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Abstract: A comprehensive comparative study focusing on central projection and parallel projection is conducted in 
this paper. The two projection methods are systematically analysed from multiple perspectives including their 
physical definitions, fundamental principles, mathematical theorems, geometric properties, algorithmic 
implementations, and practical applications. The differences and connections between the two projections are 
elucidated in detail. Their advantages and disadvantages across various disciplines are also explored, and the 
study of an application example is given. It is demonstrated that central projection, which simulates human 
visual perception, provides more realistic scene perception and is suitable for visual arts production field, but 
non-linear transformations and more complex computation are involved, leading to an inaccurate geometric 
measurement. In contrast, parallel projection preserves geometric proportions through linear transformations 
with simpler computations, but lacks spatial depth perception, rendering it ideal for precision-dependent fields 
such as measurement and manufacturing. Finally, the application of integration on central projection and 
parallel projection methods and their development in the future are explored. This study provides valuable 
references and insights for related research fields. 

1 INTRODUCTION 

Projection is the process of mapping a three-
dimensional object in space onto a two-dimensional 
plane. The shadow formed by light rays illuminating 
an object and casting onto a screen behind it is 
referred to as a projection. Central projection and 
parallel projection are two fundamental methods of 
projection theory, widely applied in fields such as 
geometry, computer graphics, engineering drafting,    
photography, painting, and artistic creation (Müller, 
et al., 2021; Liu et al., 2024; Garcia et al., 2019). Due 
to their distinct definitions and principles, these two 
projection methods exhibit different characteristics 
and are suited to different scenarios. However, they 
both play important roles in practical applications.          
This paper conducts a comparative study of these two 
projection methods by analysising their physical 
definitions and principles, geometric and 
mathematical properties, computational approaches, 
and application feilds. Furthermore, their future 
development prospects are explored. 
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2 DEFINITIONS, PRINCIPLES, 
AND CHARACTERISTICS 

The essence of projection is transmitting the contours 
of an object onto a designated plane through a set of 
light rays (projection lines). Therefore, three essential 
elements are required to form a projection. The fisrt 
factor is projection center that can be regarded as the 
light source. For instance, in the case of a shadow cast 
by sunlight, the sun serves as the projection center. 
The second is projection object that is being 
projected. It may consist of geometric elements such 
as points, lines, or surfaces, or a three-dimensional 
solid. The third is projection plane, a receiving 
surface where the image is formed after the light rays 
pass through the object. It can be a ground surface, a 
wall, a drawing sheet, etc.  

The spatial position of the projection center and 
the direction of the projection lines influence the 
shape and size of the projected image on the plane. 
Based on the mutual relationships between projection 
lines, projections are classified into central projection 
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(perspective projection) and parallel projection 
(Foley et al., 2018; Coxeter et al., 2003). 

2.1 Central Projection 

Central projection refers to a projection method in 
which light rays emanate from a single point (the 
projection center) and diverge radially, passing 
through an object and intersecting a receiving surface 
to form a perspective relationship. Geometrically, this 
process involves extending the lines connecting each 
point on the object to a fixed projection center until 
they intersect a plane that does not contain the 
projection center. The set of intersection points 
constitutes the central projection of the object onto 
that plane, as illustrated in figure 1. 

 

Figure 1: Central Projection (Picture credit: Original). 

In central projection, since all projection lines 
converge at a single point (the projection center), the 
varying distances between different parts of the object 
and the projection center result in non-uniform 
scaling, causing changes in the size and shape of the 
projected image, whose actual dimensions and angles 
may undergo nonlinear distortion (Carlson, 2003). 
Parallel lines in the original object may intersect at 
vanishing points on the projection plane, leading to 
significant deviations between the projected image 
and the original object. These Characteristics, to some 
extent, compromise the metric accuracy of central 
projection, limiting its widespread application in 
classical solid geometry. However, the resulting 
transformations enhance visual intuitiveness and 
spatial realism, aligning with human visual 
perception, e.g., near-far size attenuation. 
Consequently, central projection is extensively 
employed in artistic domains, such as painting and 
photography, where it preserves a naturalistic 

resemblance to the original object while emphasizing 
depth and perspective (Peacock, 2001).                                                    

2.2 Parallel Projection 

When the light source at the projection center is 
relocated to infinity, all projection rays become 
mutually parallel and intersect the projection plane at 
a fixed angle, which is termed parallel projection. As 
illustrated in figure 2, parallel projection can further 
be categorized into two subtypes: 
 Orthographic Projection 

The projection lines are perpendicular to the 
projection plane. For example, the standard 
engineering multi-view drawings (including front, 
top, and side views). This method preserves the true 
dimensions and shapes of objects, making it 
indispensable for technical drafting. 
 Oblique Projection 

The projection lines intersect the projection plane 
at an oblique angle  (് 90°). For example, cabinet 
oblique projection which retains partial depth 
perception exhibits less metric accuracy compared to 
orthographic projection. 

Figure 2: Parallel Projection (Picture credit: Original). 

In parallel projection, the shape and size of objects 
maintain proportional consistency on the projection 
plane without scaling effects caused by varying 
distances. Due to its superior metric properties, 
relatively simple projection rules, and ease of 
understanding and drafting, parallel projection is 
broadly applied in fields requiring precise proportions 
and resistance to perspective distortion. These 
applications include engineering drawings, 
mechanical manufacturing, cartography and 
surveying, architectural design, and computer 
graphics (Liu, 2022; Zhang et al, 2008; Luo et al., 
2009). 
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3 MATHEMATICAL THEOREMS 
AND RELATED PROPERTIES 

3.1 Fundamental Theorems and 
Properties of Central Projection 

 Collinearity Preservation  
If three points in space lie on a straight line, their 

central projections will remain collinear (or all 
converge to points at infinity). 
 Cross-Ratio Invariance 

In central projection, the cross ratio of any four 
collinear points remains invariant. This theorem holds 
a central position in projective geometry and ensures 
accurate proportional transformations in perspective 
projection. 

As illustrated in figure 3, four collinear points 𝐴, 𝐵, 𝐶, 𝐷 are projected onto another line as  𝑎, 𝑏, 𝑐, 𝑑 
via central projection. While the lengths of projected 
segments change and the ratios of individual 
segments are not preserved, the cross ratio remains 
invariant, that is: 

 (𝐴𝐵，𝐶𝐷) = 𝐶𝐴𝐶𝐵𝐷𝐴𝐷𝐵 = 𝑐𝑎𝑐𝑏𝑑𝑎𝑑𝑏  (1)

 
Here, all segments are treated as directed lengths with 
signed magnitudes. Definitions of world coordinates 
and pixel coordinates are provided in Section 4.  

 
Figure 3: Cross-Ratio in Central Projection (Picture credit: 

Original). 

The cross-ratio invariance has significant 
applications in computer vision, photogrammetry, 
and robot navigation. Specific use cases include sun 
positioning systems (based on shadow 
measurements) (Zhang et al., 2015), structured-light 
3D reconstruction (light-plane calibration) (Chen et 
al., 2018), Camera self-calibration (using vanishing 
points) (Cipolla et al., 1999). 
 Nonlinearity 

Central projection is not a linear transformation 
(except when the projection center is at infinity, in 
this case, it degenerates into parallel projection). 
Notably, As introduced in Desargues’ theorem, in 
homogeneous coordinates, central projection can be 
represented as a fractional linear transformation. 
 Non-Preservation of Distances and Angles 

Central projection distorts metric properties (e.g., 
lengths, angles) of geometric shapes. 
 Points at Infinity 

In projective geometry, central projection maps 
lines parallel to the projection plane to vanishing 
points at infinity, thereby extending Euclidean space 
into projective space. 
 Desargues’ Theorem 

If the lines connecting corresponding vertices of 
two triangles meet at a single point (perspector), then 
the intersections of their corresponding edges lie on a 
straight line (perspectrix), and vice versa. 

 
Figure 4: Desargues Theorem (Picture credit: Original). 

As illustrated in figure 4, the author considers two 
triangles △ 𝐴𝐵𝐶  and △ 𝐴′𝐵′𝐶′ . If the connecting 
lines of corresponding vertices 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′ 
intersect at a common point 𝑆 (the perspector), the 
triangles exhibit point perspective. Conversely, if the 
intersections of corresponding edges denoted 𝑅𝑄𝑃 lie 
on a straight line (the perspectrix), they exhibit line 
perspective. A pair of triangles are perspective if 
either condition is satisfied (Coxeter, 2003; Hartley, 
2018). 

The conditions and conclusions in Desargues' 
theorem are mutually inverse and implicative, which 
demonstrates the fundamental principle of point-line 
duality in projective geometry. This self-dual 
characteristic establishes the foundational status of 
Desargues' theorem in projective geometry and 
extends its practical utility (Ma, 2011). 

Desargues' theorem describes the specific 
geometric relations satisfied by two triangles under 
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the condition that central projection preserves 
collinearity and cross-ratio while potentially altering 
metric properties such as distances and angles. It 
reveals profound properties that remain invariant 
when observing geometric figures under different 
projection centers. These properties are independent 
of specific length or angle measurements, relying 
solely on the relative positional relationships of the 
figures (Xing et al., 2004). 

From an algebraic perspective, Desargues' 
theorem reflects the preservation of linear 
dependence. In homogeneous coordinates, collinear 
points correspond to linearly dependent vectors, 
while concurrent lines correspond to linearly 
dependent linear equations. The validity of 
Desargues' theorem stems from that central 
projections corresponds to linear transformations in 
vector space, which preserve this dependency 
structure (Yu et al., 2011; Sturmfels et al., 2020). 
 Mathematical Formulation and Transformation 

Matrices 
In computer graphics, central projection is widely 

used to simulate human visual perception or camera 
observation of 3D scenes. Its mathematical 
formulation can be implemented via matrices 
transformation that generally expressed in 
homogeneous coordinates to enable perspective 
division. 

Assume that:  
The projection center (camera optical center) is 

located at the origin O(0,0,0). 
The projection plane is defined as the 𝑧 = 𝑓 plane 

(where 𝑓 > 0). 
A spatial point  𝑃(𝑋, 𝑌, 𝑍)  is projected onto the 

imaging plane as  𝑝(𝑥, 𝑦). 
Based on the similar triangle principle (see figure 

5, right), the following relationships are obtained: 
 ௫௙ = ௑௓ , ௬௙ = ௒௓   (2)
 
The solving for the projected coordinates is:   
 𝑥 = ௙∙௑௓  , 𝑦 = ௙∙௒௓  (3)
 
Here, 𝑍 denotes the depth of point  𝑃, which governs 
the scaling effect of the projection and serves as the 
divisor in perspective normalization. 

When 𝑍 = 0, the projected point lies behind the 
projection center, making it geometrically invalid.    

When 𝑍 = ∞, the projected point approaches a 
vanishing point. In Euclidean space, infinite distances 
cannot be represented with finite coordinates.  

To uniformly describe all points while linearizing 
nonlinear central projections, homogeneous 
coordinates are introduced (Hartley et al., 2004): 

The 3D point  𝑃(𝑋, 𝑌, 𝑍)  is represented as 𝑃(𝑋, 𝑌, 𝑍, 1) in homogeneous coordinates. 
The 2D point 𝑃(𝑥, 𝑦) is represented as 𝑃(𝑥, 𝑦, 1) 

in homogeneous coordinates. 
Using matrix algebra, central projection can be 

expressed as a linear transformation in homogeneous 
coordinates. The projected point in homogeneous 
coordinates is:  

 ൥𝑥′𝑦′𝑤′൩ = ൥𝑓 0 0 00 𝑓 0 00 0 1 0൩ ቎𝑋𝑌𝑍1቏ = ൥𝑓𝑋𝑓𝑌Z ൩   (4)

 
To normalize 𝑥′ , 𝑦′  and 𝑤′ , 2D coordinates are 
obtained: 
 𝑥 = ௫ᇱ௪ᇱ = ௙∙௑௓   ,  𝑦 = ௬ᇱ௪ᇱ = ௙∙௒௓      (5)

3.2 Fundamental Theorems and 
Properties of Central Projection 

In contrast to central projection, parallel projection 
does not exhibit vanishing points but preserves more 
geometric invariants, with its core parallelism and 
proportionality preservation. These properties make 
parallel projection indispensable in engineering 
drafting, mechanical design, and scientific 
visualization. 
 Parallelism Preservation 

Two parallel lines in space are remain parallel in 
the projection plane unless they are parallel to the 
projection direction. Lines parallel to the projection 
direction degenerate to points. 

The parallel preservation theorem is one of the 
most critical and widely applied properties of parallel 
projection. It guarantees the invariance of parallel 
relationships in projective transformations, providing 
the theoretical foundation for operations such as 
dimension annotation and view correspondence in 
engineering drawings. For instance, parallel edges of 
mechanical parts remain parallel in orthographic 
projections (Shah, 2020). 
 Proportionality Preservation 

Parallel projection preserves the proportional 
lengths of line segments. 

The proportionality preservation theorem, rooted 
in the linearity of affine transformations, guarantees 
the accurate transfer of geometric relationships. This 
principle is extensively applied in engineering design, 
architectural drafting, and computer graphics. 
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Orthographic projection preserves angles on the 
projection plane, whereas oblique projection 
maintains angles only along specific directions (e.g., 
axial directions), with potential distortion in other 
orientations. 
 Linearity Theorem 

Parallel projection is a linear transformation 
expressible as an affine transformation matrix. Its 
transformation matrix combines a linear matrix and a 
translation matrix, classified as an affine 
transformation. This affine structure underpins the 
validity of the parallelism preservation theorem. 
  Mathematical Formulation and 

Transformation Matrices 
Orthographic projection is the simplest form of 

parallel projection, where the mathematical 
expression of its transformation matrix for front-view 
projection directly discards the 𝑍 coordinate.  

Let the object point be 𝑃(𝑋, 𝑌, 𝑍), projected onto 
the plane 𝑧 = 0  with projection point 𝑝(𝑥, 𝑦) . The 
orthographic projection transformation is given by: 

 ൥1 0 00 1 00 0 0൩ ൥𝑋𝑌𝑍൩ = ቈ𝑥𝑦0቉ (6)

 
Oblique projection may introduce shear distortion 

while maintaining parallelism, and can be achieved 
by superimposing orthographic projection with shear 
transformation (Foley et al., 2018; Shirley et al., 
2016). Let the shear parameters be -a and -b, then the 
oblique projection is expressed as: 

 ൥1 0 −𝑎0 1 −𝑏0 0 0 ൩ ൥𝑋𝑌𝑍൩ = ቈ𝑥𝑦0቉  ，൜𝑎 = 𝑐𝑜𝑡𝜃𝑥𝑏 = 𝑐𝑜𝑡𝜃𝑦 (7)

 
where 𝜃௫( 𝜃௬ ) denote the angle between the 
projection direction and the 𝑥 ( 𝑦) axes. 

For cabinet Projection, 𝜃 = 45°，𝑎 = 𝑏 = 1. 
For cavalier Projection, 𝜃 = 63.4°，𝑎 = 𝑏 ≈0.5. 
Thus, the parameter 𝑐𝑜𝑡𝜃 governs the degree of 

distortion in oblique projections. 

3.3 Comparative Analysis of Central 
and Parallel Projections 

Based on the comprehensive analysis of the 
definitions, principles, mathematical theorems, and 
properties of both central and parallel projections, it 
can be found that these two projection methods 
exhibit both fundamental differences and intrinsic 
connections. The detailed comparative analysis is 
enumerated as follows. 

From a definitional perspective: Central 
projection features a finite distance between the 
projection center and the projection plane, with non-
parallel projection lines converging at a single point, 
and possesses vanishing points. Parallel projection is 
characterized by an infinite projection distance 
between the center and plane, resulting in mutually 
parallel projection lines with no vanishing points.  

From a mathematical perspective: Central 
projection is a nonlinear transformation in Euclidean 
coordinate systems but can be linearized through the 
introduction of homogeneous coordinates, allowing 
for matrix-based expression. Parallel projection is 
inherently a linear transformation, and its 
computation is relatively simple. Whereas central 
projections require perspective division and 
normalization, which make its computation becoming 
complex. 

From a geometric perspective: For collinearity 
preservation, both central (perspective) and parallel 
projections maintain collinearity. For parallelism 
preservation, parallel lines of central projection may 
converge at vanishing points, but parallel lines of 
parallel projection remain strictly parallel. For length 
proportionality, central projection exhibits 
perspective foreshortening with nonlinear scaling in 
distance, while cross-ratios remain preserved. In 
contrast, orthographic parallel projection maintains 
true length for segments parallel to the projection 
plane, and oblique parallel projection allows 
adjustable scaling along axial directions. For angular 
preservation, central projection causes angular 
distortion. Whereas orthographic parallel projection 
preserves all angles, and oblique parallel projection 
only maintains axial angles, with potential distortion 
in other orientations. 

Desargues’ theorem and projection applications: 
Desargues’ theorem extends the Euclidean plane to 
the projective plane by introducing the concepts of 
points at infinity and the line at infinity, embodying 
the inclusivity and inherent unification of projective 
geometry. 

Owing to these distinct properties, the two 
projection methods exhibit different application 
performances. Central projection is typically 
employed in scenarios requiring visual effects or 
artistic expression, whereas parallel projection is 
primarily utilized in precision-dependent applications 
such as engineering drawings. Currently, the 
integration technique of both projection methods 
which combines geometric accuracy and visual 
realism has been developed and applied in multiple 
domains including computer graphics, architectural 
visualization, medical imaging, augmented reality, as 
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well as cartography and geographic information 
systems. Multidimensional representation is achieved 
by this hybrid approach of applying parallel 
projection to some objects while using perspective 
projection for others within the same scene. 

4 CASE STUDIES OF CENTRAL 
PROJECTION APPLICATION  

Due to space limitations, application case of central 
projection is exclusively analyzed and discussed in 
this section. 

A canonical application of central projection is the 
pinhole camera model, whose physical prototype 
forms inverted images on the projection plane 
through light rays passing via a small aperture, as 
illustrated in figure 5. 

 
Figure 5: Pinhole Camera Model (Szeliski, 2022). 

The process of digital camera image capture is 
fundamentally an optical imaging procedure, with the 
pinhole imaging model being the most widely 
adopted for camera imaging. This model involves 
four coordinate systems: the world coordinate system, 
camera coordinate system, image coordinate system, 
and pixel coordinate system, along with their mutual 
transformations (Hartley et al., 2004; Szeliski, 2022). 

The world coordinate system (𝑋, 𝑌, 𝑍 ) , also 
referred to as the global coordinate system, defines 
the camera's position in 3D space, while the camera 
coordinate system originates at the optical center O 
with axes x, y, and z. The image coordinate system is 
established on the imaging plane 𝑂′𝑥′𝑦′  with 
coordinates  (𝑥′, 𝑦′, 𝑧) , and the pixel coordinate 
system, essentially a matrix-based system, has its 
origin at the top-left corner of the image with axes 𝑢 
and 𝑣  parallel to 𝑥′  and 𝑦′ , where (𝑢, 𝑣 )represents 
the pixel's row and column indices in the matrix.  

Here, 𝑃(𝑋, 𝑌, 𝑍 )  denotes a point in the world 
coordinate system, and 𝑃′ represents its 
corresponding projected image point.       

The transformation of spatial points from the 
world coordinate system to the camera coordinate 
system belongs to a rigid-body transformation, 
involving solely translation T and rotation R. The 
rotation matrix R between the two coordinate systems 
can be derived from the axial rotation angles of the 
three coordinate axes, while the translation T is 
determined by the positions of their coordinate 
origins. 

The transformation from pixel coordinates (𝑢, 𝑣 ) 
to image coordinates (𝑥′, 𝑦′)  incorporates both 
scaling and translation due to their distinct origins and 
scale conventions. The translation parameters and 
scaling factors can be calculated based on the 
positional relationship between the origins of the two 
coordinate systems and the physical dimensions of 
pixels in the image coordinate system.  

After completing the above two transformations, 
an additional step is required to achieve the full 
transformation from world coordinates to pixel 
coordinates: the transformation from camera 
coordinates (𝑥, y ) to image coordinates (𝑥′, 𝑦′). This 
conversion corresponds precisely to the central 
projection transformation, as illustrated in figure 5 
(right panel). 

Based on the principle of similar triangles, the 
transformation relationship can be derived, that is 
formula (3) and (5) along with transformation (4) in 
Section 3.1. 

In the process of the complete transformation,                           𝑅  and 𝑇 constitute the extrinsic parameters of the 
camera, defining its pose in the world coordinate 
system. The intrinsic parameters, encapsulated in the 
calibration matrix 𝐾 , are derived from the focal 
length 𝑓 and the transformation coefficients between 
image and pixel coordinates. Both intrinsic and 
extrinsic parameters can be estimated through 
established calibration procedures (Zhang, 2000). 

Algorithm is implemented and executed 
according to the above steps:  

The extrinsic parameters of the rotation matrix 𝑅 
and translation vector 𝑇  for the world-to-camera 
coordinate transformation are computed first. 
Subsequently, the intrinsic parameter calibration of 
the projection matrix 𝐾  encapsulating focal length 𝑓 and image-to-pixel coordinate conversions is 
estimated. Finally, perspective normalization is 
performed through perspective division to obtain 
normalized coordinates. 

The practical implementation can be achieved 
through programming in various computer languages. 
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In this paper, MATLAB programming is adopted, but 
the source code is not provided here due to space 
constraints. 

5 CONCLUSION  

In summary, as two fundamental projection methods 
in projection theory, parallel projection and central 
projection differ in their definitions, underlying 
principles, mathematical formulations, exhibited 
properties, and application domains. 

Mathematically, central projection is based on 
perspective geometry, where all projection lines 
converge at the viewpoint, forming a conical 
projection structure. The most distinctive feature that 
distinguishes it from parallel projection is the 
convergence of parallel lines at vanishing points on 
the projection plane. This results in an inverse 
relationship between object size and the distance from 
the object point to the projection center (viewpoint), 
producing the characteristic 'foreshortening' visual 
effect. By contrast, parallelism in space is preserved 
in parallel projection, whether orthographic or 
oblique, with all projection lines remaining parallel, 
where projected dimensions are independent from the 
distance (the depth compression ratio of cabinet 
oblique projection is 0.5). It is this fundamental 
dichotomy dictates that dictates their divergent 
applications. 

Visually, central projection aligns with human 
visual perception by generating spatial depth cues, 
making it suitable for applications requiring realism, 
such as creating cinematic visual effects and 
discerning accurate architectural spatial relationships 
in through strategically placed vanishing points. In 
contrast, although parallel projection lacks depth 
perception, its ability to preserve geometric invariants 
makes it indispensable for technical drawings. 
Orthographic multi-view projections provide 
dimensional accuracy for mechanical component 
designs, while axonometric projections in 
architectural drafting offer three-dimensional 
visualization without perspective distortion. 

With the development of science and technology, 
projection technology has also been evolving and 
innovating. The integration technology combining 
these two projection methods is being applied in a 
growing number of fields. It is believed that both 
projection approaches will further develop toward 
greater intelligence, automation, and cross-domain 
integration, enabling broader applications in the 
future. 
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