Real-Time Automated Visual Inspection of Decorative Wood Panels for Zero Defects Manufacturing

Beatriz Coutinho¹ oa, Tomás Martins² b, Eliseu Pereira¹ oc and Gil Gonçalves¹ od ¹ SYSTEC ARISE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal ² Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Keywords: Computer Vision, Defect Detection, Quality Monitoring, Non-Destructive Inspection, Zero Defects

Manufacturing.

Abstract: In the wood panel manufacturing industry, maintaining high product quality is critical to ensure customer sat-

isfaction and minimize resource waste. Manual quality inspection methods are often inconsistent, increasing the risk of defective panels reaching the market. This paper introduces an automated visual inspection system for decorative wood panels, aligned with the Detection strategy of the Zero Defects Manufacturing (ZDM) framework. Designed for real-time deployment on an NVIDIA Jetson Nano, the system inspects panels independently without disrupting the production line and visually highlights detected defects for operator review. Two implementation approaches were explored and compared: a traditional computer vision pipeline and a deep learning-based solution. Due to the limited availability of real-world defect images, a synthetic dataset was created using patch blending, tiling, and diverse augmentations to improve the model's generalization across spatial variations. Experimental evaluation with static images and live video showed that while traditional methods achieve moderate detection accuracy, they fail under varying lighting and camera angles. In contrast, the YOLO-based approach delivered robust segmentation and superior defect detection, even under challenging conditions. These results highlight the system's potential to assist operators during manual in-

spections and contribute to practical advances to achieve ZDM.

SCIENCE AND TECHNOLOGY PUBLICATIONS

1 INTRODUCTION

In today's highly competitive industrial environment, quality assurance plays a crucial role in manufacturing, ensuring that products meet rigorous specifications and customer expectations (Hoffmann and Reich, 2023). If defective products reach customers, it can lead not only to economic losses and a decline in customer trust, but also to a significant waste of resources (Psarommatis et al., 2023). Consequently, adopting rigorous quality inspection procedures is one of the most effective ways for companies to minimize losses and operate in a more environmentally conscious way.

This is particularly relevant in the wood panel industry, where surface defects such as cracks, discolorations, and scratches can compromise both the

^a https://orcid.org/0009-0000-9769-6726

b https://orcid.org/0009-0008-9771-0688

co https://orcid.org/0000-0003-3893-3845

^d https://orcid.org/0000-0001-7757-7308

aesthetic and functional quality of the final product. While manual quality inspection remains common, these methods often suffer from limitations including low efficiency, subjectivity, and inconsistent results (Li et al., 2024).

To address these challenges, manufacturers are increasingly adopting the Zero Defects Manufacturing (ZDM) concept, which enables companies to proactively reduce the occurrence of defects and the delivery of poor-quality products by implementing four main strategies: Detection, Repair, Prediction, and Prevention (Caiazzo et al., 2022). Detection and Repair are reactive strategies aimed at identifying and correcting defects after they occur. In contrast, Prediction and Prevention focus on anticipating quality issues and implementing process improvements to completely avoid defects. Although each strategy independently contributes to better manufacturing performance (Fragapane et al., 2023), their combined application can significantly enhance production throughput and reduce resource waste.

This paper presents the development of an auto-

mated visual quality inspection system aligned with the Detection strategy of the ZDM framework. The system has been designed for deployment at the final stage of decorative surfaced wood panel production, in collaboration with Sonae Arauco, a Portuguese manufacturer. Prediction and Prevention strategies for this production process have been previously developed and detailed in (Coutinho et al., 2024). The proposed detection system is not intended to replace human inspection, but rather to enhance it using computer vision (CV) technology to provide real-time, accurate defect identification and thereby support more informed decision-making. Two implementation approaches were explored and benchmarked: one based on traditional CV techniques and other using deep learning (DL) methods.

The remainder of this paper is organized as follows: Section 2 presents the literature review. Section 3 describes the methodology. Section 4 outlines the system implementation. Section 5 presents and discusses the experimental results, and Section 6 provides the conclusions and future work.

2 BACKGROUND AND RELATED WORK

Combining automated detection-based systems with manual inspection processes enhances human–machine collaboration and improves the overall process (Lario et al., 2025). This combined approach not only enables more efficient and accurate quality control but also acts as a two-step verification, reducing human error and minimizing the risk of defective products passing undetected. Industry trends increasingly favor AI-based solutions for quality assurance, with CV playing a major role due to its ability to deliver fast and consistent results (Li et al., 2024).

CV methods can be categorized into traditional and DL techniques (O'Mahony et al., 2020). Traditional methods rely on techniques like filtering and edge detection to extract features. While these techniques perform well on well-defined and simple tasks, they often struggle with variability in product appearance or complex defect patterns (Li et al., 2024). These methods are also highly domain-specific, requiring manual tuning and expert knowledge for each application. DL methods, in contrast, are more adaptable and capable of handling a wider range of inspection challenges, as they can learn directly from raw image data. This ability to learn and generalize from data makes DL approaches typically more scalable and effective across diverse use cases

(O'Mahony et al., 2020). In particular, architectures such as Convolutional Neural Networks (CNNs), Autoencoder Neural Networks (AeNNs), Deep Residual Neural Networks (DRNNs), Fully Convolutional Neural Networks (FCNNs), and Recurrent Neural Networks (RNNs) have become especially prominent in defect detection within smart manufacturing (Jia et al., 2024). Figure 1 illustrates the main differences in workflow between traditional CV and DL approaches.

In the wood industry, particularly in the production of melamine-faced panels, several studies have explored the use of CV methods for defect detection on finished products. Some of these contributions are analyzed below.

Li et al. (2024) (Li et al., 2024) proposed a CV framework based on an improved YOLOv8 model to detect three types of defects in melamine-faced panels: edge breakage, scratches, and surface damage. To address the severe class imbalance in the collected dataset, data augmentation and equalization techniques were applied. These included the use of a Generative Adversarial Network (GAN) to generate synthetic defect images, as well as oversampling methods.

The YOLOv8, a single-stage object detection model built on CNNs, was enhanced by incorporating depth-separable convolutions (DSC), Deformable Convolutional Networks (DCN), an Efficient Multiscale Attention (EMA) mechanism, a Bi-directional Feature Pyramid Network (BiFPN), and customized loss functions. These modifications led to performance improvements over the baseline model, achieving an overall mean average precision (mAP@50) of 78%, precision of 84%, and recall of 78%. The resulting system demonstrated robustness and efficiency in detecting subtle and irregular surface defects.

Aguilera et al. (Aguilera et al., 2018) investigated defect classification in melamine-faced panels using multispectral images from the visible, near-infrared (NIR), and long-wavelength infrared spectrums. A feature descriptor learning approach combined with a Support Vector Machine (SVM) classifier was applied, evaluating two descriptors: Extended Local Binary Patterns (E-LBP) and SURF, both using a Bag of Words representation. The dataset included five defect types: paper scraps, stains, white spots, paper displacement, and bubbles. Data augmentation techniques such as rotation, scaling, noise addition, and translation were used to expand the training data.

Three experiments were conducted: using each spectral band separately, combining bands through early fusion (averaging images), and late fusion (com-

Traditional Computer Vision Input Image Manual Feature Extraction and Selection Deep Learning Input Image Feature Extraction and Classification OUTPUT OUTPUT

Figure 1: Traditional computer vision versus deep learning workflow.

bining descriptors). Results showed that combining spectral bands, especially incorporating information beyond the visible spectrum, significantly improved classification performance compared to using visible images alone.

Similarly, Sá et al. (de Sá et al., 2022) proposed a technique for quality control, focusing on six defect types: stains, paper displacement or detachment, attached material, wrinkled paper, and folded paper. The method followed a traditional CV approach, using feature extraction techniques, specifically Local Binary Pattern (LBP) histograms, combined with an SVM classifier. NIR imaging was used due to its effectiveness in highlighting surface irregularities.

To address the class imbalance in the dataset, an undersampling strategy was applied, limiting the training set based on the size of the minority class. The system achieved strong performance, with precision, recall, and F1-score values above 74% across all defect classes.

Finally, Mehta et al. (Mehta and Klarmann, 2024) introduce a hybrid unsupervised approach for detecting surface defects on melamine-faced panels using high-resolution images captured with a fixed field-of-view (FOV) RGB camera. To prepare the training data, the described method slices the images into smaller crops, extracts features using a pre-trained VGG16 model, and applies K-Means clustering to group similar regions. Artificial defects were added by overlaying texture segments, and data augmenta-

tion techniques, such as rotation, flipping, scaling, and cropping, were applied.

For defect detection, an autoencoder network with skip connections was trained to reconstruct image patches. Defects are identified based on reconstruction errors, as the model learns to reproduce only normal patterns. This approach enabled precise and accurate detection of surface defects, including irregularities on edges, corners, holes, and flat surfaces, without relying on pre-defined regions of interest.

3 METHODOLOGY

This Section details the specific application scenario of the system, along with its architecture, including the hardware and software setup.

3.1 Use Case Description

Decorative surfaced panels are wood-based panels coated on both surfaces with paper impregnated with melamine resin, as illustrated in Figure 2, to enhance resistance and durability. The manufacturing process of these panels is complex, primarily involving the precise cutting of panels and a pressing stage, where heat and pressure are applied to bond the impregnated paper to the surface.

After impregnation, the panels undergo manual inspection by factory operators to detect any surface

Figure 2: Decorative surfaced panel (Akij Board, 2023).

or visible defects. Common issues include torn paper, uneven glue distribution within the paper that causes creases after pressing, and small stains caused by dust or other particles present during production. Examples of these defect types are illustrated in Figure 3.

Some of these defects, such as stains, can be extremely small, sometimes as little as $1mm^2$, while the panels produced by Sonae Arauco can reach sizes up to 6 meters by 3 meters. This disproportion between panel size and defect scale makes the quality inspection process challenging for operators who are not positioned directly next to the entire surface of the panel, as exemplified in Figure 4, increasing the risk of defects going undetected.

3.2 System Architecture

After analyzing the requirements for the system, an initial hardware setup was selected for experimental testing before deployment. The main requirement was that the solution should function as a non-destructive inspection (NDI) system and operate entirely independently from the company's network and production line infrastructure. To meet this constraint, an NVIDIA Jetson Nano was chosen to enable local image processing and CV model deployment, with an RGB camera attached to capture real-time footage of the panels (Figure 5). The camera features a high-resolution 4056 x 3040 pixel sensor and captures only visible light. The entire system, including the Jetson Nano and the camera, is enclosed in a metal case to protect it from dust, sparks, and other environmental factors

Supported by this hardware configuration, the software pipeline processes the live images captured by the camera frame-by-frame. Due to the size of the panels and the constraints of the existing infrastructure, the camera cannot exclusively capture only the panel in each frame. Therefore, each frame undergoes segmentation to isolate the panel from the background. Once the panel area is identified, the system detects and segments any surface defects present. The final output is a live video stream where the detected

defects are highlighted with bounding boxes, providing real-time visual feedback. A simplified overview of this pipeline is illustrated in Figure 6.

For this experimental phase and proof of concept, the system focuses exclusively on white panels, the most commonly produced type, to simplify initial development and validation. The focus is on detecting scratches and stains, as they are frequent and visually distinct defects. According to the factory quality standards, any defect larger than $1mm^2$ is considered relevant, therefore this threshold was adopted during development. Additionally, at this initial stage, the system will also be limited to visible light inspection.

4 IMPLEMENTATION

As previously mentioned, two approaches were compared: one based on traditional CV techniques and the other on DP methods. Due to the limited availability of real images and defective panel samples, a synthetic dataset was first created to support the model's development and evaluation. This Section begins with a description of the dataset generation process, followed by an explanation of the implementation of both panel segmentation and defect detection processes.

4.1 Synthetic Dataset

Due to the limited number of real-world images, a synthetic dataset was generated to supplement the training and testing of the system's models. As described earlier, the real-time system involves two stages: panel segmentation and defect detection on the isolated panel. These stages require two distinct datasets.

For the segmentation model, simple augmentation techniques such as blurring and contrast adjustment were applied to enhance the dataset. For defect detection, a synthetic dataset was created by exploring multiple image augmentation and blending techniques to simulate realistic surface defects on panel images.

Two categories of images were required to train the detection algorithm:

- 1. **Defect-Free Panel Images:** capturing variations in angles, panel sizes, lighting conditions, and other contextual factors.
- Panel Images With Simulated Surface Defects: incorporating different defect formats, sizes, and locations.

For the first category, a combination of geometric transformations and blending techniques was ap-

(a) Stains caused by impurities on the paper surface during pressing.

(b) Paper crease caused by uneven glue distribution.

(c) Stains caused by the pressing plate.

Figure 3: Examples of typical surface defects observed during the production process.

Figure 4: Manual quality inspection of decorative surfaced panels at Sonae Arauco's factory (Ricardo Castelo, 2024).

plied. Geometric transformations included rotation, translation, scaling, and flipping, which helped simulate different perspectives and contexts. In addition, a variety of blending and composition methods were explored to create realistic lighting and texture variations. These included:

- · Alpha Blending.
- Gradient and Radial Gradient Blending.
- Fourier Transform (FFT) Blending.
- Poisson Image Editing (Seamless Cloning).
- Perlin Noise and Gaussian Blur.
- Image Tiling and Patch-Based Composition.

For the second category, to simulate surface defects on the panels, two main strategies were explored:

 Synthetic Dot-Based Defects: This method involved overlaying randomly distributed black dots of varying sizes and densities onto defect-free

Figure 5: Image acquisition system featuring an NVIDIA Jetson Nano in an industrial enclosure, paired with an RGB camera.

panel images. Although simple and efficient, it often produced unrealistic defects that lacked the texture and complexity of real defects.

 Patch-Based Defects: To improve realism, actual defect regions were extracted from the limited set of real-world images. These defect patches were then augmented through random scaling, rotation, and blending before being placed on clean panel backgrounds, resulting in more natural and convincing defect simulations.

4.2 Panel Segmentation

This Section outlines the implementation process of the panel segmentation step for both the traditional CV and DL approaches.

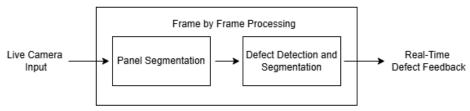


Figure 6: Simplified pipeline of the computer vision system for real-time defect detection.

4.2.1 Traditional Computer Vision Approach

The traditional CV approach to panel segmentation relies on color and contour analysis to isolate the panel from the background in each frame. This process begins by converting the input RGB image to the HSV color space for more effective color-based filtering. A binary mask is then generated by thresholding the HSV image within predefined lower and upper bounds corresponding to the white tones of the panel, as specified in Table 1.

Table 1: HSV threshold values used for the white panel's segmentation.

_		
	Lower Bound	Upper Bound
Hue (H)	0	180
Saturation (S)	0	50
Value (V)	180	255

Following that, contours are extracted from this mask using OpenCV's cv.findContours method. These contours are approximated to polygons, and only those with four vertices are considered as possible panel shapes. The bounding rectangles of these polygons are then evaluated based on their aspect ratio, filtering out shapes that do not match the expected panel proportions. Finally, from the remaining ones, the contour with the largest area is selected as the panel, which is then segmented.

4.2.2 Deep Learning Approach

The DL approach to panel segmentation employed a YOLO-based instance segmentation model, eliminating the need for color-based and contour-driven techniques. The model was trained using the configuration parameters listed in Table 2. As this was the initial phase of the project, only a single set of hyperparameters was used to assess the feasibility of the method.

During training, both real and synthetic panel images were resized to 640×640 pixels and paired with their instance masks before being fed into the model.

Table 2: YOLOv8 model training configuration for panel segmentation.

Parameter	Value
Architecture	YOLOv8 instance segmentation (yolov8n-seg.pt)
Weights	COCO pre-trained segmentation weights
Input Resolution	640×640
Confidence Threshold	0.25
Training Epochs	100
Batch Size	16
IoU Threshold	0.7
Learning Rate	Initial $lr_0 = 0.01$, final $lr_f = 0.01$

Training ran for 100 epochs with batches of 16 images. The model was initialized with COCO pretrained weights, which come from training on a large dataset of common objects. This helped the model learn general visual features faster and improved accuracy during fine-tuning on panel images. Training optimization was carried out using Stochastic Gradient Descent (SGD). Finally, model performance was monitored using metrics such as Intersection over Union (IoU) and confidence scores, with a detection being considered positive if its IoU exceeded 0.7.

At inference time, the model outputs multiple instance masks with associated confidence scores. The largest mask by pixel area is selected, assuming the panel is the dominant object in the image. This segmentation mask is then used as input for the subsequent defect detection stage.

4.3 Defect Detection

This Section outlines the implementation process of the defect detection step for both the traditional CV and DL approaches.

4.3.1 Traditional Computer Vision Approach

In the traditional CV approach, the defect detection process starts by applying to the input segmented panel an adaptive Gaussian threshold, producing a binary image that highlights potential defects by inverting the pixel intensities. From this image, contours are extracted using OpenCV's cv.findContours method. To reduce false positives caused by noise or small irrelevant surface details, only contours exceeding a certain size threshold corresponding to defects larger than a minimum relevant size are considered as defects. This filtering process takes advantage of the company's quality standards, which specify that only defects above a specific physical size are meaningful for quality assessment. Lastly, for each detected defect, a bounding box is drawn to highlight the affected area in the original frame.

4.3.2 Deep Learning Approach

The DL defect detection uses a YOLO-based object detection model trained to identify and localize surface stains in various lighting and distance settings. The model was trained using the configuration parameters listed in Table 3.

Table 3: YOLOv8 model training configuration for defect detection.

Parameter	Value
Architecture	YOLOv8 (yolov8n.pt)
Weights	COCO pre-trained segmentation weights
Input Resolution	640×640
Confidence Threshold	0.25
Training Epochs	100
Batch Size	16
IoU Threshold	0.7
Learning Rate	Initial $lr_0 = 0.01$, final $lr_f = 0.01$

The training dataset consisted of panel images pre-segmented to isolate the relevant region, with each image annotated with bounding boxes around the defects. As with the segmentation task, both real and synthetic data were used to increase variability. Similarly, the model was initialized with COCO pre-trained weights to improve generalization, and optimization was performed using SGD.

During inference, the defect detection model takes the segmented panel image as input and returns a set of bounding boxes with confidence scores. Predictions below a confidence threshold of 0.50 were discarded to reduce false positives. The final output is an annotated image with all identified defects clearly marked for visual inspection. If no defects are detected, the input image is returned unchanged, indicating a defect-free panel surface.

5 RESULTS

This Section presents the results of the synthetic dataset generated and a comparison of the outcomes of the two approaches under two different settings: using the dataset and their real-time performance.

5.1 Synthetic Dataset

For the segmentation model, 83 real-world images were collected at various distances, angles, and lighting conditions. These images were augmented using techniques such as flips, brightness, and saturation adjustments, resulting in a final dataset of 199 images. An example of augmentation applied to a real panel image is shown in Figure 7.

(a) Original panel image.

(b) Augmented image (flipped and brightness-adjusted).

Figure 7: Example of data augmentation applied to a real panel image for the segmentation dataset.

For the defect detection dataset, among the methods described in Section 4.1, the most effective approach was tiling sections of clean panels combined with augmented defect patches extracted from real-world defective panel images. These synthetic defective panels were further enhanced with geometric transformations, noise addition, and contrast adjustments to maximize defect diversity. Starting with 26 real-world defective images, the dataset was expanded to 138 images. Two examples of synthetically generated defective panel images are illustrated in Figure 8.

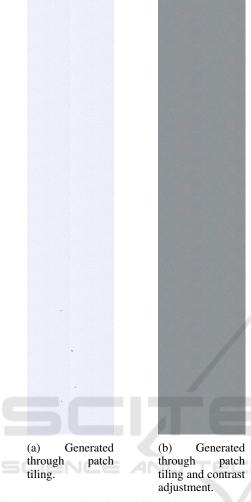


Figure 8: Example of synthetically generated defective panel images.

5.2 Comparison of Traditional and Deep Learning Approaches

Both approaches were evaluated and compared in two settings: using static images from the dataset and through real-time video capture and processing.

5.2.1 Evaluation Through Images

To evaluate the performance of the traditional approach, metrics such as precision, recall, and IoU were calculated. The IoU metric measures the overlap between predicted bounding boxes and actual boxes, and the greater the overlap, the more accurate the prediction.

For panel segmentation, the results were very poor, with all metrics close to zero. This is mainly due to fixed threshold values, such as the HSV ranges and panel proportions, that make the approach highly

sensitive to lighting conditions and panel positioning. Consequently, the method lacks the flexibility needed to generalize effectively across the diverse synthetic dataset.

In contrast, for defect detection, the results showed a mean IoU of 0.584, an average precision of 55.1%, an average recall of 62.1%, and an average F1-Score of 60.2% (Table 4). These results suggest that the approach performs reasonably well at detecting defects, though there is room for improvement, particularly in increasing precision to reduce the number of false positives. Figure 9 presents examples of annotated detection results: in (a) only 1 of 3 defects was detected; in (b) 1 of 4; and in (c) all defects were successfully detected.

Table 4: Performance metrics of the traditional computer vision defect detection approach.

Metric	Value (%)	
Mean Precision	55.1	
Mean Recall	62.1	
Mean IoU	58.4	
Mean F1-Score	60.2	

Despite the moderate detection performance, the poor segmentation results compromise the overall effectiveness of the traditional CV approach, making it not suitable for application across diverse conditions.

The DP approach was also evaluated by assessing the panel segmentation and defect detection models separately. For both models, approximately 20% of the total data was reserved and used for testing.

Table 5 presents the performance metrics of the YOLO-based panel segmentation model. The high scores across the considered metrics indicate that the model is highly effective. In particular, the results suggest a strong alignment between the predicted panel locations and the ground truth annotations. This confirms that the model is precise, making it a reliable predecessor to the defect detection model and suitable for integration into the automated inspection system.

Table 5: Performance metrics of the YOLO-based panel segmentation model.

Metric	Value (%)	
Mean Precision	99.3	
Mean Recall	100.0	
Mean F1-Score	99.6	

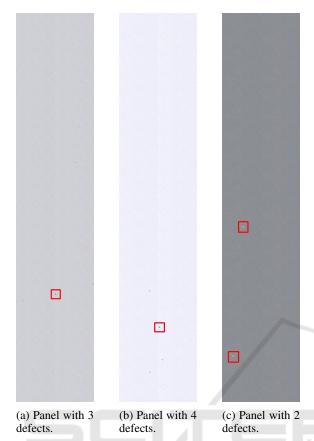


Figure 9: Example results from traditional computer vision defect detection approach.

Table 6 presents the performance metrics of the YOLO-based defect detection model. The results show a strong overall performance, with high values for all metrics. In this context, both precision and recall are equally relevant, as minimizing false positives and false negatives is essential to the reliability of the inspection process.

Table 6: Performance metrics of the YOLO-based defect detection model.

Metric	Value (%)	
Mean Precision	80.0	
Mean Recall	86.9	
Mean F1-Score	83.3	
Wiean F1-Score	63.3	

Figure 10 shows an example of the YOLO-based pipeline applied to a panel image. Despite the promising results of this DL approach, the models were trained and tested on a relatively small dataset, with most of the data being synthetic. Therefore, it is important to note that further work is needed to validate and refine these models using larger and more diverse

real-world datasets.

Nonetheless, in both panel segmentation and defect detection tasks, the DL approach clearly outperforms the traditional CV method. The YOLO-based models achieve higher precision, recall, and F1-score, demonstrating greater robustness and generalization across different conditions. As expected, the traditional approach struggles, especially in segmentation, due to its dependence on hard-coded parameters and its sensitivity to environmental variations.

5.2.2 Evaluation with Live-Video

To perform the real-time evaluation, a set of sample panels was used under various conditions, including different lighting setups and panel angles (tilted versus upright positioning). Under each scenario, the maximum range, measured as the distance from the camera to the panel at which the approach remained functional, was recorded in meters (m). These results are summarized in Table 7.

The results indicate that the traditional CV approach is highly sensitive to both the lighting and the positioning of the panel, with the performance degrading significantly under the suboptimal condi-This outcome was expected, as previously noted, since the relies heavily on fixed thresholds, which are difficult to maintain consistently in variable environments. In contrast, the YOLO-based method demonstrates more robustness, maintaining reliable panel segmentation and defect detection even when the lighting is lower or the panel is tilted. These results are further supported by the previously discussed performance metrics obtained on the static image dataset. In terms of processing time, there were no significant differences between the two approaches.

6 CONCLUSIONS AND FUTURE WORK

This paper presented an automated visual inspection system for melamine-faced wood panel production, designed to support operators and enhance inspection efficiency and reliability. The system integrates the Detection strategy into a broader ZDM framework, alongside existing Prediction and Prevention components.

The proposed solution emphasizes a non-destructive, non-disruptive architecture that runs entirely on-device, using an NVIDIA Jetson Nano paired with an RGB camera to capture real-time footage of the production line. The image processing

5 5 5 S

(a) Original image.

(b) After panel segmentation. (c) After defect detection

and annotation, showing the detection confidence score.

Figure 10: Example of the YOLO-based approach pipeline applied to a panel image.

Table 7: Comparison of real-time performance between traditional CV and YOLO-based methods for panel segmentation and defect detection.

		Traditional CV	YOLO
	Upright Panel under Enhanced Lighting	Up to 1.9 m	Up to 2.7 m
Panel Segmentation	Upright Panel under Normal Room Lighting	Up to 1.1 m	Up to 2.7 m
	Tilted Panel under Enhanced Lighting	Not Functional	Up to 2.1 m
SCIENCE .	Tilted Panel under Normal Room Lighting	Not Functional	Up to 2.1 m
Defect Detection	Detection of All Defect Types	Up to 1.3 m	Up to 1.7 m
	Detection of Major Defects Only	Up to 1.9 m	Up to 2.7 m
	Detection Failure Threshold	Beyond 1.9 m	Beyond 2.7 m

pipeline performs both panel segmentation and surface defect detection, highlighting any identified defects for operator review. Two implementation strategies were compared: a traditional CV approach based on thresholding and contour analysis, and a DL approach based on YOLOv8 models. Due to the limited availability of real defect data, a synthetic dataset was generated using patch blending and data augmentation techniques to support model training and evaluation.

Experimental results from static and real-time video inputs showed that the traditional approach is highly sensitive to lighting and positioning variations, resulting in inconsistent performance. In contrast, the YOLO-based solution consistently delivered more accurate and robust results, making it the more suitable approach for practical deployment.

Future work will focus on:

- · Extending the detection capabilities to a wider variety of panel textures, colors, and defect types.
- Evaluating different camera types and lighting setups (e.g., visible, infrared) under various acquisition conditions to enhance defect visibility. This includes exploring multi-camera systems for broader spectral coverage.
- Expanding both real-world and synthetic datasets to improve model generalization.
- Fine-tuning the DL models and optimizing hyperparameters for improved performance.
- Deploying and testing the system directly on the production line.

ACKNOWLEDGEMENTS

This work was partially supported by the HORIZON-CL4-2021-TWIN-TRANSITION-01 openZDM project, under Grant Agreement No. 101058673.

REFERENCES

- Aguilera, C. A., Aguilera, C., and Sappa, A. D. (2018). Melamine faced panels defect classification beyond the visible spectrum. *Sensors*, 18.
- Akij Board (2023). Melamine Faced Board. https://akijboar d.com/melamine-board/. Last Accessed: 2024-05-27.
- Caiazzo, B., Nardo, M. D., Murino, T., Petrillo, A., Piccirillo, G., and Santini, S. (2022). Towards zero defect manufacturing paradigm: A review of the state-of-theart methods and open challenges. *Computers in Indus*try, 134.
- Coutinho, B., Pereira, E., and Gonçalves, G. (2024). 0-dmf: A decision-support framework for zero defects manufacturing. In *Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics*, pages 253–260. SCITEPRESS Science and Technology Publications.
- de Sá, F. P., Aguilera, C., Aguilera, C. A., and Conci, A. (2022). *Melamine Faced Panel Inspection, Towards an Efficient Use of Natural Resources*, volume 224, pages 165–183. Springer Science and Business Media Deutschland GmbH.
- Fragapane, G., Eleftheriadis, R., Powell, D., and Antony, J. (2023). A global survey on the current state of practice in zero defect manufacturing and its impact on production performance. *Computers in Industry*, 148.
- Hoffmann, R. and Reich, C. (2023). A systematic literature review on artificial intelligence and explainable artificial intelligence for visual quality assurance in manufacturing. *Electronics*, 12(22).
- Jia, Z., Wang, M., and Zhao, S. (2024). A review of deep learning-based approaches for defect detection in smart manufacturing. *Journal of Optics (India)*, 53:1345–1351.
- Lario, J., Mateos, J., Psarommatis, F., and Ángel Ortiz (2025). Towards zero defect and zero waste manufacturing by implementing non-destructive inspection technologies. *Journal of Manufacturing and Materi*als Processing, 9.
- Li, R., Xu, Z., Yang, F., and Yang, B. (2024). Defect detection for melamine-impregnated paper decorative particleboard surface based on deep learning. Wood Material Science and Engineering.
- Mehta, D. and Klarmann, N. (2024). Autoencoder-based visual anomaly localization for manufacturing quality control. *Machine Learning and Knowledge Extraction*, 6:1–17.
- O'Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., Riordan, D., and Walsh, J. (2020). Deep learning vs. traditional computer vision. In *Advances in Intelligent Systems and*

- Computing, volume 943, pages 128–144. Springer Verlag.
- Psarommatis, F., May, G., and Azamfirei, V. (2023). The role of human factors in zero defect manufacturing: A study of training and workplace culture. In Alfnes, E., Romsdal, A., Strandhagen, J. O., von Cieminski, G., and Romero, D., editors, Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures, pages 587–601, Cham. Springer Nature Switzerland.
- Ricardo Castelo (2024). Sonae Arauco quer "domesticar as fábricas" para serem mais eficientes. https://eco.sapo.pt/reportagem/sonae-arauco-quer-domesticar-as-fabricas-para-serem-mais-eficientes/. Last Accessed: 2025-05-21.

