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Abstract: Calculus is a branch of mathematics that studies continuous change and motion, focusing on two fundamental 
concepts: differential calculus and integral calculus. This paper specifically focuses on integral calculus, 
which targets the accumulation of quantities and area under curves. Integrals play important roles in many 
fields, and this is because they possess key characteristics like precision, flexibility and universality. Initially, 
the great scientists Newton and Leibniz introduced the Newton-Leibniz formula to compute integrals but as 
time progress, it is insufficient to tackle complicated integrals. Therefore, a technique called Feynman’s 
integral technique will be introduced in this paper. This technique was originated from the Leibniz integral 
rule and involves differentiation under the integral sign. By applying this technique, complex integrals can be 
simplified as the integral is being converted to a differential equation. In this paper, how Feynman’s integral 
technique is applied will be demonstrated with detailed examples, which covers a range of different types of 
integrals, including some classic examples. This paper contributes to extending the idea of integral calculation, 
facilitates the efficient solution of integral calculations in practical problems and real world application of 
Feynman’s integral technique. 

1 INTRODUCTION 

Integration, the process of finding the antiderivative 
of a function, is a fundamental concept in calculus, 
primarily divided into two types: indefinite and 
definite integrals. The theory of integration has great 
importance in mathematical analysis, in fact, in is the 
one of the twin pillars on which analysis is built. For 
example, integral is ideal for modelling dynamic 
systems like fluid flow and heat diffusion as integrals 
work with continuous functions unlike discrete sums. 
The theory was originated by the great Newton and 
Leibniz over three centuries ago, made rigorous by 
Riemann in the middle of the nineteenth century, and 
extended by Lebesgue at the beginning of the 
twentieth century. The fundamental theorem of 
calculus, the Newton-Leibniz formula is ׬ 𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)௕௔ , where f(𝑥) = 𝐹ᇱ(𝑥) . 
From this equation, the following two formulas for 
indefinite and definite integral respectively can be 
derived: ׬ 𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑥) + 𝑐  and ׬ 𝑓(𝑥) 𝑑𝑥 =௕௔
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lim‖∆௫‖→଴ ∑ 𝑓(𝑐௜)∆𝑥௜௡௜ୀଵ . Integration are commonly used 
to compute areas between curves or under a function, 
calculate volume of solids and determine the length 
of arcs and curve. It also has application in various 
fields, such as physics, economics and even 
environmental science and medicine.  

However, there are many integrals that are very 
tricky to solve merely using Newton-Leibniz formula 
due to their complexity. Originally derived from the 
Leibniz integral rule, Feynman’s integral technique is 
a method that tackles a group of such integrals swiftly 
(Wang et al, 2020). This group includes oscillatory 
integrals, logarithmic integrals, Frullani-type 
integrals, moment generating integrals and 
conditionally convergent integrals. This technique 
transforms such challenging integrals into 
manageable forms by leveraging parameterization 
and differentiation. Due to its nature of simplifying 
complex integrals, Feynman’s integral trick plays 
crucial roles in many fields.  For example, quantum 
mechanics in physics, control theory in engineering, 
analytic number theory in pure mathematics and 
more. The fundamental of Feynman’s integral 
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technique is to hinge on transforming a difficult 
integral into a parameter-dependent function, then 
leveraging differentiation to simplify it. By 
introducing an artificial parameter a, the integral 
becomes a function 𝐼(𝑎) . Differentiating 𝐼(𝑎)  with 
respect to a often simplifies the integrand, allowing 
the original integral to be recovered via integration 
and boundary conditions.  

This paper is going to cover the following 
components: what is Feynman’s integral technique, 
how does Feynman’s integral technique work with 
the explanation of its applications in different 
questions, and the real life applications of Feynman’s 
integral technique in different fields, in this case, 
precision physics, perturbation theory in quantum 
chemistry and electromagnetism.  

2 FEYNMAN’S INTEGRATION 
METHOD 

Feynman’s integration method, also known as 
“differentiation under the integral sign”, is introduced 
by renowned physicist Richard Feynman to tackle 
complex integration questions in an unconventional 
way. The main idea of this integration method is to 
introduce an auxiliary parameter into the integral, 
making it a function of the new parameter (Liu et al, 
2024). This will simplify the integration process by a 
large extent as the original integral can often be found 
by substituting a specific value of the new function 
due to the introduction of the parameter and thus the 
final result of the original integral can be computed 
by differentiating the new integral with respect to the 
parameter, and integrating the result, then substituting 
in the value that will transform the new integral to the 
original integral.  

The general formula for Feynman’s integral 
technique is 𝑑𝐼𝑑𝑎 = න 𝜕𝜕𝑎 𝑓(𝑥, 𝑎)𝑑𝑥ௗ

௖ (1) 

where 𝑑 and 𝑐 are fixed limits. Consider this classic 
example that is significantly simplified by Feynman’s 
integration method to solve. This involves the 
application of Feynman’s trick in improper integral 
(Nahin, 2015). The typical example is Ι = න sin 𝑥𝑥 𝑑𝑥ஶ

଴ (2) 

To evaluate this integral conventionally, ୱ୧୬ ௫௫ = 𝐼𝑚 ቀ௘೔௫ೣ ቁ is first to be taken. Then the function can be 
written as  

I = Im ቆන 𝑒௜௫𝑥 𝑑𝑥ஶ
଴ ቇ (3) 

Due to the singularity at  𝑥 = 0 , the contour 
integration approach should be used. Let the function 𝑓(𝑧) =  ௘೔೥௭ , and integrate it over a keyhole contour in 
the complex plane. The contour consists of a small 
semicircle of radius 𝜖 around the origin, which avoids 
singularity at 𝑧 = 0, a large semicircle of radius 𝑅 in 
the upper-half plane and two straight lines along the 
real axis from 𝜖 → 𝑅  and from −𝑅 → 𝜖 . Since this 
function is analytic both on the contour and inside as 
no poles are  enclosed, Cauchy-residue theorem can 
be applied and the integral of f(𝑧) over this enclosed 
contour is ර𝑓(𝑧)𝑑𝑧஼ = 0 (4) 

Now, the author shall consider the three 
contributions. For the large semicircle, |𝑧| = 𝑅 , as 𝑅 → ∞ , the integral over the large semicircle 
vanishes as ห𝑒௜௭ห = 𝑒ିூ௠(௭)  decays exponentially in 
the upper half plane. For the small semicircle, |𝑧| =𝜖 , as 𝜖 → 0, the integral over the small semicircle 
contributes −𝜋𝑖, which is half the residue at 𝑧 = 0. 
Then for the straight lines, they combine to give ׬ ௘೔௫ೣ 𝑑𝑥 ׬ + ௘೔௫ೣ 𝑑𝑥ିఢିோோఢ . By substituting x=-x into the 

integral, it becomes ׬ ௘೔ೣି௘ష೔ೣ௫ோఢ 𝑑𝑥 = 2𝑖 ׬ ୱ୧୬ ௫௫ 𝑑𝑥ோఢ . 
Taking the limit 𝑅 → ∞ and 𝜖 → 0, the integral will 
become 2𝑖 ׬ ୱ୧୬ ௫௫ 𝑑𝑥ஶ଴ , and the equation 2𝑖 ׬ ୱ୧୬ ௫௫ 𝑑𝑥ஶ଴ − 𝜋𝑖 = 0 can be formed. The result of 

the original integral ׬ ୱ୧୬ ௫௫ 𝑑𝑥ஶ଴ =  గଶ .  
This process however, can be simplified by 

merely introducing a new parameter, 𝑎 , to the 
function such that it becomes 𝐼(𝑎) = න 𝑠𝑖𝑛𝑥𝑥 𝑒ି௔௫ 𝑑𝑥ஶ

଴ (5) 

The next step is to differentiate I(𝑎) with respect to 𝑎: 𝑑𝐼𝑑𝑎 = − න sin 𝑥ஶ
଴ 𝑒ି௔௫ 𝑑𝑥 (6) 

Then by integration by parts, the following can be 
obtained: ௗூௗ௔ =  − ଵଵା௔మ . To recover 𝐼(𝑎) , integrate ௗூௗ௔ with respect to 𝑎 to get 𝐼(𝑎) = − න 11 + 𝑎ଶ 𝑑𝑎 =  − tanିଵ 𝑎 + 𝑐 (7) 

where 𝑐 is a constant. 
In order to obtain 𝑐 , take 𝑎 → ∞ , this causes tanିଵ 𝑎 → గଶ , and −𝑒ି௔௫  to strongly oppose the 
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integrand, which results in 𝐼(𝑎) → 0 . Therefore, − గଶ + 𝑐 = 0 and 𝑐 = గଶ, then 𝐼(𝑎) =  గଶ − tanିଵ 𝑎. 
To convert 𝐼(𝑎) back to 𝐼 , 𝑎 = 0 will be taken 

and the function will look like 𝐼(0) = 𝜋2 − tanିଵ 0 = 𝜋2 , (8) 
and 𝜋 2⁄  will be the final result of the integral ׬ ୱ୧୬ ௫௫ 𝑑𝑥ஶ଴  (Nahin, 2015). 

The author now considers another example 𝐼 = න 𝑥 − 1ln 𝑥 𝑑𝑥ଵ
଴ , (9) 

which involves the use of Feynman’s trick in definite 
integral. To use Feynman’s integral method to tackle 
this question, a parameter, a, need to be first 
introduced to the integral and the integral will then 
become 𝐼(𝑎) = න 𝑥௔ − 1ln 𝑥 𝑑𝑥ଵ

଴ (10) 

Note that the original integral correspond to 𝐼(1) . 
Then, differentiate 𝐼(𝑎) under the integral sign, with 
respect to a to get 𝑑𝐼𝑑𝑎 = 𝑑𝑑𝑎 න 𝑥௔ − 1ln 𝑥ଵ

଴ 𝑑𝑥 = න 𝜕𝜕𝑎ଵ
଴ ൬𝑥௔ − 1ln 𝑥 ൰ 𝑑𝑥 (11) 

The derivative will then get simplified as డడ௔ 𝑥௔ =𝑥௔ ln 𝑥 , and the ln 𝑥  in the denominator will get 
canceled out: 𝑑𝐼𝑑𝑎 = න 𝑥௔ 𝑑𝑥 = 1𝑎 + 1ଵ

଴ (12) 

To recover the function 𝐼(𝑎), ௗூௗ௔ needs to be 
integrated 𝐼(𝑎) = න 1𝑎 + 1 𝑑𝑎 = ln(𝑎 + 1) + 𝐶 (13) 

The evaluation of 𝐼(0) can be used to compute the 
value of 𝐶 , 𝐼(0) = ׬ ଵିଵ୪୬ ௫ 𝑑𝑥 = 0ଵ଴ . Therefore, 𝐶 =0 and 𝐼(𝑎) = ln(𝑎 + 1).  Then substitute 𝑎 = 1  to 
obtain the original integral and the final result would 
be ln 2 (Nahin, 2015; Zill, 2009). 

Another example is the evaluation of the Gaussian 
integral, which makes use of Feynman’s trick in 
infinite integral. The Gaussian integral is essentially I = ׬ 𝑒ି௔௫మஶିஶ 𝑑𝑥 . To compute this integral a 
parameter needs to be first introduced to the integral 
by defining I(𝑎) = න 𝑒ି௔௫మ 𝑑𝑥ஶ

ିஶ (14) 

Differentiate 𝐼(𝑎)  with respect to 𝑎  to get 𝐼ᇱ(𝑎) ׬= −𝑥ଶ𝑒ି௔௫మ 𝑑𝑥ஶିஶ . Then to recover 𝐼(𝑎) , integrate 𝐼′(𝑎) using integration by parts, which will give the 
result, a first order differential equation that relates 𝐼′(𝑎) to 𝐼(𝑎): 

𝐼ᇱ(𝑎) = − 12𝑎 𝐼(𝑎) (15) 

To solve this equation, it has to be rewritten in the 
form of ௗூௗ௔ = − ଵଶ௔ 𝐼(𝑎) , and thus ௗ௔ூ(௔) = − ଵଶ௔ 𝑑𝑎 . 
Then integrate both sides of the equation and the left 
hand side of the equation will become ln|𝐼(𝑎)| + 𝑐 
and the right side of the equation becomes − ଵଶ ln |𝑎| + 𝑐. Combine the two together, it is found 
that ln|𝐼(𝑎)| = − ଵଶ ln |𝑎| + 𝐶, or alternatively, |𝐼(𝑎)| = 𝑒ି୪୬|௔|ଶ 𝑒஼. (16) 

Since 𝑒ିౢ౤|ೌ|మ = |𝑎|ିభమ = ଵඥ|௔| , |𝐼(𝑎)| = ௘಴ඥ|௔| , 𝐼(𝑎) = ஼ᇱ√௔ , where 𝐶ᇱ = ±𝑒஼  is a new constant. To 
determine the value of 𝐶’, the initial condition shall 
be used. Substitute 𝑎 = 1 into the original integral 
and 𝐼(1) = ׬ 𝑒ି௫మ 𝑑𝑥ஶିஶ = √𝜋  will be obtained. 
Then substitute 𝑎 = 1 into the solution, 𝐼(1) = ஼ᇱ√ଵ =√𝜋 , thus 𝐶ᇱ = √𝜋 , which means the final 

computation of the integral 𝐼 = ටగଶ  (Zill, 2009). 

3 APPLICATIONS OF 
FEYNMAN’S INTEGRAL 

3.1 Application in Precision Physics 

Modern particle physics is becoming extremely 
precise and reliant on theoretical predictions for the 
analysis and interpretation of experimental results, 
which depends on the calculation of multi-loop 
corrections to physical observables. However, with 
the aid of Feynman’s integral trick, the evaluation of 
multi-loop integral can be significantly simplified as 
the trick combines denominators of propagators in 
loop integrals into a single term (Wang et al, 2021). 
In general, the purpose of using Feynman’s trick is to 
transform the multi-propagator integral into a single 
denominator integral, enable momentum shifts and 
dimensional regularization and therefore simplifies 
divergent integrals for renormalization.  

Loop integral in quantum field theory refers to the 
corrections to processes, for example, particle 
interactions via virtual particles. These integrals 
typically have the following three characteristics: 
have multiple denominators, are divergent and have 
great dependencies on momentum. Hence, the 
parameterization character of Feynman’s integral 
trick can combine the denominators and make the 

Application of Feynman’s Integral Technique to Representative Integrals and Real Life Scenarios

121



calculation process much easier. Consider the 
following loop example (Griffiths, 2018),  𝐼 = න 𝑑ସ𝑘(2𝜋)ସ 1(𝑘ଶ − 𝑚ଶ)ሾ(𝑘 + 𝑞)ଶ − 𝑚ଶሿ (17) 

Next, apply Feynman’s integral trick and combine 
the denominators by setting the parameter 𝑥𝜖ሾ0,1ሿ 
(Zill, 2009), it is found that ଵ(௞మି௠మ)ሾ(௞ା௤)మି௠మሿ ׬= 𝑑𝑥 ଵሾ(௞ା௫௤)మି∆మሿଵ଴ , where ∆= 𝑚ଶ − 𝑥𝑞ଶ(1 − 𝑥) − 𝑖𝜀. 
Then shift the momentum by taking 𝑙 = 𝑘 + 𝑥𝑞, 𝐼 = න 𝑑𝑥 න 𝑑ସ𝑙(2𝜋)ସ 1(𝑙ଶ − ∆)ଶଵ

଴ (18) 

This shift takes out all the cross terms, leaving the 
integral to be solely dependent on 𝑙ଶ. To handle the 
divergence property of the integral, wick rotation to 
the Euclidean space (𝑘଴ → 𝑖𝑘ா଴) needs to be carried 
out ׬ 𝑑ସ𝑘  → 𝑖 ׬ 𝑑ସ𝑘ா. The denominator will become 𝑙ாଶ + ∆. Last, carry out dimensional regularization and 
evaluate the integral in 𝑑 = 4 − 𝜀 dimensions න 𝑑ௗ𝑙ா(2𝜋)ௗ 1(𝑙ாଶ + ∆)ଶ ∝ Γ ቀ2 − 𝑑2ቁ(4𝜋)ௗଶ∆ଶିௗଶ . (19) 

This isolates divergence as the poles in 𝜀, which 
are canceled during renormalization. Feynman’s 
integral trick plays a vital role in many aspects of 
precision physics and here are the examples of two 
areas where Feynman’s integral trick are used. 
Firstly, Feynman’s integral trick is used in Higg 
Boson production(LHC) as in processes like gluon-
gluon fusion, it is crucial for simplifying complex 
loop integrals and enabling precise theoretical 
predictions. The Higgs boson is predominantly 
produced via gluon-gluon fusion (𝑔𝑔 → 𝐻 ) at the 
LHC. This involves a loop of virtual particles (e.g., 
top quarks) due to the Higgs' strong coupling to heavy 
particles (Anastasiou, 2014). The process of loop 
integral complexity requires evaluating loop integrals 
with propagators involving the top quark mass (mt) 
and external momenta. Thus, at next-to-leading order 
(NLO) or next-to-next-to-leading order (NNLO), 
Feynman parametrization manages integrals with 
additional propagators and phase-space constraints 
(Schwartz, 2014). This reduces theoretical 
uncertainties in Higgs cross-section predictions 
to ∼1−2%∼1−2%, critical for LHC precision tests. 
Secondly, Feynman’s integral trick is also extremely 
useful in hadronic vacuum polarization (HVP) 
(Aoyama et al, 2020). HVP is a quantum effect where 
virtual quark-antiquark pairs polarize the vacuum, 
modifying the photon propagator. This contributes to 
key observables like the muon’s anomalous magnetic 
moment (𝑔 − 2) and precision tests of the Standard 
Model. The HVP tensor involves loop integrals with 

quark propagators and photon propagators. These 
integrals are divergent and require regularization and 
renormalization. Therefore, with Feynman’s 
parameterization, more accurate results can be 
obtained with ease (Aoyama et al, 2020). Precise 
HVP calculation has a significant impact on precise 
physics as it is crucial for resolving the ∼3.7σ∼ 
3.7σ discrepancy between Standard Model 
predictions and Fermilab/BNL experiments and 
refining predictions for ZZ-boson masses, Higgs 
couplings, and lepton universality.  

3.2 Application in Perturbation Theory 

Feynman’s integral trick that involves the 
introduction of an auxiliary parameter can 
significantly simplify the complex calculation in 
perturbation theory and energy correction in quantum 
chemistry. It can simplify the matrix elements in 
perturbation theory as Calculating matrix elements of 
the perturbing Hamiltonian H′ between unperturbed 
states often involves challenging integrals. Therefore, 
by introducing an auxiliary parameter into the integral 
and differentiate the integral with respect to the 
parameter, the integral can be reduced to a much 
simpler form (Sakurai & Napolitano, 2021). For 
example, introduce the parameter 𝜆 into an integral 
and it becomes න 𝜓௠∗ Η෡ ᇱ𝜓௡𝑑𝜏 = 𝑑𝑑𝜆 න 𝜓௠∗ 𝑒ିఒ୿෡ ᇲ𝜓௡𝑑𝜏|𝜆 = 0 (20) 

The outcome of this is that it avoids direct 
computation of complex integrals and enables 
systematic computation of first-and-higher-order 
energy correction. Feynman’s trick is also a useful 
tool in variational perturbation theory, which is the 
combination of variational principle and perturbation 
theory and its purpose is to approximate the ground 
state energy of a system with Hamiltonian Η෡ = Η෡଴ +𝜆𝑉෠ , where Η෡଴ is solvable and 𝜆𝑉෠  is a perturbation. It 
addresses two main issues: solving singular or high 
dimensional integrals, and parameter optimization as 
trial wavefunctions depend on variational parameters.  

3.3 Application in Electromagnetism 

Feynman's integral trick, or Feynman 
parameterization, is a critical tool in quantum 
electrodynamics (QED) for simplifying loop 
integrals, such as those encountered in calculating the 
electron self-energy (Liu et al, 2023). The electron 
self-energy correction corresponds to a one-loop 
Feynman diagram where an electron emits and 
reabsorbs a virtual photon. This process introduces a 
divergent integral, which Feynman's trick helps 
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manage by restructuring the integrand. The divergent 
integral for the self-energy correction takes the form: ෍(𝑝) ∝ න 𝑑ସ𝑘(2𝜋)ସ 𝛾ఓ(𝑝 − 𝑘 + 𝑚)𝛾ఓ(𝑘ଶ − 𝑚ଶ + 𝑖𝜀)ሾ(𝑝 − 𝑘)ଶ + 𝑖𝜀ሿ 
where k is the loop momentum.  

Feynman’s trick simplifies this by introducing 
a Feynman parameter x to combine the 
denominators: 1𝐴𝐵 = න 𝑑𝑥ሾ𝑥𝐴 + (1 − 𝑥)𝐵ሿଶଵ

଴ (21) 

Applying this identity merges the propagators into a 
single quadratic denominator: න 𝑑𝑥 න 𝑑ସ𝑘(2𝜋)ସ 𝛾ఓ(𝑝 − 𝑘 + 𝑚)𝛾ఓሾ𝑘ଶ − 2𝑥𝑝𝑘 + 𝑥(𝑝ଶ − 𝑚ଶ) + 𝑖𝜀ሿଶଵ

଴ . 
Shifting the momentum 𝑘 → 𝑘 + 𝑥𝑝  linearizes the 
denominator, simplifying the integral to a scalar form. 
The divergence is then isolated into terms 
like ׬ 𝑑ସ 𝑘/𝑘ସ , which can be regularized using 
dimensional regularization or cut off methods. This 
restructuring reveals the ultraviolet (UV) divergence 
as a pole in 𝜖 = 4 − 𝑑  (in dimensional 
regularization), which is absorbed into 
renormalization constants for the electron mass and 
charge. Feynman’s method not only streamlines 
calculations but also clarifies how divergences relate 
to measurable quantities, enabling precise predictions 
like the Lamb shift or the electron’s anomalous 
magnetic moment. This approach exemplifies how 
Feynman’s trick turns intractable integrals into 
structured problems, bridging formal theory and 
experimental reality in QED. 

4 CONCLUSION 

Feynman’s integral trick is vital in the field of 
calculus as not only does it solve many complex 
integral problems, but it is also revolutionary due to 
the uniqueness and innovativeness of its concept, 
which can possibly inspire future innovations. In this 
paper, the examples used are all classic integrals that 
have been pre-discussed. This paper explains the 
fundamental concepts and related knowledge 
regarding Feynman’s integral technique and how to 
apply it in practical questions, with the aid of detailed 
worked examples. Furthermore, this paper has also 
exploited various different fields where the 
application of Feynman’s integral technique is 
required, such as physics and engineering, where 
Feynman’s integral technique simplifies loop 
calculation. Indeed, simply by introducing a 
parameter, differentiate with respect to the parameter 
and then restoring the integral, computation of 

complex integrals becomes much more intuitive and 
easier. The Feynman’s integral technique offers a 
valuable approach for solving challenging integrals. 
In conclusion, this paper elaborates on how to 
approach integrals by Feynman’s integral technique 
and how it can be applied in various situations. 
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