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Abstract: Mild cognitive impairment (MCI) is often challenging to diagnose. The Oculo-Cognitive Addition Test 
(OCAT) is a rapid, objective tool that measures eye movement and time-based features during mental addition 
tasks in under one minute. This study aims to develop predictive machine learning algorithms for early 
detection of those at greater risk for mild cognitive impairment, helping warrant further testing. OCAT testing 
with integrated eye tracking was completed by 250 patients. Time-related and eye movement features were 
extracted from raw gaze data. Feature selection was performed using machine learning methods, including 
random forest and univariate decision trees, to identify predictors of Dementia Rating Scale (DRS) outcomes. 
Supervised models—logistic regression (LR) and K-nearest neighbors (KNN)—were trained to classify MCI. 
Class imbalance was addressed using the Synthetic Minority Over-sampling Technique. LR models achieved 
the highest performance using the combined time and eye movement features, with an accuracy of 0.97, recall 
of 0.91, and the area under the precision-recall curve (AUPRC) of 0.95. This study demonstrates that machine 
learning models trained on OCAT-derived features can reliably predict DRS outcomes (PASS/FAIL), offering 
a promising approach for early identification of MCI. 

1 INTRODUCTION 

Mild Cognitive Impairment (MCI) is a condition that 
represents a transitional state between normal aging 
and dementia, particularly Alzheimer’s Disease (AD) 
(Anderson, 2019; Chen et al., 2021; Petersen et al., 
1999), though some cases stem from reversible 
causes such as concussion, metabolic pathologies, 
and psychiatric disorders (Petersen et al., 2018). 
According to the 2018 American Academy of 
Neurology guidelines, individuals with MCI exhibit 
cognitive deficits while maintaining functional 
independence in activities of daily living (Petersen et 
al., 2018). Diagnostic criteria for MCI have evolved 
over time – from initially emphasizing memory loss 
(Petersen et al., 1999) to including impairments in 
other domains such as language, visuospatial 
processing, or executive skills (Chen et al., 2021; 
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Petersen, 2004) – reflecting the heterogeneity of its 
clinical presentation.  

When cognitive decline or MCI is suspected, a 
comprehensive neuropsychological assessment 
remains the gold standard for diagnosis (Aarsland et 
al., 2009; Matteau et al., 2011). However, due to 
testing time, rigor, clinical availability, and insurance 
coverage, not all patients can undergo full testing. As 
a validated alternative, the Mattis Dementia Rating 
Scale (DRS) is frequently used to measure general 
cognitive function (Matteau et al., 2011; Porto et al., 
2007). The DRS has also been validated as a short-
form test for MCI screening (Matteau et al., 2011). 
Even so, this test can take as few as 15-20 minutes 
with an alert, healthy individual, but can take close to 
an hour for a person with advanced impairment 
(Marson et al., 1997; Matteau et al., 2011).  
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Given the time and resource demands of 
comprehensive neuropsychological assessment, there 
is a clinical need for a brief, objective screening tool 
to predict a patient’s relative risk for MCI, ensuring 
that those at greatest need are prioritized for further 
assessment. It has been shown that patients with a 
score lower than 140 on the DRS are at greater 
likelihood of having MCI (Harvey & Mohs, 2001; 
Mattis, 1976; Montgomery, 1982; Schmidt et al., 
1994). Note this cutoff is much higher than the 
clinical psychometric threshold of 123 (Mattis, 1988). 
Many neurological diseases lead to changes in eye 
movements, also termed oculometrics, and these 
changes have been identified as early biomarkers of 
Alzheimer’s disease and related dementias (Laguna et 
al., 2011; Mosimann et al., 2005). Studies have shown 
that cognitive impairment can be identified by 
quantifying changes in oculometric patterns such as 
fixation duration, saccadic velocity, blinks, and 
pupillary response (Pradhan et al., 2019; Pradhan et 
al., 2018; Pradhan et al., 2022). The Oculo-Cognitive 
Addition Test (OCAT) (Pradhan et al., 2024) was 
designed to efficiently (< 2 minutes) assess cognitive 
function (Pradhan et al., 2022)  by capturing eye 
movements and associated time parameters during 
verbally administered mental addition tasks. 
Participants are instructed to complete, as rapidly as 
possible, 12 trials of summing three consecutive 
numbers shown separately on three consecutive blank 
screens in seemingly random positions categorized by 
low, medium, and high cognitive workload, 
respectively. While the location of the numbers may 
appear random to the subject, OCAT consists of a 
structured “infinity loop” pattern of 24 symmetrical 
positions in which the numbers appear (Figure 1). By 
utilizing this “infinity loop” pattern, OCAT is 
inherently structured, allowing for measurement and 
quantification of eye movements in horizontal, 
vertical, and diagonal directions, using integrated 
eye-tracking hardware, while modulating cognitive 
demand through verbal addition tasks, to engage 
brain areas associated with attention, working 
memory, numerical representation, and oculometric 
coordination (Pradhan et al., 2022). Eye movement 
features measured include saccades, fixations, blinks, 
and pupil dilations, which have a variety of functions 
with multiple voluntary and reflexive factors (Kang 
et al., 2023; Purves et al., 2001). Time-based features 
recorded—such as total test time, the average time to 
complete each three-number addition task (where 
each number is associated with the low, medium, or 
high cognitive load), and response time of following 
the number on the screen also reflect cognitive 
processes like attention, processing speed, and 

working memory.  In a proof of concept study, OCAT 
demonstrated increased saccadic latency and fixation 
time in a hypoxic population (Pradhan et al., 2022), 
supporting its sensitivity to cognitive load.  

The objective of this study was to develop 
predictive machine learning models for possible mild 
cognitive impairment (PMCI) identification using the 
combined eye movement and time-based features 
extracted from the raw gaze data during the OCAT 
testing. OCAT was performed the same day as, but 
prior to, neuropsychological testing which included 
the DRS. It is hypothesized that with the optimal 
model, the features derived from OCAT will reliably 
and accurately predict DRS outcomes (PASS/FAIL). 
This study represents the foundational work toward 
establishing OCAT as a rapid, objective screening 
tool for neurological function, with the potential to 
guide further neuropsychological assessment.  

 
Figure 1: Eye tracking data during OCAT showing the 
fixations (in red) and saccadic movement (in blue). 

2 METHODOLOGY 

2.1 Participants 

250 participants who underwent neuropsychological 
testing were enrolled in this study protocol, which 
was approved by the Institutional Review Board 
(IRB). Subjects between 21 and 99 years of age with 
normal vision (including those with correction), no 
clinically significant visual impairment, and the 
ability to provide consent themselves were enrolled. 
Informed consent was obtained from all participants 
before enrolment. All tested participants were 
categorized into Cognitive Normal (CN) and Possible 
Mild Cognitive Impairment (PMCI) groups, 
including those with mild dementia, based on their 
DRS score during clinical neuropsychological 
assessment. As per the clinical standards, participants 
with a DRS score of 140 or above were labelled as 
CN, and those with less than 140 scores were labelled 
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as PMCI (Harvey & Mohs, 2001). A portion of the 
data was used to train and optimize supervised 
machine learning models, while remaining data was 
reserved for independent validation. Model 
performance was evaluated by assessing recall, 
specificity, precision, and accuracy in classifying 
patients with DRS scores indicative of MCI, based on 
established diagnostic thresholds (Harvey & Mohs, 
2001). Participants whose eye-tracking data during 
OCAT testing did not meet the predefined “tracking 
ratio” threshold of 80% due to excessive signal loss, 
poor eye-tracking calibration, or unstable gaze 
recordings were excluded from further analysis to 
ensure the reliability and validity of gaze-based 
cognitive performance measurements during the 
OCAT. The final distributed dataset included the 
OCAT data of 206 participants, with 166 categorized 
as CN class and 40 as PMCI class. 

2.2 Equipment and Procedures 

The OCAT testing was conducted in a quiet, climate-
controlled room. The ambient light levels were at 
stable luminance and consistent throughout the data 
collection. The OCAT software was installed on the 
14” EyeOn Elite Windows 10 Pro tablet (EyeTech 
Digital Systems, Tempe, Arizona, USA) with an 
integrated eye tracking device (8MP Eye Gaze 
Camera) to track eye gaze during the OCAT testing. 
The resolution of the tablet screen was 1920 x 1080. 
The raw eye-gaze data was collected at a sampling 
rate of 120 Hz. During the study, participants were 
seated facing the tablet and positioned to maintain a 
viewing distance of 60 cm, a distance within the 
recommended reading range. The session began with 
a 5-point calibration to optimize eye-tracking 
accuracy. Calibration quality was verified, and 
recalibration was performed if necessary to maintain 
a calibration error below 0.5 degrees. To control 
potential task novelty effects, a structured preview 
and practice phase were incorporated before data 
acquisition. Participants first received standardized 
instructions and observed a demonstration of the task. 
Subsequently, an initial practice session was 
conducted, during which participants completed a full 
OCAT trial that allowed for task familiarization and 
reduction of learning-related variability. The 
subsequent OCAT trial was considered the formal 
test, and only data from this test were analyzed. The 
OCAT testing session was performed before any 
scheduled neuropsychological testing for the 
Neurology appointment to avoid any fatigue effects. 
 
 

2.3 Data Processing and Feature 
Extraction 

The time-related features described in Table 1 were 
measured during the OCAT for overall task 
completion time and for each addition sequence.  

Addition sequences had varying cognitive 
workloads (low, medium, and high in the form of 
first, second, and third number, respectively). The 
raw gaze data obtained during the OCAT were pre-
processed to extract eye movement-related features. 
Pre-processing involved cleaning artifacts using 
filtering techniques followed by applying fixation and 
saccade classification algorithms based on dispersion 
thresholds (Pradhan et al., 2018). From the processed 
data streams, the features related to saccades and 
fixations, along with blinks and pupillary dynamics, 
were computed to characterize participants’ cognitive 
and oculomotor performance (Table 1). The features 
listed in Table 1 were computed for each OCAT test 
performed by every participant. The features 
exhibiting significant deviation from a normal 
distribution (skewness outside the range of -1 to 1) 
were subjected to logarithmic transformation during 
the data preprocessing stage. This transformation 
aimed to reduce skewness and stabilize variance, 
thereby improving the performance of the 
classification model and predictive accuracy. It is 
worth noting that, in addition to the 31 features listed 
in Table 1, the age of the participants was also 
included as an additional feature in the predictive 
modelling. 

To develop and evaluate the performance of the 
machine learning models to predict the possible mild 
cognitive impairment, the OCAT dataset was 
randomly split into training and testing sets, with 80% 
of the data used for training and the remaining 20% 
reserved for testing. This stratified split ensured that 
the class distribution between CN and PMCI was 
preserved across both subsets, as summarized in 
Table 2. To address the issue of class imbalance in the 
training data, the Synthetic Minority Over-sampling 
Technique (SMOTE) was applied. SMOTE generates 
synthetic samples for the minority class (in this case, 
PMCI class) by interpolating between existing 
minority class instances, thereby improving the 
model’s ability to learn discriminative patterns and 
reducing bias toward the majority class. Table 3 
shows the class distribution of training and testing 
data after applying SMOTE. 
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Table 1: Description of OCAT features categorized into 
time and eye-movement related features. 

 

Models were developed and evaluated using both 
the original imbalanced dataset and a class-balanced 
dataset generated through SMOTE. The training data 
were standardized using the StandardScaler method 

to ensure that features had zero mean and unit 
variance. The fitted scaler parameters were saved and 
subsequently applied to the testing dataset to maintain 
consistency in feature scaling during model 
evaluation. 

Table 2: Class distribution of training and testing dataset 
from the original, imbalanced dataset.   

Classification CN Class PMCI Class
Training dataset 135 29
Testing dataset 31 11

Table 3: Class distribution of training and testing dataset 
after applying SMOTE to get an augmented, class-balanced 
dataset.   

Classification CN Class PMCI Class
Training dataset 135 135
Testing dataset 31 11

2.4 Feature Selection 

Feature selection was conducted in a two-step process 
to reduce redundancy and retain features with high 
predictive value. First, highly correlated feature 
groups were identified using Pearson’s correlation 
coefficient, with a threshold of 0.8, consistent with 
established practices for multicollinearity reduction 
(Dormann et al., 2013). Each group consisted of two 
or more features that exhibited mutual correlation 
above this threshold. Within each group, a Random 
Forest classifier was employed to assess the relative 
importance of features, and only the feature with the 
highest predictive importance was retained while the 
others were discarded. In the second step, a univariate 
evaluation of the remaining, uncorrelated features 
was performed using a Decision Tree classifier. Each 
feature was individually assessed based on its 
Receiver Operating Characteristic - Area Under the 
Curve (ROC-AUC) score. Features with ROC-AUC 
scores less than or equal to 0.5 were excluded, as they 
contributed no better than random performance in 
classification. 

Both models were trained using the pre-processed 
and feature-selected dataset. Key performance 
metrics including recall, precision, specificity, F1-
score, accuracy, and the area under the precision-
recall curve (AUPRC) were computed for 
comprehensive assessment of predictive 
performance. Figure 2 illustrates the complete 
workflow of the model comprising feature extraction, 
data pre-processing, feature selection, and predictive 
modelling steps. 

Time-related Features 
1. Total Test Time (s) 
2. Mean Time for Number 1 (low cognitive workload) 

(s) 
3. Mean Time for Number 2 (medium cognitive 

workload) (s) 
4. Mean Time for Number 3 (high cognitive 

workload) (s) 
5. (Log-) Mean Latency Time (ms) 
6. (Log-) Standard Deviation of Latency Time (ms)
Eye Movement-related Features 
Fixations: 
7. Mean Fixation Time for Number 1 (ms) 
8. (Log-) Standard Deviation of Fixation Time for 

Number 1 (ms) 
9. Mean Fixation Size for Number 1 (mm) 
10. (Log-) Standard Deviation of Fixation Size for 

Number 1 (mm) 
11. Mean Fixation Area for Number 1 (mm2) 
12. (Log-) Standard Deviation of Fixation Area for 

Number 1 (mm2) 
13. Mean Fixation Time for Number 2 (ms) 
14. (Log-) Standard Deviation of Fixation Time for 

Number 2 (ms) 
15. Mean Fixation Size for Number 2 (mm) 
16. (Log-) Standard Deviation of Fixation Size for 

Number 2 (mm) 
17. Mean Fixation Area for Number 2 (mm2) 
18. (Log-) Standard Deviation of Fixation Area for 

Number 2 (mm2) 
19. Mean Fixation Time for Number 3 (ms) 
20. (Log-) Standard Deviation of Fixation Time for 

Number 3 (ms) 
21. Mean Fixation Size for Number 3 (mm) 
22. (Log-) Standard Deviation of Fixation Size for 

Number 3 (mm) 
23. Mean Fixation Area for Number 3 (mm2) 
24. (Log-) Standard Deviation of Fixation Area for 

Number 3 (mm2) 
Saccades: 
25. Median Diagonal Saccadic Velocity (deg/s) 
26. Median Horizontal Saccadic Velocity (deg/s) 
27. Median Vertical Saccadic Velocity (deg/s) 
Blinks: 
28. Blink Rate (number of blinks per minute) 
29. Median Blink Duration (ms) 
Pupillary Dynamics: 
30. Standard Deviation of Pupil Size (mm) 
31. Coefficient of Variation of Pupil Size 
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Figure 2: Workflow of the predictive modelling process. 

3 RESULTS 

By using OCAT testing, this study aimed to predict 
whether a participant would score below 140 on the 
DRS, reflecting a higher risk for the possibility of 
MCI. The classification performance of Logistic 
Regression (LR) and K-Nearest Neighbours (KNN) 
was evaluated under both imbalanced (original) and 
class-balanced (SMOTE- augmented) datasets with 
different feature combinations described in Table 1. 

Table 4 shows that the LR model trained on 
SMOTE-balanced data containing both time-related 
and eye movement-related features demonstrated 
superior and consistent performance across all 
metrics, achieving perfect precision (1.00), 
specificity (1.00), and F1-score (0.95), with high 
recall (0.91) and accuracy (0.97), indicating strong 
discriminatory ability without overfitting. In contrast, 
the LR model trained on the original imbalanced data 
showed reduced recall (0.73 at DT = 0.45 and 0.64 at 
DT = 0.5), while maintaining high specificity (0.97) 
and precision (≥0.88), suggesting a bias toward the 
majority cognitive normal class. 

KNN also benefited from SMOTE, with the 
balanced model (k = 6) yielding improved recall 
(0.82) and F1-score (0.82), along with high 
specificity (0.94) and AUPRC (0.95). Interestingly, 
the KNN model (k = 5) with original, imbalanced 
dataset achieved perfect precision (1.00) and 

specificity (1.00), but at the cost of lower recall 
(0.73), indicating under-identification of the minority 
possibly MCI class despite overall high accuracy 
(0.93). Both models show optimal performance under 
the SMOTE-balanced condition, as also seen in the 
precision-recall curve (Figure 3). 

4 DISCUSSIONS 

Multiple predictive models were developed using 
time- and eye movement-based OCAT features. The 
LR models trained on SMOTE-balanced datasets 
consistently demonstrated the most balanced and 
robust performance across all metrics. These results 
highlight the utility of SMOTE in improving recall 
while maintaining favorable balance between 
precision and specificity. The model developed 
yielded high recall, precision, specificity, F1-score, 
accuracy, and AUPRC, indicating reliable predictive 
power for diagnosing PMCI. This means that the 
model developed is robust to false positives and 
negatives. In the context of MCI screening, false 
positives may lead to unnecessary patient expense 
and stress, as well as provider time, but the screener 
result does not definitively make the diagnosis. 
Rather, it rather prompts further evaluation via DRS 
or comprehensive neuropsychological assessment. 
False negatives, on the other hand, pose a more 
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Figure 3: Precision-Recall Curve of Logistic Regression (LR) and K-Nearest Neighbors (KNN) models using both SMOTE-
augmented balanced and original, imbalanced datasets with time and eye-movement features during OCAT. 

Table 4: LR and KNN model performance with SMOTE-balanced and imbalanced datasets. 

Model 
Hyper-

parameter 
Recall Precision Specificity F1-score Accuracy AUPRC

LR – SMOTE 
DT = 0.45 

DT = 0.5 

0.91 

0.91 

1 

1 

1 

1 

0.95 

0.95 

0.97 

0.97 
0.95 

LR - original 
DT = 0.45 

DT = 0.5 

0.73 

0.64 

0.89 

0.88 

0.97 

0.97 

0.8 

0.74 

0.9 

0.88 
0.91 

KNN- SMOTE Best k = 6 0.82 0.82 0.94 0.82 0.9 0.95 

KNN - original Best k = 5 0.73 1 1 0.84 0.93 0.95 
 

serious concern in cognitive screening, since missing 
the indicators of MCI when it is present could delay 
timely intervention. This is particularly critical now 
that there are disease modifying treatments for 
Alzheimer’s disease as well as for individuals with 
other causes of cognitive impairment, such as 
concussions, hypoxia, vascular or metabolic 
conditions (Biessels & Whitmer, 2020; Pradhan et al., 
2019) 

In such cases, early identification and intervention 
may facilitate cognitive recovery, or prompt 
additional diagnostic measures, including 
neuroimaging and further cognitive evaluation 
(Biessels & Whitmer, 2020). These findings support 
the continued use of OCAT with integrated eye-
tracking in clinical settings, as garnering the broader 

range of cognitively relevant features improves 
diagnostic accuracy and enhances the tool’s potential 
for early detection of cognitive impairment. There is 
broad consensus that the total health care cost could 
be greatly reduced by more efficient resource 
utilization as well as earlier diagnosis and 
intervention for cognitive and neurological disorders, 
especially when traditional clinical diagnostic tools 
lack sufficient sensitivity (Laguna et al., 2011; 
Mosimann et al., 2005). As a screening tool, OCAT 
can help to narrow the focus of resource deployment 
to those at greater risk for disease and may be 
applicable to other conditions that also affect eye 
movement.  For example, sports-related concussion 
has also been associated with oculomotor dysfunction 
such as saccadic eye movements, accommodation, 
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smooth pursuit (tracking), fixation, and sensitivity to 
light in 90% of athletes (Ciuffreda et al., 2007). 
Further refinement of LR and KNN models that use 
both eye-movement and time-based features could 
lead to a highly sensitive screening tool in clinical and 
sideline settings where subclinical markers of 
cognitive impairment can inform diagnoses. 

5 CONCLUSIONS 

OCAT leverages the well-established relationship 
between eye movement dynamics and cognitive 
function to facilitate early detection of cognitive 
decline associated with MCI or other neurological 
disorders, like Alzheimer’s Disease, dementias, 
traumatic brain injuries, substance use, and fatigue. 
By combining reflexive saccadic eye movements 
with time-based and attentional effects under varying 
cognitive loads, OCAT provides a multidimensional 
profile of cognitive performance. As a rapid, non-
invasive assessment tool, OCAT can be seamlessly 
integrated into outpatient clinics, primary care 
settings, and neurology practices. Its use as an initial 
screening tool may assist clinicians in identifying 
patients who would benefit from more extensive 
evaluations, such as full-extent DRS testing, 
ultimately conserving time, reducing medical and 
insurance burdens. With further refinement and 
dissemination, OCAT could serve as a standardized 
intake instrument for both preliminary assessment 
and longitudinal tracking of cognitive state. By 
featuring OCAT into routine assessments, healthcare 
providers can enhance early detection, streamline 
cognitive evaluations, and improve patient outcomes 
to reduce healthcare costs.  
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