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Abstract: Hematoxylin and eosin staining is one of the most well-known and common methods of staining 
histopathological samples. Its main purpose is to highlight the morphological features of tissues, which help 
doctors make the right diagnosis. However, it is not without its flaws, and the scans obtained in this way are 
characterized by high inconsistency not only resulting from the variability of the tissues themselves, but also 
due to the chemical reagents used, the technique of preparing the preparation, etc. This causes various 
difficulties and errors in the case of tissue assessment performed by the algorithm, but can also be a hindrance 
for doctors. Therefore, there are many methods to improve the quality of scans obtained from tissue stained 
in the H&E way. In this article, we present a fairly recent idea and very preliminary results for the use of our 
multi-channel virtual high-dynamic range MVHDR method to improve the parameters of H&E scans. Our 
method allows both data augmentation for CNN, but also significant detail enhancement that helps doctors 
identify the disease.

1 INTRODUCTION 

The examination of a tissue sample is one of the basic 
medical procedures in the diagnosis of various types 
of cancer in humans and animals. For this purpose, 
there are strict procedures for collecting such tissues 
and then properly preparing, storing and - recently - 
digitizing them into so called Whole Slide Images 
(WSI) (Tellez 2019, Janowczyk 2019, Greeley 2024). 
One of the very important steps in this chain is the 
appropriate staining of the tissue. Hematoxylin and 
eosin stain (H&E) is one of the principal tissue stains 
used in histology for over a century (Tellez 2019). 

Hematoxylin is a natural chemical compound 
obtained from the logwood tree Hematoxylon 
campechianum, discovered by the Spanish during 
exploration expeditions to Yucatan, Mexico, in the 
early 16th century. Hematoxylin's initial uses were 
for dyeing hair and fabrics. The first tissue staining 
with hematoxylin dates back to 1800. Interestingly, 
for over 200 years, hematoxylin has remained one of 
the primary methods of staining tissue, primarily for 
the isolation of nuclei in microscope slides (Titford 
2005). Despite many years and the development of 
other methods, H&E is the most widely used stain in 
biology and medical diagnosis and is often the gold 

standard (Dapson 2009)(Bassotti 2011)(Ma 2024). 
For example, when a pathologist looks at a biopsy of 
a suspected cancer, the histological section is likely to 
be H&E stained (Sorenson 2014)(Srinidhi 2021).  

  

Figure 1: Examples of the healthy prostate tissue (upper 
row) and tissues with cancer of type Gleason 5 (lower row). 
Scans from the DiagSet dataset (Koziarski 2024). 

Figure 1 shows patches extracted from a WSI scan 
of the DiagSet dataset containing examples of 
prostate tissues from the anonymous patients 
(Koziarski 2024). Upper row contains the healthy 
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prostate tissues, while the lower one shows patches 
with a prostate cancer classified by an expert to 
Gleason grade no. 5.  

As already mentioned, H&E uses two histological 
stains – hematoxylin (H) and eosin (E). H affects cell 
nuclei and renders them purplish blue. On the other 
hand, E stains in pink mostly the extracellular matrix 
and cytoplasm, whereas other structures take on 
different shades, hues, as well as combinations of 
similar colors. A brief explanation of the main 
structures visible in a tissue sample after the H&E 
staining is shown in Figure 2 (Lisowski 2019) 
(Sampias 2025). Hence a pathologist can easily 
differentiate between the nuclear and cytoplasmic 
parts of a cell, and additionally, the overall patterns of 
coloration from the stain show the general layout and 
distribution of cells and provides a general overview 
of a tissue sample's structure. Thus, pattern 
recognition, both by expert humans themselves and 
by software that aids those experts in digital 
pathology, provides histologic information. 

 
Figure 2: Brief explanation of the main structures visible in 
a tissue sample after the hematoxylin & eosin staining 
(Source images: Mikael Häggström. Public Domain, 2022).  

Nevertheless, H&E is not a remedy for all the 
cases and tissues – hence, in some difficult cases 
more specific stains and methods are used. Similarly, 
when using H&E stained patches for grading we may 
encounter a number of problems. The first problem is 
the heterogeneity of samples even those performed in 
the same laboratory. The second is the insufficient 
quality parameters of the image that make it difficult 
or negatively affect the quality of classification. 

In this paper we address at least two of these 
problems by proposing a new concept of nonlinear 
multi-channel virtual high dynamic range (MVHDR) 
filtering method, however successfully applied to the 
H&R scans. What's important about our method is 
that it follows the general idea of tissue staining –  
because unstained tissues lack contrast, our method 

goes a step further and significantly improves contrast 
in already H&E stained tissues. 

This our preliminary proof of concept is based on 
a number of previous works and discoveries that 
inspired us to use it to improve the quality of H&E 
scans based on the advance image filtering algorithms 
(Grabek 2019)(Koziarski 2018). These previous 
observations include the application of VHDR to 
thermal images, i.e. from the far infrared, for which 
we observed that the application of VHDR before 
using the CNN network significantly improved its 
results (Knapik 2019). Early concepts and results, 
presented in this paper, show that our assumptions are 
correct, although we leave more in-depth studies for 
the future. 

This is a position paper showing our initial 
concepts and the first observations. The rest of the 
paper is organized as follows. In Section 2, we briefly 
review the existing literature on this topic. In Section 
3, we present the details of our approach, with a novel 
multi-channel VHDR (MVHDR). Chapter 4 presents 
the results of the experiments along with a discussion 
of the obtained results. The article ends with 
conclusions and a list of literature. 

2 RELATED WORKS 

The history of the discovery of hematoxylin, as well 
as its subsequent uses, is particularly interesting 
(Titford 2005)(Cooksey 2021). Despite numerous 
studies and new approaches to tissue contrast, H&E 
remains one of the most widely used methods. 
However, it is not without its drawbacks (Dapson 
2009)(Bassotti 2011)(Ma 2024). Hence, there are 
many works and studies on improving the image 
quality of scans stained in the H&E method. Here we 
mention only a few of the most important ones, and 
further literature references can be found in the 
mentioned here works. The first group are methods 
improving the repeatability and homogenity of 
staining, because even the same laboratories can 
produce completely different shades for the same 
tissues. These are called stain normalization methods. 
In this respect Janowczyk et al. proposed the use of 
sparse autoencoders for stain normalization 
(Janowczyk 2017). In their method pixels are 
separated into 𝑘 clusters. Then histogram equalization 
across clusters and RGB channels is applied to obtain 
a color standardized image. In the same vein Zanjani 
et al. propose to use the deep generative models 
(Zanjani 2018). This is done to separate pixels into 𝑘 
tissue classes. In the next step, stain normalization is 
obtained by separation of the source and target 
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images. On the other hand, for stain normalization 
Tellez et al. propose an U-Net-like network 
architecture. This is improved with heavily color-
augmented images and trained to reconstruct their 
original appearance (Tellez 2019). Their main idea is 
that when trained with images from a target center, 
the network should be able to transform new images 
to the same target color distribution. 

The second group of methods deals with the 
general change of parameters of H&E images. An 
interesting approach is based on Blind Color 
Deconvolution (BCD) techniques. Its idea is to 
separate H&E images into colors (stains) and 
structural information (concentrations). This, in turn, 
can be useful for the further processing, data 
augmentation, and classification etc. In this respect, 
Ruifrok et al. proposed the use of the logarithmically 
inverted optical density space and a non-blind color 
deconvolution algorithm to obtain the stain 
concentrations (Ruifrok 2001).  

However, we have adopted a slightly different 
approach, which involves both improving contrast 
and the ability to change the color space. 

3 METHOD DESCRIPTION 

In this section the basic architecture of the proposed 
method is presented. More concretely, we start with 
the overall view of the main blocs, after which a 
general description of the method operation follows. 

3.1 Operation of the Virtual  
High-Dynamic Range Converter 

The main idea of the presented method, called VHDR 
(Knapik 2021), is to increase the dynamics of the 
image, but using a single image as its input – hence 
the name "virtual" high dynamic range. This is 
different from classic HDR, which usually uses 
several images with different exposures (Sen 2016). 
However, in many cases, such as H&E, we simply do 
not have such many exposures. Hence the idea that 
we can "artificially" generate them. The processing 
chain leading to this is shown in Figure 3. It operates 
as follows. An input image is processed by a set of 
tone adjustment curves. As a result, a number of tone 
converted images is calculated.  

The main idea here is to expose different ranges 
of the input image, in order to reveal not well visible 
details. The tone sub-images are then joined back to 
form one HDR image. After that, image range 
conversion and contrast enhancement are applied. 

Tone curves Fusion module

Contrast 
enhancement filter

Image range 
conversion

In 
image

Out 
image

 
Figure 3: Architecture of the virtual high-dynamic range 
converter. Only a single image is required as its input. 

The luminance change is done with help of the 
logistic function, in its basic form given as follows 

( ) ( )( )0
0 1 − −= + k x xs x A e , (2)

where A denotes and amplitude and k is a parameter; 
x0 denotes the so called middle point of the S shape 
function, whose inflection point is just x0.  

 

 
Figure 4: Sets of functions to generate virtual exposures. 
Horizontal axis denotes the input brightness. Vertical the 
normalized output brightness. From top: convex and 
concave curves. 

However, to generate series of virtual exposures 
we need three variants of the logistic functions: 
convex, concave, as well as S-shaped. Exemplary 
variants of these function are shown in Figure. Not 
less important is to assure that the domain and 
codomain cover the whole allowable range, which for 
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8-bits runs 256 values. Hence (1) needs to be 
conditioned, as follows 

( )
( )0

1 0, , 1
−

−
= +

x x
Dk

Rs x k x A e . (2)

D is a domain range constant, A=Pmax is a maximal 
pixel range of the input image. The parameter D 
controls the range of values of s1 – it needs to be 
different from 0 and 1. In other words, these are the 
saturation values. In our system this parameter is set 
to 2 times 6 around x0, and hence D=12. 

The above function is extended by the additional 
multiplicative and additive components to provide a 
concave, convex and S like shape. It needs also to 
cover full range of the codomain – this is in the range 
[Pmin, Pmax], i.e. [0,255]. Hence, new version of () 
reads as follows: 

( )
( )( ) ( )

2 0

1 0 0 1 0

, ,

, , 1 0, ,

=

− + +mid mid

s x k x

s x k x x P P s k x
 (3)

For 8-bit pixel representations Pmid=(Pmax-
Pmin)/2=(255.0-0.0)/2=127.5, which denotes a middle 
value of the low dynamic image. In the next step, 
parameter x0 is chosen from the following three 
values 

{ }0 , ,min mid maxx P P P∈ . (4)

Each of the above values of x0 corresponds to a 
distinct type of a curve as follows (Figure 4): 
1. Convex case – The midtone data of the input 

image is stretched toward the highlight of the 
output space, resulting in a bright-toned image. 

2. Concave case – The midtone data of the input is 
stretched toward the shadow of the output space, 
resulting in a dark-toned image. 

3. S-curve – The highlight and shadow of the input 
pixels are enhanced, leading to a higher contrast. 

 The parameter to consider now is k, whose value 
was chosen experimentally, as follows: 

{ }
{ }
{ }

0

0

0

0.2, 0.3 ,
0.4, 0.5 ,
0.3, 0.4 , .

=
∈ =
 =

min

mid

max

for x P
k for x P

for x P
 (5)

Summarizing, with three values x0, and two 
parameters k for each x0, a series of V=6 tone 
converted images Iv is generated. Values of these 
parameters were chosen experimentally. 

On the other hand, the fusion module takes as its 
input the aforementioned set of V tone mapped 
images. In its next step, each pixel ih in the output 
fused image Ih is computed as a weighted sum of all 
V pixels iv, as follows 

1 1= =

= 
V V

h v v v
v v

i w i w , (6)

where ih denotes an output pixel, iv is an input pixel 
from one of the V tone mapped images Iv, while the 
weight wv is computed as follows: 

2
v mid

mid

i P
P

vw e
λ
 −

−   
 = . (7)

λ in the above denotes a parameter that controls 
steepness of the weighting function. In our 
experiments λ is set to a value in the range 2.2-3.9.  

Pixel values obtained thanks to (6) are frequenlty 
concentrated around the middle values of the 
allowable pixel range, since these are increased by the 
weights in (7). Therefore, their values need to be 
further scaled by the image range conversion module, 
in order to spread equally their histograms. This 
scaling process is done as follows: 

( )
( ) ( ) max

ˆ h h
h

h h

i min I
i P

max I min I
−

=
−

, for each h hi I∈  (8)

where min(Ih) and max(Ih) are minimal and maximal 
values of the whole Ih image, respectively. 

The last step constitutes image contrast 
enhancement. This is done with the one-scale local 
spatial filter (Cvetkovic, 2007). In this process, each 
pixel is converted as follows: 

( )ˆ ˆ ˆ = + − o h h hi i i m i , (9)

where the mean value m around a pixel ĥi , in the 
window controlled by two parameters sw and tw, is 
computed in accordance with the following formula 

( )( )

( )( ) ( )

ˆ ,

1 ˆ , .
2 1 2 1 =− =−

=

+ +
+ +  

w w

w w

h

s t

h
s s t tw w

m i p q

i p s q t
s t

 (10)

Figure 4 shows different functions for generation of 
virtual exposures.  

3.2 Multi-Channel VHDR 

The VHDR method described in the previous chapter 
has been extended to the space of color images or 
even multi-channel signals/images. This is one of the 
main contributions of this paper. 

We assume that the input color image is 
represented using the RGB space. Then, an optional 
conversion of this space to another color space takes 
place. Out tested transformations are as follows: 
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1. RGB  HSI 
2. RGB  IJK 
3. RGB  YCrCb 
In each of the above spaces, including RGB, the 

image dynamics improvement is performed 
independently in each of the color channels. This 
means that it is possible to independently select the 
parameters of the single-channel VHDR method for 
each color channel independently. In this way, for 
example, after transformation to the YCrCb space, 
only the Y channel can be modified, leaving Cr and 
Cb unchanged, etc. Operation of the proposed 
extended method is depicted in Figure 5. 

Jednokanałowy
VHDR

Color image 
in RGB

Color-VHDR

Color Space 
Converter from 

RGB Jednokanałowy
VHDRSingle-channel

VHDR

Color Space 
Converter to RGB

 
Figure 5: Architecture of the proposed multi-channel 
VHDR method. Structure of the single-channel VHDR is 
shown in Figure 3. 

It is also possible to change all channels, also 
causing a change in the color palette. The last feature 
can be independently useful for doctors for deeper 
analysis of histopathological scans. Selected 
experimental results are presented in the next section. 

4 EXPERIMENTAL RESULTS 

As alluded to previously, in this position paper we 
present our novel concept and intuition, as well as 
initial findings. Our method is also underpinned with 
good results obtained in thermal image enhancement 
when operating with CNN (Knapik 2021). The main 
experiment planned for the nearest future research 
into this topic will be to train CNN for cancer 
classification with MVHDR on its input. This 
requires finding the optimal hyperparameters of 
MVHDR. Hence, the next step can be to built-in 
MVHDR as an initial layer of a CNN, which will be 
then trained with the optimization criteria of the best 
accuracy. However, this is left for the future research.  

An interesting and parallel branch of method 
assessment is its application in computer systems 
aimed at helping to diagnose or to annotate WSI by 
the professional pathologists. Based on our private 
conversations with the pathologists we know their 
needs. We can also assess the usefulness of such 

system features as the increase in scan quality 
presented here or the change of the color palette for 
the histopathological diagnostic process. It will 
therefore be a human-in-the-loop system. 

Following this direction, in this paper we present 
results comparing the quality of patches from WSI 
scans before and after applying MVHDR. Our 
objective measures are sharpness and clarity. 
• Sharpness – a measure conveying information 

on level of detail in a scan. In our approach we 
compute variance of the Laplacian, defined as 
follows (Cyganek 2009): 

( ) ( )
2 2

2
2 2, , ∂ ∂  = ∇ = +  ∂ ∂
I IL I x y I x y

x y
, (11)

In our experiments a discrete version of L is 
used, to compute sharpness coefficient S over an 
image I, as follows: 

[ ] ( )var  =  
S LI I , (12)

where ( )L I  denotes discrete Laplacian over 
the entire image I, and var stands for variance. 
Hence, this measure indicates how well the 
edges and fine details are captured. In many 
classification systems, also based on AI, 
sharpness can be essential to obtain high 
accuracy especially when processing images 
with some lighting and/or geometrical defects. 

• Clarity – a measure that encompasses the overall 
visual coherence and an overall level of noise 
and/or distortions. In our approach clarity C is 
expressed as a product of the above sharpness 
measure S, and the standard deviation of an 
image. Hence, clarity is expressed as follows: 

[ ] [ ] [ ]= ⋅C S stdI I I , (13)

where std is the standard deviation.  
Figure 6 shows a number of original H&E patches 

from the DiagSet with various Gleason degrees 
(Koziarski 2024), i.e. these are cancerous tissues.  

 
 
 
 
 
 
 
 
 
 
 

ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics

382



 

1 

  

2 

  

3 

  

4 

  

5 

  

Figure 6: Left column – examples of prostate scan sections 
at 40x magnification from DiagSet – diseased tissue – G5 
on the Gleason scale. Right column – images processed 
with the developed MVHDR module. Visible improvement 
in contrast enabling analysis of morphological structures of 
the tissue, such as estimation of the size and locations of 
nucleoli. 

In Figure 6 original patches are in the left column, 
whereas MVHDR processed in the right one. Even 
visual inspection shows that the latter are sharper and 
more revealing of the morphological details of the 
tissue, which may be important both for 
classification, as well as for inspection by an expert 
pathologist. These observations are confirmed by 
quantitative measurements of the parameters S from 
(12) and C defined in (13), and presented in Table 1 
and Table 2, respectively. 

Table 1: Sharpness values S computed for the images from 
Figure 6. 

Image no. S - Original  S - MVHDR Ratio 

1 148.27 2465.83 16.6 

2 155.66 2398.71 15,4 

3 108.11 1690.45 15,6 

4 219.39 3246.61 14,8 

5 288.54 3376.86 11,7 
 

Figure 7 shows prostate cancer tissues showing 
color space change obtained on histopathological 
scans using the developed MVHDR method. Original 
H&E patches are shown in the left column, while 
MVHDR-processed image are in the right one. 

1 

2 

3 

Figure 7: Samples of the prostate cancer tissues illustrating 
image enhancement and color space change by the 
MVHDR method. Original H&E image (left column), 
MVHDR-processed image (right column). 

As can be seen in the right column of Figure 7, the 
histological images have not only been contrast-
enhanced, but also converted to a different color space, 
which allows for the perception of other image details, 
e.g., in the case of a diagnosis made by a pathologist.  

Table 2: Clarity values C computed for the images from 
Figure 6. 

Image no. C- Original  C - MVHDR Ratio 
1 6957.79 184386.41 26.5 
2 4143.99 128363.72 30.9 
3 4065.20 104402.24 25.7 
4 8071.64 212568.42 26.3 
5 16212.25 281219.42 17.3 
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Table 3 and Table 4 show numerical results of the 
parameters S and C computed for the images from 
Figure 7, respectively. 

Table 3: Sharpness values S computed for the images from 
Figure 7. 

Image no. S - Original  S - MVHDR Ratio 

1 597.25 4647.94 7.8 

2 301.59 3412.69 11.3 

3 288.05 3777.61 13.1 

Table 4: Clarity values C computed for the images from 
Figure 7. 

Image no. C- Original  C - MVHDR Ratio 

1 12583.80 188048.80 14.9 

2 8096.60 188842.25 23.3 

3 8106.07 189127.10 23.3 
 

In all cases we see a significant difference, i.e. 
more than an order of magnitude, between the 
parameters for the original H&E scans and their 
versions processed with our MVHDR method. 
However, it's not the numerical values themselves 
that matter, but their ratio (the rightmost column), 
which in all cases exceeds an order of magnitude. 
This demonstrates significant potential for improving 
contrast, as well as the dynamics of pixel 
representation itself. We have presented results here 
for several images, but they are consistent for all 
patches obtained from the WSI scan. This proves the 
stability of the proposed method, which in virtually 
every real case leads to a significant contrast 
enhancement and – as we have seen – also allows for 
changing the color palette. 

The presented method was implemented in C++. 
Experiments were conducted on a computer with 128 
GB of RAM and an Intel® i7-11850H/2.50GHz 
microprocessor, running Windows 10 Pro. Such 
implementation allows for real-time processing of 
video streams, as well as for easy parallelization – the 
feature which we intend to utilize in the future. 

5 CONCLUSIONS 

In this paper we address the problem of enhancement 
and filtering of the H&E stained histopathological 
scans. Our original concept relies on application of 

the nonlinear multi-channel virtual high dynamic 
range filtering method to the H&R scans.  

We would like to stress that this is an initial 
concept describing work in progress and published as 
a position paper. Therefore we only outlined the main 
concept and presented the initial results, which are 
encouraging. Also, our previous experience with this 
type of data preprocessing/augmentation for CNN 
training, although tested for thermal images showed 
very good results, increasing the final accuracy by 
certain percentage points (Knapik 2021). 

Summarizing, our proposed MVHDR method 
can be used for: 
• Data augmentation for CNN/ViT training. 
• Generation of new images for GAN. 
• To generate better quality histopathological 

images for doctors’ diagnosis. 
Our scientific hypothesis and things to do are as 

follows: 
1. The proposed method, when used as a data 

preprocessing module, can lead to higher 
accuracies in deep learning with CNN and ViT. 

2. The proposed method can be used as a data 
augmentation module. 

3. The method can be used to improve quality 
and/or change the color palette when used in 
tissue diagnosis by medical experts.  

If the above are correct, then the next step would be 
as follows: 
4. Design of the input layers, so the optimal 

parameters of the MVHDR method can be 
learned by a CNN/ViT during its training. 

Finally, we would like to mention that this method 
was discussed and pre-tested by two pathology 
experts who gave it a positive review. They were 
particularly interested in the possibility of enhancing 
the contrast and highlighting important 
morphological details of the observed tissues. We are 
planning further tests in this direction as well. It 
would be particularly interesting to observe 
differences in the labeling process of different types 
of tissue by medical specialists without and with the 
use of the method proposed here. 
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