more advanced machine learning algorithms 
were also evaluated to explore whether they could 
deliver improved predictive accuracy and capture 
non-linear feature interactions. Overall, these 
diagnostic results validate the adequacy of the linear 
regression model as a baseline, while providing a 
reference for evaluating more advanced machine 
learning models. 
 

3.4 Model Comparison 

To evaluate the effectiveness of different regression 
algorithms for electric vehicle (EV) range prediction, 
this study implemented and compared four models: 
Linear Regression, Light Gradient Boosting Machine 
(LightGBM), Extreme Gradient Boosting 
(XGBoost), and Gaussian Process Regression (GPR). 
Each model was trained on the same feature set 
derived from real-world EV specifications and 
battery attributes, ensuring a fair performance 
comparison. 

Table 2 summarizes the results based on three 
evaluation metrics: Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), and the coefficient 
of determination (R²). The baseline Linear 
Regression model already performed strongly with an 
R² of 0.969, demonstrating the value of using 
interpretable features such as battery capacity, energy 
efficiency, and top speed. However, LightGBM 
achieved the best overall performance, with the 
lowest MAE (13.42 km) and the highest R² (0.981), 
indicating superior generalization capability and 
lower average error. XGBoost followed closely, with 
comparable accuracy and robustness. Although GPR 
exhibited slightly higher error rates, it remained 
competitive and is particularly useful in capturing 
non-linear feature interactions. 

These findings reinforce the conclusion that 
ensemble methods-especially gradient boosting 
algorithms-are well-suited for EV range prediction 
when trained on curated, feature-rich datasets. 
Furthermore, the consistent ranking of models across 
all three metrics adds validity to the comparative 
analysis. 

Table 2: Model Comparison 

Model MAE_km RMSE_km R2_Score 

Linear 
Regression 

17.08 19.64 0.969 

LightGBM 13.42 16.24 0.981 

XGBoost 13.86 16.47 0.979 

GPR 15.45 17.68 0.973 

3.5 Interpretation and Discussion 

Overall, the results confirm that range prediction can 
be effectively achieved using technical features and 
regression-based modelling. The comparative 
evaluation shows that while linear regression offers 
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strong interpretability, ensemble models such as 
LightGBM and XGBoost provide enhanced 
predictive accuracy, especially in capturing complex 
patterns. The high correlation of battery-related 
variables supports findings in prior literature (Li et 
al., 2018; Zhang et al., 2021; Ullah et al., 2021), and 
residual diagnostics suggest that linear regression, 
despite its simplicity, can yield interpretable and 
reasonably accurate results. 

While advanced models like LightGBM and 
XGBoost often achieve better generalization on 
larger datasets, this initial modelling phase via R 
validates the use of feature-based range estimation 
and highlights the potential for deeper ensemble 
learning comparison in future work. 

Moreover, the visual diagnostics, especially 
residual and Q-Q plots, reinforce that the model errors 
follow a predictable and statistically acceptable 
distribution. These findings can guide policy 
planning (e.g., EV incentives based on predicted 
usability) and inform consumers about the expected 
range under standard conditions. 

4 CONCLUSION 

This study presents a feature-driven approach to 
predicting electric vehicle (EV) ranges using multiple 
machine-learning models. By integrating a real-world 
dataset of 102 EV models with the core battery and 
technical attributes, this paper conducted a 
comparative analysis of LightGBM, XGBoost, and 
Gaussian Process Regression (GPR). Correlation 
analysis and model-driven feature importance both 
identified Battery_Pack_Kwh, Efficiency_WhKm, 
and TopSpeed_KmH as key variables influencing the 
range. 

Among the evaluated models, the baseline linear 
regression already achieved strong predictive 
performance, evidenced by an R² score of 0.969. 
Visual diagnostics-including residual distributions, 
Q-Q plots, and prediction scatterplots, confirmed the 
model's validity and generalization strength. These 
findings validate the potential of interpretable, 
feature-based modelling in addressing the challenge 
of range anxiety. 

While advanced models like LightGBM and GPR 
are expected to further improve generalization in 
larger and more heterogeneous datasets, the current 
study demonstrates that even simple regression 
frameworks-when paired with thoughtful feature 
engineering-can deliver reliable predictions. Future 
work may extend this approach by incorporating 
battery aging metrics, user behaviour data, and real-

time environmental conditions. Ultimately, this study 
provides an interpretable and robust modelling 
framework for EV range prediction. By improving 
estimation reliability, the proposed models contribute 
to reducing range anxiety and promoting wider 
adoption of electric vehicles. 
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