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Abstract: This paper focuses on the theoretical development and applications of integral and logarithmic functions, with 
the research background covering the historical evolution of mathematical analysis and modern 
interdisciplinary demands. From the foundational work to modern scientific and engineering applications, the 
integral serves as a core tool for quantifying continuous variables. The logarithmic function, due to its data 
compression and computational simplification characteristics, has become a universal language across 
multiple disciplines. The paper emphasizes addressing the systematization of integral methods for logarithmic 
functions, involving the solution of complex integral expressions and the handling of improper integrals. The 
research method combines classical mathematical tools with innovative techniques: through integration by 
parts, linear variable substitution and the residue theorem. L'Hôpital's rule and partial fraction decomposition 
are utilized to handle limits and integrals with logarithms in the denominator. The research indicates that the 
combination of integral and logarithmic functions provides mathematical support for fields. The significance 
of the paper lies in integrating theory and application, strengthening the universality of integral techniques, 
and building a rigorous framework for modelling complex continuous systems and solving practical problems, 
promoting the in-depth application of mathematical tools in scientific and technological innovation. 

1 INTRODUCTION 

The concept of integration originated in ancient 
civilizations. Archimedes of ancient Greece found a 
method to calculate the areas of curves and volumes, 
approaching the exact solution through infinite 
subdivision. Liu Hui's "circle-cutting method" and the 
volume formula for spheres by Zu Chongzhi and his 
son in China also contained the idea of integration. 
Newton and Leibniz established calculus in the 17th 
century, defining integration as the inverse operation 
of differentiation and introducing the symbol ∫, laying 
the foundation for modern integration theory. In the 
19th century, Cauchy and Riemann refined the strict 
mathematical definition of integration, making it a 
core tool for analyzing continuous variables 
(Atkinson & Han, 2012). 

Integration is widely applied in science and 
engineering. In physics, it is used to calculate the 
work done which done by a variable force and the 
distribution of electric fields. In engineering, it helps 
determine the center of gravity and moment of inertia 
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of structures (Lu, 2025). In probability theory, 
integration is employed to find the expected value of 
continuous random variables, while in artificial 
intelligence, it is utilized to optimize loss functions. 
In finance, stochastic integration is used to simulate 
stock price fluctuations, and in environmental 
science, integration models are employed to predict 
the spread of pollutants. From classical mechanics to 
quantum computing, integration remains a bridge for 
quantifying continuous changes and connecting 
mathematics with reality, driving human 
understanding of the complex world and 
technological innovation (Stewart, 2015). 

The logarithmic function was established by the 
Scottish mathematician John Napier in 1614, aiming 
to solve the complex multiplication and division 
problems in astronomy (Dautov, 2021). His work 
proposed the use of logarithms as an effective tool for 
simplifying calculations, converting multiplication 
and division into addition and subtraction, and 
significantly enhancing efficiency with the aid of 
logarithmic tables (Arfken et al, 2013). Subsequently, 
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Henry Briggs developed common logarithms with 
base 10 and compiled detailed logarithmic tables, 
promoting their application in fields such as 
navigation and engineering. In the 18th century, Euler 
clarified the inverse relationship between logarithms 
and exponents and introduced the natural logarithm 
(with base e), laying the foundation for calculus and 
scientific analysis. 

The rest of this paper is organized as follows. 
Section 2 describes the methodology and concepts, 
Section 3 presents the integral results, and Section 4 
concludes the paper. 

2 METHODS 

2.1 Integrating Logarithmic Functions 

In modern applications, the logarithmic function 
permeates multiple disciplines. The first is in 
scientific measurement, decibels (sound intensity), 
pH values (acidity and alkalinity), and the Richter 
scale (earthquake energy) all use logarithmic scales to 
compress a wide range of data. The second is in 
economics and biology, compound interest models 
and population growth are often described by 
exponential functions (Malyavin, 2022). Taking the 
logarithm of these functions linearizes the analysis. 
The third is in information technology, algorithm 
complexity (such as binary search 𝑂( log 𝑛))  and 
data compression rely on logarithms to simplify 
problem scales. The final is in engineering and 
astronomy, signal attenuation and star brightness 
calculations both require logarithmic conversions to 
enhance data processing efficiency.  The logarithmic 
function has evolved from a practical computing tool 
to a core language in scientific research, continuously 
pushing the boundaries of human cognition and 
technological development. (Smith, 1998). 

Logarithmic function calculus is a significant part 
of calculus, with its core revolving around the natural 
logarithmic function ln 𝑥 and its extended forms. In 
terms of derivatives, the derivative of the natural 
logarithmic function ln 𝑥 is   ଵ௫  , which is its most 
notable property. For logarithmic functions with 
general Ibases  log௔ 𝑥, they can be transformed into 
natural logarithmic forms through the change-of-base 
formula, and their derivatives are ଵ௫ ୪୬ ௔ . Regarding 
integrals, ∫ ln 𝜒 𝑑𝑥 = ln 𝜒 − 𝜒 + 𝐶 , while the 
integral ∫ ଵ௫ 𝑑𝑥 = ln |𝑥| + 𝐶  reveals the intrinsic 
connection between the natural logarithm and the 
reciprocal function.  

At the application level, logarithmic 
differentiation is a key tool, suitable for simplifying 
the differentiation process of power-exponential 
functions (such as 𝑦 = 𝑓(𝑥)௚(௫) or complex product 
functions. By taking the logarithm of the function, 
multiplication is transformed into addition, and then 
the chain rule is used for differentiation, which can 
efficiently handle complex expressions like 𝑦 =௫మ√௫ାଵ௘ೣ . Additionally, logarithmic functions are often 
used in integration by substitution, for example, when 
dealing with ∫ ଵ௫ ୪୬ ௫ , setting 𝑢 = ln 𝑥 simplifies it to ln|ln 𝑥| + 𝐶 . Understanding these basic properties 
lays a mathematical foundation for analyzing 
exponential growth, probability models, and 
engineering problems. 

Integration by parts is a fundamental technique in 
calculus derived from the product rule. It transforms 
the integral of a product of functions into simpler 
terms using the formula ∫ 𝑢 𝑑𝑣 =  𝑢𝑣 − ∫ 𝑣 𝑑𝑢 . 
This method is particularly useful for integrals 
involving products of algebraic, exponential, 
logarithmic, or trigonometric functions. Strategic 
selection of 𝑢 (to differentiate) and 𝑑𝑣 (to integrate) 
is key, often guided by the LIATE rule (Logarithmic, 
Inverse trigonometric, Algebraic, Trigonometric, 
Exponential) (Han et al, 2024). By reducing complex 
integrals to manageable forms, it enables solutions to 
problems like ∫ 𝑥 𝑒ˣ 𝑑𝑥  or ∫ 𝑙𝑛(𝑥) 𝑑𝑥 , making it 
indispensable in advanced mathematics and applied 
sciences. 

The indefinite integral of the natural logarithmic 
function ln 𝑥 can be derived through integration by 
parts න ln 𝑥 𝑑𝑥 = 𝑥 ln 𝑥 − 𝑥 + 𝐶 (1) 

For derivation process, let 𝑢 = 𝑙𝑛𝑥 , 𝑑𝑣 = 𝑑𝑥 , then 𝑑𝑢 = ଵ௫ 𝑑𝑥 , 𝑣 = 𝑥 . Using the integration by parts 
formula ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢 , so it is calculated that ∫ ln 𝜒 𝑑𝑥 = 𝜒 ln 𝑥 − ∫ 𝑥 ∙ ଵ௫ 𝑑𝑥 = 𝑥 ln 𝑥 − 𝑥 + 𝐶. 

For log௔ 𝑥 𝑑𝑥 ,by using the change-of-base 
formula log௔ 𝑥 = ୪୬ ௫୪୬ ௔, the integral is transformed into න log௔ 𝑥 𝑑𝑥 = 1ln 𝑎 (𝑥 ln 𝑥 − 𝑥) + 𝐶 (2) 

The linear variable substitution is another way to do 
it. For ∫ ln(𝑎𝑥 + 𝑏) 𝑑𝑥 , let 𝑡 = 𝑎𝑥 + 𝑏 , so 𝑑𝑡 =𝑎 𝑑𝑥, the integral is transformed into 1𝑎 න ln 𝑡 𝑑𝑡 = 1𝑎 (𝑡 ln 𝑡 − 𝑡) + 𝐶 = 𝑎𝑥 + 𝑏𝑎 ln(𝑎𝑥 + 𝑏) − 𝑎𝑥 + 𝑏𝑎 + 𝐶. 
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2.2 Other Methods and Techniques 

The L'Hôpital's rule is a useful method used to 
calculate limits. Suppose one has two functions 𝑓(𝑥)and 𝑔(𝑥) which are differentiable in an open 
interval containing a point 𝑎 (except possibly at 𝑎 
itself), and lim௫→௔ 𝑓(𝑥) = lim௫→௔ 𝑔(𝑥) = 0 𝑜𝑟 ± ∞. 

The author considers the limit  lim௫→௔ ௙(௫)௚(௫) . By 
Cauchy's Mean Value Theorem, for any 𝑥  in a 
neighborhood of 𝑎, there exists a point 𝑐 between 𝑥 
and 𝑎 such that௙(௫)ି௙(௔)௚(௫)ି௚(௔) = ௙‘(௖)௚’(௖). As 𝑥 → 𝑎,𝑐 → 𝑎. If 

the limit  lim௫→௔ ௙‘(௫)௚’(௫)  exists or is ±∞ , then  lim௫→௔ ௙(௫)௚(௫) =lim௫→௔ ௙‘(௫)௚’(௫) . This is the essence of L'Hôpital's rule, 
providing a powerful tool to evaluate indeterminate 
forms (Zhu, 2023). 

 For the Lagrange theorem, for a given planar arc 
between two endpoints which there is at least one 
point at which the tangent to the arc is parallel to the 
line through its endpoints (Li, 2023), i.e., 𝑓(𝑏) − 𝑓(𝑎)𝑏 − 𝑎 = 𝑓ᇱ(𝑐) (3) 

The Residue Theorem in complex analysis 
simplifies computing contour integrals of 
meromorphic functions. For a function f(z) with 
isolated singularities inside a closed contour 𝐶 , the 
integral around 𝐶  equals 2𝜋𝑖 multiplied by the sum 
of residues within 𝐶. A residue, extracted from the 
Laurent series coefficient of (𝑧 − 𝑧଴)ିଵ encapsulates 
local behavior near singularities. This theorem 
transforms intricate integrals into manageable residue 
calculations, crucial for evaluating real integrals, 
analyzing wave propagation, and solving differential 
equations. Its power lies in linking global integration 
to localized singularity data, making it indispensable 
in physics, engineering, and mathematical research. 

Cauchy's Integral Theorem states that for a 
holomorphic function in a simply connected domain, 
the integral over any closed contour is zero. 
Established by Augustin-Louis Cauchy, it is central 
to complex analysis. These principles enable efficient 
evaluation of complex integrals, residue calculus, and 
solutions to partial differential equations, forming the 
cornerstone of analytic function theory.  

3 APPLICATIONS 

The first example is a basic integral  𝐼 = න 𝑥 ln 𝑥 𝑑𝑥 (4) 

One can solve the integral by using the integration by 
parts. Assume that 𝑢 = ln 𝑥 , so 𝑑𝑢 = ଵ௫ 𝑑𝑥; assume 𝑑𝑣 = 𝑥𝑑𝑥 , so 𝑣 = ଵଶ 𝑥ଶ . By substituting into the 
formula for integration by parts, the solution is that න 𝑢𝑑𝑣 = 𝑢𝑣 − න 𝑣𝑑𝑢 = 12 𝑥ଶln 𝑥 − න 12 𝑥ଶ ∙ 1𝑥 𝑑𝑥 = 12 𝑥ଶln 𝑥 − න 12 𝑥𝑑𝑥 = 12 𝑥ଶln 𝑥 − 14 𝑥ଶ + 𝐶 (5) 

The second example is the multiplication of 
polynomials and logarithms 𝐼 = න 𝑥ଶ ln 𝑥 𝑑𝑥 (6) 

One can also solve the question by using the 
integration by parts. Assume 𝑢 = ln 𝑥 , so 𝑑𝑢 =ଵ௫ 𝑑𝑥; assume 𝑑𝑣 = 𝑥ଶ𝑑𝑥 , so 𝑣 = ௫యଷ . By substituting 
into the formula for integration by parts, the solution 
is that න 𝑥ଶ ln 𝑥 𝑑𝑥 = 𝑥ଷ3 ln 𝑥 − න 𝑥ଷ3 ∙ 1𝑥 𝑑𝑥 = 𝑥ଷ3 ln 𝑥 − 13 න 𝑥ଶ 𝑑𝑥 = 𝑥ଷ3 ൬ln 𝑥 − 13൰ + 𝐶 (7) 

The third example is integration with a logarithm 
in the denominator, i.e., 𝐼 = න 1𝑥 ln 𝑥 𝑑𝑥 (8) 

To solve the question, one can use the method of 
variable substitution (Liu & Liu, 2024). Assume 𝑡 =ln 𝑥, so 𝑑𝑡 = ଵ௫ 𝑑𝑥 , and thus 𝑑𝑥 = 𝑥𝑑𝑡 = 𝑒௧𝑑𝑡. The 
original integration can turn into the final solution, 
which is න 1𝑒௧ ∙ 𝑡 ∙ 𝑒௧𝑑𝑡 = න 1𝑡 𝑑𝑡 = ln|𝑡| + 𝐶 = ln | ln 𝑥 | + 𝐶 

The fourth example is a combination of 
logarithms and fractions, i.e., 𝐼 = න ln(1 + 𝑥)𝑥ଶ 𝑑𝑥 (9) 

Likewise, one can solve the formula by using the 
integration by parts. Assume that  𝑢 = ln(1 + 𝑥) , so 𝑑𝑢 = ଵଵା௫ 𝑑𝑥; assume that 𝑑𝑣 = ଵ௫మ 𝑑𝑥 , so 𝑣 = − ଵ௫. 
Substituting the equation into the formula, it is thus 
found that න ln(1 + 𝜒)𝜒ଶ 𝑑𝑥 = − ln(1 + 𝜒)𝜒 + න 1𝜒(1 + 𝜒) 𝑑𝑥 
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Given that the fraction decomposition is ଵ௫(ଵା௫) = ଵ௫ −ଵଵା௫, the integral on the right-hand side is න 1𝜒(1 + 𝜒) 𝑑𝑥 = ln |𝜒| − ln |1 + 𝜒| + 𝐶 

Therefore, the final solution is that 𝐼 = − ln(1 + 𝜒)𝜒 + ln ฬ 𝜒1 + 𝜒ฬ + 𝐶 (10) 

The fifth integral is of absolute value 𝐼 = න ln|𝜒| 𝑑𝑥 (11) 

To solve the equation, one can use the case-by-
case discussion. First, when 𝑥 > 0, the integration is 
the same with ∫ ln 𝑥𝑑𝑥, the solution is 𝜒 ln 𝜒 − 𝜒 +𝐶. Second, when 𝑥 < 0, let 𝑡 = −𝑥, so ln |𝑥| = ln |𝑡| 
and 𝑑𝑥 = −𝑑𝑡. The integration turns into − න ln 𝑡 𝑑𝑡 = −(𝑡 ln 𝑡 − 𝑡) + 𝐶 = 𝜒 ln(−𝜒) − 𝜒 + 𝐶 
Regardless of whether 𝑥 is positive or negative, the 
solution of integration can be presented as 𝐼 = 𝜒 ln|𝜒| − 𝜒 + 𝐶 (12) 

The sixth definite Integrals and improper Integrals 
is 𝐼 = න ln 𝜒ଵ

଴ 𝑑𝑥 (13) 

This is an improper integral (with 𝑥 =  0  as a 
singular point). One can calculate the limit which is lim௔→଴ ∫ ln 𝑥ଵ௔ 𝑑𝑥 = lim௔→଴ሾ𝑥 ln 𝑥 − 𝑥ሿ௔ଵ . Substituting the 
upper and lower limits, it is thus found that lim௔→଴ሾ(1 ∙ 0 − 1) − (𝑎 ln 𝑎 − 𝑎)ሿ = −1 − lim௔→଴𝑎 ln 𝑎 +0 . Calculating the limit by using L'Hôpital's rule, 
which is lim௔→଴𝑎 ln 𝑎 = lim௔→଴ ln 𝑎1𝑎 = lim௔→଴

1𝑎− 1𝑎ଶ = lim௔→଴(−𝑎) = 0 

The final solution is therefore න ln 𝜒ଵ
଴ 𝑑𝑥 = −1 (14) 

The seventh is a higher-order logarithmic integral 𝐼 = න(ln 𝜒)ଶ 𝑑𝑥 (15) 

It can be solved by applying integration by parts 
twice. For the first integration by parts, one can 
assume 𝑢 = (ln 𝜒)ଶ, so 𝑑𝑢 = 2 ln 𝜒 ∙ ଵ௫ 𝑑𝑥 ; assume 𝑑𝑣 = 𝑑𝑥  so 𝑣 = 𝜒 . The integration turns into 
that 𝜒(ln 𝜒)ଶ − ∫ 𝜒 ∙ 2𝜒 ∙ ଵ௫ 𝑑𝑥 = 𝜒(ln 𝜒)ଶ −2 ∫ ln 𝜒 𝑑𝑥. Next, one can use the integration by parts 
the second times to calculate ∫ ln 𝑥 𝑑𝑥 , and the 

solution is that ∫ ln 𝑥 𝑑𝑥 =  𝑥 ln 𝑥 − 𝑥 + 𝐶 . 
Combining the solution together, it is that න(ln 𝜒)ଶ 𝑑𝑥 =  𝜒(ln 𝜒)ଶ − 2(𝜒 ln 𝜒 − 𝜒) + 𝐶 = 𝜒(ln 𝜒)ଶ − 2𝜒 ln 𝜒 + 2𝜒 + 𝐶 (16) 

4 CONCLUSIONS 

This article systematically explores the historical 
evolution, core methods, and interdisciplinary 
applications of integrals and logarithmic functions. 
The main content is divided into three parts: Firstly, 
by reviewing the development of integral theory from 
Archimedes' "method of exhaustion" to the 
establishment of Newton-Leibniz calculus and then to 
the rigorous definition by Cauchy-Riemann, it 
clarifies the core position of integrals in quantifying 
continuous variables. At the same time, the 
development of logarithmic functions from Napier's 
simplification of astronomical calculations to Euler's 
introduction of natural logarithms demonstrates their 
evolution. The combination of the two highlights the 
practical significance of mathematical tools in fields. 
The second part focuses on the mathematical methods 
for integrating logarithmic functions, systematically 
deriving the integral formulas for the natural 
logarithm and the general logarithmic function. 
Additionally, the application of L'Hôpital's rule and 
partial fraction decomposition demonstrates the 
synergy between limit analysis and algebraic 
techniques. The third part verifies the effectiveness of 
the method through seven typical examples, covering 
definite integrals, improper integrals, and higher-
order integrals. These examples not only consolidate 
the theoretical derivation but also reveal the 
universality of the recursive solution rules and the 
handling of absolute values. The research results 
show that the combination of integrals and 
logarithmic functions provides mathematical support 
for the modeling of continuous systems.  

Although this article systematically reviews the 
methodological framework for integration and 
logarithmic functions, there remains room for 
expansion.  Additionally, the paper focuses mainly on 
classical integration techniques and pays less 
attention to the auxiliary role of modern 
computational tools, such as symbolic computation 
software. The value of these tools in verification and 
accelerating the solution process could be further 
explored. Future research directions can be developed 
from the following perspectives: Exploring the 
combination of logarithmic functions and fractional 
calculus to address the modeling needs of nonlocal 
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problems and extending integral methods to 
stochastic differential equations or high-dimensional 
optimization problems in machine learning to 
enhance the adaptability of theoretical tools. 
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