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Abstract: Complex analysis in the complex plane is an important branch of integration in the field of mathematics, and 
it is also an efficient mathematical tool to study and analyse the behaviour of complex variables. Complex 
functions are used in many scientific fields such as physics, computer science, and engineering. Complex 
analysis can solve many problems that are difficult to be solved by integrals of real variables alone or the 
solutions are very complex. Many problems in physics, chemistry, and engineering can be efficiently solved 
using complex analysis. This paper mainly introduces how to solve some specific types of integrals by using 
the residue theorem skilfully, and how to simplify the complexity of calculation and integration by using the 
residue theorem. Moreover, this paper illustrates the basic application of the residue theorem in detail through 
several examples. The discussion in this paper is helpful to popularize the idea of calculating and solving 
these types of integrals, and promote the application of these types of integrals in solving practical problems. 

1 INTRODUCTION 
Integral calculus serves as a foundational pillar of 
advanced mathematics and plays an indispensable 
role in interdisciplinary domains grounded in 
mathematical frameworks (Bak & Newman, 2010). 
When addressing practical problems in applied 
disciplines, scholars often encounter scenarios 
requiring holistic solutions. While elementary real 
integrals can be resolved through conventional 
techniques, such as computing integrals and applying 
the Newton-Leibniz formula, many specialized forms 
of integrals prove intractable via these classical 
approaches. This limitation obstructs the application 
of the Newton-Leibniz framework, creating 
significant challenges for research in affected fields. 
To overcome this, mathematicians turn to the residue 
theorem, a cornerstone of complex analysis, as a 
transformative tool for evaluating such integrals. 

Central to this methodology is the concept 
of residues, defined as coefficients of the minus-
power term in the Laurent series expansion. Residues 
enable the computation of integrals involving isolated 
singularities in which the functions exhibit undefined 
or divergent behavior. The residue theorem simplifies 
these calculations by reducing contour integrals to a 
summation of residues enclosed within a specified 
path. This innovation not only circumvents the need 
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for indefinite integrals but also streamlines the 
evaluation of previously unsolvable integrals, 
marking a paradigm shift in definite integral 
computation (Zhu et al, 2022). Beyond theoretical 
mathematics, the residue theorem holds profound 
implications for mathematical physics, underpinning 
advancements in electromagnetism, quantum 
mechanics, fluid dynamics, and other fields reliant on 
complex variable functions. 

The basic idea of calculating the integral by using 
the residual theorem is as follows: First, the 
transformation function transforms the real variable 
along the closed loop curve into the integral of the 
complex variable; Then, the problem is transformed 
to solve the residual values at isolated singularities in 
the closed loop. Finally, the solution of the product 
function is obtained by using the residual theorem. 
The purpose is to summarize the rest theorem 
systematically and understand its application, and to 
calculate the integral of this important theorem. 

2 METHOD AND THEOREMS 
2.1 Cauchy-Goursat Theorem 
Supposed that f(z)  is a complex function, and let 
curve C be a simple, closed positively oriented 
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contour curve. If the expression is all analytic inside 
the curve, then the integral of this function along this 
curve is 0 (Fan, 2022). Namely, ර𝑓(𝑧)௖ 𝑑𝑧 = 0 (1) 

Let 𝑓(𝑧)  denote a complex function defined 
within the annular region bounded by two concentric 
circles centered at 𝑧଴ . The radius of the two 
concentric circles is 𝑅ଵ and  𝑅ଶ (  𝑅ଶ > 𝑅ଵ ). If the 
function is all analytic within the area ( 𝑅ଵ < |z −z଴|<𝑅ଶ), then the function at the point z could express 
into Loran series uniform. Namely, 𝑓(𝑧) = ෍ 𝑎௡ஶ

௡ୀ଴ (𝑧 − 𝑧଴)௡ + ෍ 𝑏௡ஶ
௡ୀଵ (𝑧 − 𝑧଴)ି௡ (2) 

Laurent expansion is a generic form of Taylor 
expansion. If the function is fully resolved in that 
region, then the second part vanishes. That is, 𝑏௡ =0. 

2.2 Definition About Residues and 
Residue Theorem 

Suppose that f(z) is a complex function defined in a 
area containing finitely many singularities and C is a 
contour curve enclosing all these singularities within 
the region (Qiu, 2020). In such cases, the integral of 𝑓(𝑧) along C can be solved by residue theorems. The ׬ 𝑓(𝑧)𝑑𝑧஼  equals to the adduct of all residues of f(z) 
(Res୸ୀ୸బf(z)) by 2πi.  න𝑓(𝑧)𝑑𝑧஼ = 2𝜋𝑖 ෍ 𝑅es௭ୀ௭ೖ௭ೖ 𝑓(𝑧) (3) 

in which 𝑐௡ are calculated by 𝑐௡ = 12𝜋𝑖 ර 𝑓(𝜉)(𝜉 − 𝑧଴)௡ାଵ 𝑑𝜉௖ (4) 

Here, 𝐶  represents arbitrary sealing contour lying 
totally within the domain of integration and traversing 
counterclockwise around 𝑧଴. This contour integral is 
evaluated by parameterizing the path 𝐶  and 
integrating the resulting expression with respect to the 
parameter (Zhou et al, 2022). Additionally, the 
residue at 𝑧଴ corresponds to the coefficient of the (𝑧 − 𝑧଴)ିଵ  term in the Laurent series expansion 
off(z), i.e., Res௭ୀ௭బ𝑓(𝑧) = 𝑐ିଵ. 

There are several different Classification of 
singularities (Zhang et al, 2023). The first is 
removable singularity. In this type of singularities, 
though there is no definition at this point, the value 
exists at the area near the point. In other terms, the 
there are no negative power terms in the Laurent 
expansion. The second is pole. In this type of 
singularities, when a point approaches a singularity, 

the value of the function is infinite. In addition, there 
are limited power terms in the Laurent expansion. The 
third is essential singularity. In this type, the value of 
this point is oscillating, unstable and tends to any 
value in any complex number. 

3 APPLICATIONS 

3.1 𝟏 (𝟏 + 𝒙𝒏)⁄ -type Integral 

In this type, n is an integer and 𝑛 >  2. 
First, the author will assume 𝑛 = 3  (Zhou & 

Huang, 2022). By using the residue theorem, the 
integral could be expressed to closed loop integral in 
the complex plane. The function has three single 
poles, 𝑧ଵ = 𝑒గ௜/ଷ , 𝑧ଶ = 𝑒గ௜ , 𝑧ଷ = 𝑒ହగ௜/ଷ . Then, the 
author will construct an anticlockwise curve 𝐶௥భ with 
argument is 2π/3 and radius 𝑟ଵ  is 1/3. This curve 
only cover pole 𝑧ଵ. According to the residue theorem: 𝐼 = න 𝑑𝑥1 + 𝑥ଷ௥

଴ + න 𝑑𝑧1 + 𝑧ଷ஼౨  + න 𝑑𝜁1 + 𝜁ଷ௟ = 2𝜋𝑖 Res 𝑓(𝑧ଵ) (5) 

As r → ∞ the first term of the integral corresponds to 
the target integral. Meanwhile, the second term 
vanishes (approaches zero), and the third term is 
directly related to the target integral through a 
symmetry or transformation. 

For the second term, substituting z = Re୧஘ , (with 
r→∞) and observing that |f(z)z| < ε → 0  ,people 
conclude that this term becomes negligible in the 
limit. Thus, the integral could express into: ቤන 𝑓(𝑧)𝑑𝑧஼ೝ ቤ = ቤන 𝑧𝑓(𝑧)𝑑𝑧/𝑧஼ೝ ቤ ≤ න |𝑧𝑓(𝑧)|஼ೝ

|𝑑𝑧||𝑧|  
< න 𝜀 𝑟𝑑𝜃𝑟ଶగ/ଷ

଴ = 2𝜋3 𝜀 → 0 (6) 

In the third term of the integral, let 𝜁 = 𝜌𝑒ଶగ௜/ଷ, 
then the integral could express into: න 𝑑𝜁1 + 𝜁ଷ௟ = න 𝑒ଶగ/ଷ𝑑𝜌1 + 𝜌ଷ଴

ஶ  = −𝑒ଶగ/ଷ න 𝑑𝑥1 + 𝑥ଷஶ
଴ = −𝑒ଶగ/ଷ𝐹(𝑥) (7) 

Here, 𝜌 = 𝑥, 𝐹(𝑥) = ׬ 𝑓(𝑥)𝑑𝑥. The singular residue 
on the right can be obtained by L'Hospital's rule: − ଵଷ 𝑒గ௜/ଷ. Substituting this result one can obtain that 𝐹(𝑥) = න 𝑑𝑥1 + 𝑥ଷగ

଴ = 2𝜋𝑖1 − 𝑒ଶగ௜/ଷ = 𝜋3 2𝑖𝑒గ௜/ଷ − 𝑒ିగ௜/ଷ = 𝜋3 𝑐𝑠𝑐 𝜋3 (8) 
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Next, the author will assume 𝑛 = 4. When 𝑛 = 4, 
the function has four singularities in the complex 
plane, they are z୩ = e஠୧(ଶ୩ିଵ)/ସ  ( 𝑘 =  1, 2, 3, 4 ). 
Select a 1/4 great circular loop with a positive real 
axis, and the loop surrounds only 𝑧ଵ. According to the 
residue theorem, the integration satisfies the function. 
Let ϑ = ρe஠୧/ଶ , the third term of the function is න 𝑑𝜗1 + 𝜗ସ௟ = න 𝑒గ/ଶ1 + 𝜌ସ଴

ஶ  = −𝑒గ௜/ଶ න 𝑑𝑥1 + 𝑥ସஶ
଴ = −𝑒గ௜/ଶ𝐹(𝑥) (9) 

The integral is solved by substituting all the above 
results into formula: 𝐹(𝑥) = න 𝑑𝑥1 + 𝑥ସగ

଴ = 2𝜋𝑖1 − 𝑒గ௜/ଶ Re s 𝑓(𝑧ଵ) = 𝜋4 2𝑖𝑒గ௜/ସ − 𝑒ିగ௜/ସ = 𝜋4 𝑐𝑠𝑐 𝜋4 (10) 

In the same way, one could choose a 1/2 large 
semi-circular loop containing the positive real axis. 
The loop surrounds two singularities zଵand zଶ , and 
they can also be selected by positive real axis, 3/4 
great arc Cୖଷ and a closed loop consisting of a ray 𝑙ଷ 
with an argument principal value of 3𝜋/2. Clearly, 
the loop surrounds the three singularity points zଵ, zଶ 
and zଷ. The final value of these integrals of different 
curve is same, according to the residue theorem. 

3.2 𝑹(𝐜𝐨𝐬 𝜽 , 𝐬𝐢𝐧 𝜽) -type Integral 

The function is characterized as a rational form in real 
variables. By using the Euler’s formula, the integral 
of the function could be transformed into z = e୧஘ , cosθ = ௭ା௭షభଶ ,sinθ = ௭ି௭షభଶ ,dθ = ௗ௭௭௜  (Loney, 2001). 
Then the integral of the function along the curve 
could be transformed into this form: 𝐹 = ර 𝑅(𝑧 + 𝑧ିଵ2|௭|ୀଵ , 𝑧 − 𝑧ିଵ2𝑖 ) 𝑑𝑧𝑧𝑖 (11) 

The integral can then be significantly streamlined 
through an application of the residue 
theorem. ׬ 𝑅(𝑐𝑜𝑠 𝜃 , 𝑠𝑖𝑛 𝜃)𝑑𝜃 = 2𝜋𝑖 ∑ 𝑅es[𝑓(𝑧)]௖ଶగ଴ . 

There is an example which is helpful to this paper 
to introduce the method for solving this type of 
integration (Shen, 2017), i.e., 𝐹 = න 𝑐𝑜𝑠 2 𝜃5 − 4 𝑐𝑜𝑠 𝜃ଶగ

଴ 𝑑𝜃 (12) 

The point with in the unit circle 𝐶  could be 
defined as z = e୧஘(0 ≤ θ ≤ 2π). After applying the 
Euler’s formula, it can be translated into 𝑧ଶ =−𝑖𝑠𝑖𝑛2𝜃.  𝑐𝑜𝑠 2 𝜃 = ௭మା௭షమଶ , 𝑠𝑖𝑛 2 𝜃 = ௭మି௭షమଶ௜ , 𝑑𝜃 =ௗ௭௜௭ . 

The integral could be converted into this form, 𝑓(𝑧) = ௭మା௭షమଶ௜௭[ହିଶ(௭ା௭షభ)] = (௭రାଵ)௜ଶ௭మ(௭ିଶ)(ଶ௭ିଵ). The function 
has the singularities that is 𝑧ଵ = 0  and two simple 
poles, 𝑧ଶ = 1/2 and 𝑧ଷ = 2 (not inside). So, it only 
to calculate the residues 𝑧ଵ and 𝑧ଶ.  This is because 𝑅es ൤12 , 𝑓(𝑧)൨ = lim௫→ଵ/ଶ ൬𝑧 − 12൰ 𝑓(𝑧) = − 17𝑖24 (13) 

It then turns out to be 𝐹 = 2𝜋𝑖 ൬5𝑖8 − 17𝑖24 ൰ = 𝜋6 (14) 

There is another example: F = න cosଶ୬ θ dθଶ஠
଴ (15) 

in which 𝑛 ∈  𝑁 . Since cos 𝜃 = (𝑧 + 𝑧ିଵ)/2 , thus 
the mentioned integral can be recast into F = න ቆz + zିଵ2 ቇେ

ଶ୬ dzzi = −i2ଶ୬ න (zଶ + 1)ଶ୬2ଶ୬ାଵ dzେ (16) 

Clearly, this integral has a (2𝑛 + 1)-order singularity 
at 𝑧 = 0. Thus, it is calculated that F = 2πi −i2ଶ୬ Res[0, f(z)] = π2ଶ୬ିଵ lim୸→଴ ቈ 1(2𝑛)! dଶ୬dzଶ୬ [(zଶ + 1)]ଶ୬቉ = π2ଶn-ଵ Cଶ୬୬  

3.3 𝑷(𝒙) 𝑸(𝒙)⁄ -type Integral 

In this subsection, the author will consider the integral 
of the form 𝐹 = 𝑃(𝑥)𝑄(𝑥) න 𝑐𝑜𝑠ଶ௡ 𝜃 𝑑𝜃ଶగ

଴ (17) 

This is an example to introduce the solution of this 
type integral 𝐼 = න 𝑥𝑒ଶ௜௫𝑥ଶ − 1ஶ

ିோ 𝑑𝑥 (18) 

After applying the partial fraction (Wang & Li, 
2016), the singularities of the function would be 
obvious 𝐼 = 𝑙𝑖𝑚ோ→ஶೝభ,ೝమ→బశ න 𝑥𝑒ଶ௜௫𝑥ଶ − 1 𝑑𝑥ିଵି௥భିோ   

+ න 𝑥𝑒ଶ௜௫𝑥ଶ − 1ଵି௥మିଵା௥భ + න 𝑥𝑒ଶ௜௫𝑥ଶ − 1ோ
ଵା௥మ (19) 

Let 𝐼ଵ = ׬ ௭௘మ೥೔௭మିଵௌೝభ 𝑑𝑧, 𝐼ଶ = ׬ ௭௘మ೥೔௭మିଵௌೝమ 𝑑𝑧, 𝐼ோ ׬= ௭௘మ೥೔௭మିଵ஼ೃ 𝑑𝑧 .Then, 𝑓(𝑧) = ௭௘మ೥೔௭మିଵ is all holomorphic 
inside the curve. After using the Cauchy integral 
theorem, ׬ ௫௘మೣ೔௫మିଵିଵି௥భିோ 𝑑𝑥 + ׬ ௫௘మೣ೔௫మିଵଵି௥మିଵା௥మ 𝑑𝑥 ׬+ ௫௘మೣ೔௫మିଵோభଵା௥మ 𝑑𝑥 + 𝐼ଵ + 𝐼ଶ + 𝐼ோ = 0 . By virtue of the 
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Jordan Lemma, it works that when z → 0, z/zଶ −1 → 0 . Thus 𝑙𝑖𝑚ோ→ஶ𝐼ோ = 0 .Because 𝑓  has the simple 
poles on 𝑧 = ±1 , lim௥భ→଴శ 𝐼ଵ = −𝑖𝜋𝑅es(𝑓, −1) =−𝑖𝜋 𝑙𝑖𝑚௭→ିଵ(𝑧 + 1)𝑓(𝑧) = ି௜గ௘షమ೔ଶ . Then, lim௥మ→଴శ 𝐼ଶ =−𝑖𝜋𝑅es(𝑓, 1) = ିగ௘మ೔ଶ . Therefore, 𝑃. 𝑉. න 𝑥𝑒ଶ௜௫𝑥ଶ − 1ஶ

ିஶ 𝑑𝑥 = 𝑖𝜋𝑒ିଶ௜2 + 𝑖𝜋𝑒ଶ௜2 = 𝑖𝜋 𝑐𝑜𝑠( 2) 

There is another example: 𝐼 = න 𝑠𝑖𝑛 2 𝑥𝑥ଶ + 𝑥 + 1ஶ
ିஶ 𝑑𝑥 (20) 

Firstly, the partial fraction is applied on this 
function to simplify the structure of the function 
(Zhou & Wu, 2018). Then, it is clearly to notice that 
the function 𝑓 = ଵ௭మା௭ାଵ does not have a singularity. 
Also, it is found that 𝑙𝑖𝑚௭→଴ ଵ௭మା௭ାଵ = 0 but the integral 

has simple poles which are 𝑧ଵ = 𝑒మഏ೔య and 𝑧ଶ = 𝑒ିమഏ೔య . 
According to the virtue of the Jordan Lemma, the 
function could be transformed into that: 𝐼 = 𝐼𝑚 න 𝑒ଶ௜௫𝑥ଶ + 𝑥 + 1ஶ

ିஶ 𝑑𝑥 = 𝐼𝑚 ර 𝑒ଶ௜௫𝑧ଶ + 𝑧 + 1 𝑑𝑧஼  

The third example of the function in this type is 
that 𝐼 = න 𝑥ଶ(𝑥ଶ + 9)(𝑥ଶ + 4)ଶஶ

଴ 𝑑𝑥 (21) 

At first, this is because the integral is an even 
function, 𝐼 = ଵଶ ׬ ௫మ(௫మାଽ)(௫మାସ)మஶିஶ 𝑑𝑥 . It possesses 
singularities at z = ±3i (second-order poles) and z =±3i  (simple poles), while remaining holomorphic 
everywhere else on the complex plane. To apply the 
residue theorem, one can construct a semi-circular 
contourC௥ in the higher half-plane with radius 𝑟 > 3. 
This contour encloses all singularities z =±3i and z = ±3i within the region bounded by: the 
real axis part [−𝑟, 𝑟], the upper semicircle C௥ defined 
by |𝑟| = 𝑟 . By integrating 𝑓(𝑧)  counter-clockwise 
around this boundary, the residue theorem transforms 
the integral into the following form: 𝐼 = න 𝑓(𝑥)𝑑𝑥௥

ି௥ + න 𝑓(𝑧)𝑑𝑧஼ೝ  = 2𝜋𝑖ൣ𝑅es൫2𝑖, 𝑓(𝑧)൯ + 𝑅es൫3𝑖, 𝑓(𝑧)൯൧ (22) 
The residues at the points are 𝑅es[2𝑖, 𝑓(𝑧)] =𝑙𝑖𝑚௭→ଶ௜ ௗௗ௭ ௭మ(௭మାଽ)(௭ାଶ௜)మ = ିଵଷ௜ଶ଴଴ , and 𝑅es[3𝑖, 𝑓(𝑧)] =𝑙𝑖𝑚௭→ଷ௜(𝑧 − 3𝑖) ௭మ(௭ିଷ௜)(௭ାଷ௜)(௭మାସ) = ଷ௜ହ଴ , thus , the total 

integral ׬ 𝑓(𝑥)𝑑𝑥 = గଵ଴଴௥ି௥ − ׬ 𝑓(𝑧)𝑑𝑧஼ೝ . 

As r → ∞, this contour integral over 𝐶௥ vanishes, 
i.e., ׬ 𝑓(𝑧)𝑑𝑧| = 0஼ೝ . For any point z on the semi-
circular contour 𝐶௥ , it is observed that |𝑧ଶ| = |𝑧|ଶ . 
Applying the triangle inequality |z + w| ≥ ||z| −|w||, people can derive the following estimate, so that 
by this equation, | ׬ 𝑓(𝑧)𝑑𝑧| = | ׬ ௭మ(௭మିଽ)(௭మାସ)஼ೝ஼ೝ | ≤௥మ(௥మିଽ)(௥మାସ)మ 𝐿(𝐶௥), where 𝐿(𝐶௥) = 𝜋𝑟  is the length 
of the semicircle 𝐶௥. Thus, it is derived that | න 𝑓(𝑧)𝑑𝑧|஼ೝ = ቤන 𝑧ଶ(𝑧ଶ − 9)(𝑧ଶ + 4)஼ೝ ቤ ≤ 𝑟ଶ(𝑟ଶ − 9)(𝑟ଶ + 4)ଶ (23) 

As 𝑟 → ∞, the right-hand side of the inequality 
approaches zero, implying that the contour 
integral ׬ 𝑓(𝑧)𝑑𝑧஼ೝ  vanishes. Consequently, the 
Cauchy principal value of the integral over the real 
line is: 𝑃. 𝑉. න 𝑓(𝑥)𝑑𝑥 = 𝜋100ஶ

ିஶ (24) 

Since the integrand 𝑓(𝑥) = ௫మ(௫మାଽ)(௫మାସ)  is an even 
function, the principal value simplifies to twice the 
integral from 0 to ∞, i.e., න 𝑥ଶ(𝑥ଶ + 9)(𝑥ଶ + 4)ஶ

଴ 𝑑𝑥 = 𝜋200 (25) 

When 𝑟 → ∞,  the right-hand goes to 0, rendering ׬ 𝑓(𝑧)𝑑𝑧 = 0஼ೝ . The principal part is therefore 𝑃. 𝑉. ׬ 𝑓(𝑥)𝑑𝑥 = ௫ଵ଴଴ஶିஶ . As the integral is even, one 

can find that ׬ ௫మ(௫మାଽ)(௫మାସ)ஶ଴ 𝑑𝑥 = గଶ଴଴. 

4 CONCLUSION 

The residue theorem plays a very important role in 
dealing with complex function problems. In this 
paper, the definition and application range of the 
residue theorem are given in detail, and the basic 
reserve knowledge about the residue theorem is 
introduced, such as the classification of singularities, 
Laurent expansion, and the definition of residue. In 
this paper, the author focuses on the application of the 
residue theorem to some specific integrals. This paper 
describes in detail how to convert the object integral 
into a complex function form which can be used by 
the residue theorem, and then greatly reduces the 
difficulty of real integration by using the residue 
theorem. The residue theorem is a powerful tool for 
dealing with the integration of complex functions. 
Types of integrals that may be difficult to solve with 
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only real variables can be solved by clever application 
of the residue theorem. The residue theorem offers a 
systematic approach to evaluating complex integrals 
by leveraging the singularities of the integrand. This 
method involves identifying the singular points of the 
function within the contour and computing their 
associated residues to determine the integral’s value. 
This method generally simplifies the computational 
difficulty of the original method and provides a novel 
and concise approach to processing integrals. This 
paper discusses the application of residue theorems 
for certain kinds of integrals, which helps to extend 
the application of residue theorems, and promotes the 
application of residue theorems in solving practical 
problems. 

REFERENCES 

Bak, J., & Newman, D. J. (2010). Complex analysis (3rd 
ed.). Springer. 

Fan, M. C. (2022). Solutions to several improper integrals 
from The American Mathematical Monthly using 
residue theorem. Journal of Huizhou College, 42(06), 
72-78. 

Loney, N. W. (2001). Use of the residue theorem to invert 
Laplace transforms. Chemical Engineering Education, 
35(1), 22-24. 

Qiu, W. G. (2020). Infinite sum and residue theorem. 
University Physics, 39(09), 31-33. 

Shen, Y. W. (2017). Residue theorem and its applications. 
Journal of Tonghua Normal College, 38(06), 24-26. 

Wang, Y. L., & Li, C. J. (2016). Calculate a special kind of 
generalized integral by using residue theorem. Journal 
of Advanced Science, 36(10), 23-24. 

Zhou, C. M., & Wu, L. (2018). The difference of calculating 
contour integration between the Cauchy integral 
formula and the residue theorem. Journal of Ningxia 
Normal College, 39(10), 94-97. 

Zhou, W. P., Liu, Y. F., & Song, T. L. (2022). Two types 
of infinite integrals solved by the residue theorem. 
Physics and Engineering, 32(01), 56-59. 

Zhou, Y. Q., & Huang, W. T. (2022). Revisiting two types 
of infinite integrals solved by the residue theorem. 
College Physics, 41(09), 24-27+42. 

Zhang, Z. X., Du, X. R., & Ma, Y. L. (2023). Generalization 
of a class of generalized integrals using the residue 
theorem. Physics and Engineering, 33(04), 12-17. 

Zhu, X. X., Zhang, B., & Yang, H. J. (2022). Complex 
Functions and Integral Transforms. Beijing, China: 
Tsinghua University Press. pp. 65-70. 

 
 

IAMPA 2025 - The International Conference on Innovations in Applied Mathematics, Physics, and Astronomy

118


