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Abstract: Visual SLAM (Simultaneous Localization and Mapping) is a foundational technology for autonomous navi-

gation, enabling simultaneous localization and mapping in diverse indoor and outdoor environments. Among

its components, loop closure plays a vital role in maintaining global map consistency by recognizing revisited

locations and correcting accumulated localization errors. Conventional SLAM methods have primarily relied

on RGB cameras, leveraging feature-based matching and graph optimization to achieve high-precision loop

detection. Despite their success, these methods are inherently sensitive to illumination conditions and often

fail under low-light or high-contrast scenes. Recently, thermal infrared cameras have gained attention as a ro-

bust alternative, particularly in dark or visually degraded environments. While various thermal-inertial SLAM

approaches have been proposed, they still depend heavily on static structures and visual features, limiting their

effectiveness in textureless or dynamic environments. To address this limitation, we propose a novel loop clo-

sure method that utilizes Human-Object Interaction (HOI) as dynamic-static composite landmarks in thermal

imagery. Although humans are conventionally considered unsuitable as landmarks due to their motion, our

approach overcomes this by introducing HOI feature points as landmarks. These feature points exhibit both a

human attribute, characterized by stable detection across RGB and thermal domains via person tracking, and a

static-object attribute, characterized by contact with visually consistent, semantically meaningful objects. This

duality enables robust loop closure even in dynamic, low-texture, and dark environments, where traditional

methods typically fail.

1 INTRODUCTION

Visual SLAM (Simultaneous Localization and Map-

ping) plays an essential role in both indoor and out-

door robotic navigation by enabling robots to simul-

taneously estimate their own position and construct a

map of the surrounding environment. Within Visual

SLAM, loop closing is a critically important func-

tion (Klein and Murray, 2007; Cummins and New-

man, 2008; Mur-Artal et al., 2015a; Ali et al., 2022;

Adlakha et al., 2020). It allows the system to rec-

ognize previously visited locations and integrate cur-

rent observations with past map information, thereby

mitigating the accumulation of localization errors and

maintaining global map consistency. However, real-

world environments are dynamic and often present

significant challenges to loop closure due to factors

such as lighting changes, viewpoint variations, occlu-

sions, and differences in image features, all of which

can significantly degrade the accuracy and robustness

of the process.

Conventional loop closure methods in Visual

SLAM have primarily been developed under the as-

sumption of RGB cameras (visible light sensors).

These approaches typically extract image features

such as SIFT (Lowe, 2004) or ORB (Rublee et al.,

2011) and estimate camera motion and environmental

structure based on the geometric relationships among

these features. Over time, the field has progressed

from early filter-based techniques (Montemerlo et al.,

2002) to more advanced graph optimization-based

methods, such as ORB-SLAM (Mur-Artal et al.,

2015b) and LSD-SLAM (Engel et al., 2014), achiev-

ing high-precision localization, robust mapping, and

real-time performance. Nonetheless, RGB-based

methods are fundamentally limited by their reliance

on lighting conditions. In environments with low illu-

mination or high dynamic range, extracting sufficient

image features becomes difficult, leading to substan-

tial degradation in overall system performance (Sapu-

tra et al., 2022).

To overcome the limitations of RGB cameras,
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Figure 1: Humans are typically unsuitable as traditional
landmarks due to their dynamic nature. However, this study
focuses on Human-Object Interaction (HOI) with static ob-
jects, demonstrating their effectiveness as landmarks.

thermal infrared (IR) cameras have attracted increas-

ing attention for loop closure applications (Saputra

et al., 2022; Shin and Kim, 2019; van de Molengraft

et al., 2023; Li et al., 2025; Xu et al., 2025). As they

do not require visible light, thermal cameras offer a

promising solution for maintaining localization and

map consistency under visually degraded conditions,

such as darkness, smoke, or dust. Several studies

have explored this direction, including Graph-Based

Thermal-Inertial SLAM (Saputra et al., 2022), which

combines thermal imagery with IMU data, and Fire-

botSLAM (van de Molengraft et al., 2023), which

targets disaster scenarios with poor visibility due to

smoke. Other approaches include WTI-SLAM (Li

et al., 2025), designed for weakly textured thermal

images, and SLAM in the Dark (Xu et al., 2025),

which employs self-supervised learning to achieve ac-

curate loop closure. Additionally, Sparse Depth En-

hanced SLAM (Shin and Kim, 2019) leverages sparse

depth from external sensors to improve localization

accuracy. While these works demonstrate the poten-

tial of thermal-based approaches for loop closure in

harsh conditions, many of them still heavily rely on

static structures and feature points in the environment.

Thus, robustness remains limited in scenes that are

weakly textured or feature-sparse.

To address these challenges, this study proposes

a novel loop closure method that utilizes humans—

a small set of object categories commonly present

in human environments—as dynamic landmarks (Fig.

1). While humans are inherently dynamic and may

seem unsuitable as conventional landmarks, this work

focuses on human-object interactions (HOIs) (Antoun

and Asmar, 2023), leveraging the static objects in-

volved in such interactions as reliable cues. In ther-

mal imagery, human features are especially salient

(Teixeira et al., 2010), making them highly effective

for detecting HOIs. The proposed method operates in

three main steps. First, a thermal-domain-specific hu-

man tracker is trained to accurately localize human

regions within thermal images. Second, HOI fea-

tures are extracted from the detected human regions.

Third, loop closure is performed by matching these

HOI features between query and reference images us-

ing RANSAC (Random Sample Consensus) (Chum

et al., 2003). This approach aims to enable stable loop

closure even in challenging environments with limited

static features or dynamic elements, where conven-

tional feature-based methods often struggle.

2 RELATED WORK

Loop closing has developed as one of the core chal-

lenges in SLAM for robotics. In the early stages,

Klein and Murray introduced PTAM (Parallel Track-

ing and Mapping), which separated real-time camera

tracking from mapping, enabling high-precision map-

ping in small-scale environments (Klein and Mur-

ray, 2007). Subsequently, FAB-MAP, proposed by

Cummins and Newman (Cummins and Newman,

2008), adopted a Bayesian approach based on the co-

occurrence probability of visual features, significantly

improving the reliability of loop detection. FAB-

MAP 2.0 extended this framework to enable loop

closure based solely on visual appearance in large-

scale environments (Cummins and Newman, 2010).

In 2015, ORB-SLAM by Mur-Artal et al. (Mur-Artal

et al., 2015a) gained widespread adoption by employ-

ing the lightweight and high-precision ORB descrip-

tor, demonstrating robust performance in real-world

applications. More recently, advances in deep learn-

ing have led to learning-based approaches from the

feature extraction stage, as seen in NetVLAD (Arand-

jelovic et al., 2018), a CNN-based place recogni-

tion method. Furthermore, Bi-directional Loop Clo-

sure (Ali et al., 2022) considers temporal context in

both forward and backward directions, improving ro-

bustness. To ensure performance under conditions

where visible light is unavailable, such as in darkness

or smoke-filled environments, studies like DeepTIO

(Adlakha et al., 2020) have explored the integration of

thermal imagery with inertial measurements, indicat-

ing that multi-modal approaches adapted to specific

sensing domains will be crucial in the future.

Recent loop closure techniques have achieved

rapid innovation through advances in deep learn-

ing, neural rendering, semantics, and self-supervised

learning. For instance, GLC-SLAM (Chen et al.,

2024) integrates loop closure with a 3D scene rep-
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resentation based on Gaussian Splatting, achieving

both photorealistic rendering and precise localization.

SGLC (Wang et al., 2024) targets loop closure in Li-

DAR SLAM by introducing a coarse-fine-refine strat-

egy using semantic graphs, enabling accurate pose

correction and map consistency in large-scale envi-

ronments. DK-SLAM (Qu et al., 2024) presents a uni-

fied deep learning-based pipeline from keypoint de-

tection to loop closure, significantly improving local-

ization accuracy and generalization with monocular

cameras. Loopy-SLAM (Liso et al., 2024) incorpo-

rates loop closure into dense NeRF-based scene rep-

resentations, allowing relocalization and map consis-

tency without relying on voxel grids. A novel trend

is introduced by AutoLoop (Lahiany and Gal, 2025),

which automates the fine-tuning process of existing

SLAM models via agent-based curriculum learning,

enabling fast and autonomous adaptation for loop clo-

sure. Additionally, 2GO (Lim et al., 2025) proposes

an extremely efficient approach capable of detecting

loops from just two viewpoints, dramatically reduc-

ing the computational cost of SLAM systems through

lightweight multi-view inference. These cutting-edge

studies contribute to enhancing the robustness, scala-

bility, and autonomy of loop closure, each leveraging

different sensors, representations, and learning strate-

gies.

Loop closure based on thermal infrared cameras

has recently gained attention as a robust solution for

maintaining localization and map consistency in dark,

smoky, or dusty environments where visible light can-

not be used. Graph-Based Thermal-Inertial SLAM

(Saputra et al., 2022) integrates thermal imagery with

IMU data and applies probabilistic neural pose graph

optimization to achieve both accuracy and robustness,

demonstrating effectiveness across various scenarios

including indoor and outdoor handheld cameras and

SubT tunnels. Sparse Depth Enhanced SLAM (Shin

and Kim, 2019) improves loop consistency by sup-

plementing direct thermal SLAM with sparse depth

measurements from external sensors, demonstrating

the effectiveness of multimodal fusion. Firebot-

SLAM (van de Molengraft et al., 2023), designed for

smoke-obscured disaster environments, significantly

improves situational awareness by generating maps

and loop closing using thermal imagery alone in con-

ditions of zero visibility. WTI-SLAM (Li et al., 2025)

addresses the difficulty of loop detection in weakly

textured thermal images by introducing a specialized

feature extraction and tracking algorithm, enabling

loop closure in cases where traditional visible-light

SLAM methods fail. SLAM in the Dark (Xu et al.,

2025), proposed by Xu et al., introduces a unified

deep model that learns pose, depth, and loop closure

entirely from thermal imagery in a self-supervised

manner, achieving high-accuracy loop closure using

only thermal sensing. These studies suggest new di-

rections for robust loop closure in extreme environ-

ments through sensor fusion and learning-based ap-

proaches grounded in thermal infrared imaging.

3 PROBLEM FORMULATION

Following prior work, we formulate loop closure as

an image retrieval problem. Given a query image

captured at the current location, the objective is to

find a matching image from a database of previously

observed images that corresponds to the same physi-

cal location. This formulation casts loop closure as a

place recognition task, where a successful match in-

dicates a loop has been detected. This perspective en-

ables the integration of image retrieval techniques—

such as feature extraction, similarity computation,

and geometric verification—into the SLAM pipeline

to achieve robust loop detection. Under this formu-

lation, the performance of loop closure is typically

assessed using the metrics of precision and recall.

Precision indicates the proportion of correctly iden-

tified loop closures among all retrieved results, re-

flecting the system’s ability to minimize false posi-

tives. Recall measures the proportion of actual loop

closures that are successfully detected, indicating the

system’s ability to avoid false negatives. These met-

rics often present a trade-off, and the design of the

retrieval system must balance them appropriately de-

pending on the characteristics of the target environ-

ment and the requirements of the task. To capture

both precision and recall characteristics in a single

metric, we adopt a ranking-based evaluation criterion,

namely the Mean Reciprocal Rank (MRR), in our ex-

periments. MRR evaluates the rank position of the

first correct match in the retrieval results, thereby pro-

viding a balanced view of detection accuracy and re-

liability.

It should be noted, however, that loop closure

differs from general image retrieval in several ways.

First, in practice, loop closure is not triggered for ev-

ery incoming image. Instead, a pre-processing step

ensures that only sufficiently feature-rich query im-

ages are selected, avoiding loop detection attempts

on low-texture or ambiguous inputs. Second, a post-

processing step often evaluates the confidence of the

retrieved result, and if the confidence is low, the result

is discarded and not used in the subsequent SLAM op-

timization. These pre- and post-processing steps are

crucial for maintaining the stability and reliability of

SLAM in real-world conditions. For simplicity, the
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proposed method in this work does not explicitly in-

clude such pre- or post-processing steps. We assume

that a query image is already suitable for loop detec-

tion and that the retrieved results are directly used for

matching and verification.

Traditional loop closure approaches have primar-

ily used static objects in the environment as land-

marks. This strategy offers advantages due to the

fixed nature of such landmarks, allowing for con-

sistent and reliable feature extraction. Additionally,

decades of research have contributed to the maturity

and robustness of this approach. However, it also has

several limitations. Variations in lighting conditions,

viewpoints, seasons, and time of day can significantly

alter the visual appearance of scenes, introducing am-

biguity and leading to false positives or missed de-

tections. Moreover, in appearance-based SLAM sys-

tems that lack absolute distance measurements, align-

ing local maps built at different scales becomes dif-

ficult due to scale ambiguity. In large-scale environ-

ments, the growing size of the map increases compu-

tational costs, and the presence of moving objects or

temporally varying structures can further destabilize

the system and lead to incorrect loop closures.

To address these limitations, we propose a novel

loop closure method that employs dynamic entities,

specifically humans, as landmarks. One notable ad-

vantage of this approach is that humans exhibit clear

thermal signatures in thermal images, making them

relatively easy to detect compared to surrounding en-

vironments. This feature opens up the possibility of

effective loop detection in dark environments where

humans are prominent landmarks. Using dynamic hu-

mans as landmarks also enhances the adaptability of

SLAM systems to dynamic environments, which are

challenging for traditional static-object-based meth-

ods. Furthermore, leveraging human motion patterns

and behaviors may offer additional cues for more

complex scene understanding and localization.

However, this approach also presents significant

challenges. Thermal images are often noisy, and hu-

man appearance can vary substantially depending on

posture, clothing, and carried items, making detec-

tion and re-identification difficult. Humans constantly

move, appear, and disappear, introducing high vari-

ability and instability when used as landmarks. As

a result, achieving high-precision loop detection re-

mains extremely challenging, and a single misiden-

tification can severely compromise the entire system.

Limitations of thermal cameras further complicate the

problem. Thermal imagery lacks color information

and often provides limited shape or semantic detail,

making it difficult to extract meaningful features com-

pared to RGB imagery. Additionally, variations in

body temperature can alter thermal signatures over

time, hindering consistent feature extraction.

4 APPROACH

Figure 2 illustrates the system architecture of the pro-

posed method. As shown, the system consists of three

main components: static landmark-based loop closure

detection (SLCD), dynamic landmark-based loop clo-

sure detection (DLCD), and an information fusion

module that integrates the outputs of these two LCD

modules.

The SLCD component can employ any existing

method such as conventional thermal SLAM. In this

study, as described in Section 4.1, we utilize a clas-

sical approach based on SuperPoint matching. The

DLCD component is our newly introduced dynamic

landmark-based LCD, detailed in Section 4.2. The

information fusion module fuses the outputs from the

two LCD modules; while it is not the main focus of

this study, we provide a simple implementation exam-

ple in Section 4.3.

4.1 Static Landmark-Based LCD

As a conventional static landmark-based LCD

(SLCD) method, this study adopts a feature match-

ing approach using only 2D coordinates extracted by

the SuperPoint feature extractor (DeTone et al., 2018).

The detailed procedure is as follows.

4.1.1 Mutual Nearest-Neighbor Matching

For each feature point in the query image, the near-

est feature point in the reference image is found, and

vice versa. Only feature point pairs mutually nearest

in both directions are retained as matches, effectively

reducing false matches.

4.1.2 Geometric Consistency Verification

Matches are filtered by constraining the vertical co-

ordinate difference based on the image height to be

within a predefined threshold, enhancing the geomet-

ric validity of the matching results.

4.1.3 Homography Estimation via RANSAC

Random samples of matched feature pairs are selected

to estimate a homography (planar projective trans-

form). All matched points are then projected by this

homography, and points with reprojection error below

a threshold are considered inliers. This process is re-
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Figure 2: The SLCD module performs loop closure detection using static landmarks based on conventional methods like
SuperPoint matching. The DLCD module, newly proposed in this research, performs loop closure detection using dynamic
landmarks. The Information Fusion module integrates the results from both the SLCD and DLCD modules.

peated multiple times, and the homography with the

largest inlier set is chosen as the final model.

4.2 Dynamic Landmark-Based LCD

To overcome the limitations discussed previously,

several prior works offer important insights. In the

domain of loop closure and image change detection

(LCD-ICD), studies show that if the relative position

between landmark A and object B remains invariant,

they can be considered “pseudo-static,” allowing their

use as features in dynamic environments over short

SLAM durations. Research on Human-Only SLAM

(Tanaka, 2002) treats occlusion boundaries between

humans and occluding objects as landmarks, mitigat-

ing false negatives by exploiting intermediate prop-

erties between dynamic and static objects. Building

on these ideas, HO3-SLAM (Human-Object Occlu-

sion Ordering SLAM) (Liang and Tanaka, 2024) ef-

fectively utilizes occlusion boundary points as key-

points for loop closure (see Fig. 1). HO3-SLAM no-

tably exploits the stability of human attributes across

RGB and thermal (T) domains and the reliability of

static object attributes in appearance, shape, and se-

mantics, providing valuable guidance for robust loop

closure in dynamic environments.

4.2.1 HOI Feature Extraction

The proposed dynamic landmark-based loop closure

detection proceeds as follows. Given each image

frame, human regions are detected from thermal im-

ages. Detected bounding boxes are tracked and as-

signed unique human IDs. Pixel-wise AND operation

between bounding boxes and human regions identifies

precise human areas with IDs.

Figure 3: As a simple example of an HOI feature, this
experiment utilizes the bottom-most point formed at the
boundary between the human and the object. Top-left: Hu-
man tracking result; Top-right: Temperature thresholding;
Bottom-left: AND operation; Bottom-right: HOI feature
point.

For each human ID, at every horizontal pixel co-

ordinate x within the bounding box, the pixel with

the largest vertical coordinate y (closest to the im-

age bottom) belonging to the human region is selected

(Fig. 3). These “bottom points” serve as Human-

Object Interaction (HOI) feature points, possessing

two key properties: (1) human attributes that are sta-

bly detectable via tracking in both RGB and thermal

domains, and (2) static object attributes that are in-

variant in appearance, shape, and semantics, func-

tioning as reliable landmarks. The set of HOI fea-

ture points is defined as landmarks and recorded in

the map along with frame IDs. These landmarks ex-

tracted from the current frame are matched against

previously recorded landmarks. The matching score
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is computed between landmark sets of current and

past frames using RANSAC (Section 4.2.2) to eval-

uate matching reliability. Loop closure candidates are

ranked based on these matching scores.

4.2.2 RANSAC Feature Matching

Because outliers are inevitable in feature matching,

we apply the RANSAC algorithm to increase the re-

liability of the estimated geometric transform. The

algorithm starts by randomly selecting four non-

repeating correspondence pairs (the minimum re-

quired to estimate a homography) from the initial

matching set between the query and database images.

A tentative homography matrix is computed from

these samples. Linear algebraic issues such as sin-

gularities invalidate the trial. The homography model

projects points from the reference image to the query

image; correspondences with reprojection error below

the inlier threshold (Tinlier = 5.0 pixels) are consid-

ered inliers. The process iterates up to a maximum

number of trials (Ntrials = 100) to find the homography

with the largest inlier count. If fewer than four initial

matches exist, homography estimation is aborted and

RANSAC terminated.

4.2.3 Training Thermal Infrared (TIR) Human

Tracker

Tracking humans in darkness is critical for applica-

tions including surveillance, security, and disaster res-

cue. Conventional RGB cameras fail under low illu-

mination, necessitating thermal infrared (TIR) cam-

eras. Developing a TIR human tracker requires exten-

sive annotated data, but manual labeling is costly. We

propose a training method that reduces this burden by

synchronously capturing RGB and TIR videos from

co-located cameras. A pretrained high-performance

RGB tracker generates bounding boxes and human

IDs automatically on RGB videos, creating pseudo-

labels. These pseudo-labels paired with correspond-

ing TIR frames train the TIR tracker, enabling robust

human tracking in darkness without manual annota-

tions. Both RGB and TIR trackers use ByteTrack

(Zhang et al., 2022) as their backbone.

4.3 Information Fusion

To leverage complementary information and improve

robustness in image retrieval, this study integrates the

baseline static landmark-based LCD (Section 4.1) and

the proposed dynamic landmark-based LCD (Sec-

tion 4.2). This integration aims to maximize the

strengths of both methods and enhance retrieval ac-

curacy.

For effective fusion of the two retrieval results, we

adopt Reciprocal Rank Fusion (RRF) (Cormack et al.,

2009), a widely used technique to combine rankings

from heterogeneous sources. RRF fairly balances the

contribution of each method’s top results, improving

overall performance.

The fusion process proceeds as follows.

4.3.1 Ranking Generation for Each Method

SLCD and DLCD produce separate ranked lists of

database images in descending order of matching

scores for a given query.

4.3.2 Reciprocal Rank Computation

For each database image, the reciprocal rank is calcu-

lated for its rank r in each method by:

RRF =
1

k+ r

where k is a constant parameter. Based on prelimi-

nary experiments, we set k = 0 in this study. Lower

ranks yield higher reciprocal rank values, giving more

weight to more relevant images.

4.3.3 Summation of Reciprocal Ranks and Final

Score

For each database image, reciprocal ranks from

SLCD and DLCD are summed to obtain a final fusion

score:

Fusion Score = RRFSLCD +RRFDLCD.

Sorting database images by these fusion scores pro-

duces the final retrieval ranking.

This reciprocal rank fusion allows images ranked

highly by either method to be properly emphasized,

thus enhancing overall retrieval performance.

5 EXPERIMENTS

The primary objective of this experiment is to eval-

uate the loop closing performance of a mobile robot

operating in low-light indoor environments. Specif-

ically, we assess the effectiveness of the proposed

method using thermal images captured by a thermal

camera in the presence of dynamic elements such as

humans.

5.1 Setup

The experimental platform is a tricycle-drive mo-

bile robot equipped with an onboard computer. A
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Figure 4: Experimental environment, robot, and robot tra-
jectory.

monocular thermal camera (HIKMICRO Pocket2) is

mounted on the front of the robot. This camera has

a resolution of 256×192 pixels; thermal images are

continuously recorded during motion. The data are

collected in video mode, with an empirically mea-

sured average frame rate of approximately 25 Hz.

Each frame is timestamped and precisely synchro-

nized with odometry data (position: x,y; orientation:

θ) estimated from the robot’s encoders. These data

are used to construct the ground-truth dataset for loop

closure evaluation. The temperature range of the ther-

mal camera is configured to 20-30◦C to enhance con-

trast between human bodies and the background. As a

result, human subjects (with body temperatures of ap-

proximately 36◦C) appear as high-intensity regions,

enabling clear identification as dynamic landmarks.

Experiments were conducted in an indoor envi-

ronment measuring approximately 7.0 m by 3.0 m

(Fig. 4). Six rectangular tables were arranged

throughout the space, with four individuals randomly

seated around each table. This layout was designed

to reproduce conditions in which humans function as

prominent high-temperature regions in thermal im-

agery. The robot autonomously navigated a clockwise

path around the room while continuously recording

thermal images. The experiment was conducted to

evaluate loop closing performance in this dynamic en-

vironment. Figure 5 shows thermal images captured

by the robot’s on-board camera.

The collected dataset (1996 frames) includes

seated individuals who appear as dynamic high-

intensity regions. Odometry and timestamps were

recorded alongside each frame to serve as input for

loop closure evaluation.

Loop closing performance was evaluated using the

number of inliers from homography estimation as the

key metric. Specifically, the mean reciprocal rank

(MRR) score was calculated based on the ranking

Figure 5: Input images.

Figure 6: Image matching process. For each row, from left
to right, the images represent the following: Input Image,
Feature Map, Top-1 Ranked Reference Image, and Ground-
Truth Reference Image.

of ground-truth loop-closure pairs using RANSAC-

based inlier counts. In addition, the average process-

ing time per query frame was measured to assess com-

putational efficiency.

All thermal images were synchronized with

odometry data via linear interpolation based on ac-

quisition timestamps. High-intensity regions at the

lower part of each image were extracted via thresh-

olding to obtain bottom-edge feature points, which

serve as dynamic landmarks. Ground-truth loop clo-

sures were determined by identifying database frames

within 0.2 m of the query frame’s odometric position.

Figure 6 shows the image matching process in the

proposed method, DLCD.
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Table 1: Performance results.

MRR

DLCD 0.222

SLCD 0.124

DLCD+SLCD 0.224

5.2 Baseline and Proposed Methods

The evaluated methods detect loop closures between

thermal images using feature point matching followed

by homography estimation via RANSAC. Image fea-

tures were precomputed and loaded as sets of 2D co-

ordinates. Homographies were estimated using the

Direct Linear Transform (DLT) algorithm applied to

homogeneous coordinates, with RANSAC employed

for outlier rejection. In each RANSAC iteration,

four randomly selected correspondences were used

to compute a homography hypothesis. Inliers were

determined as correspondences with projection errors

below a 5.0-pixel threshold. The model with the max-

imum number of inliers over 100 trials was selected

as the final result. If fewer than four correspondences

were available, homography estimation was skipped.

We compare the conventional SLCD, the proposed

DLCD, and their fusion as described in Section 4.3.

Each method is evaluated to assess its performance

and robustness in a dynamic environment.

5.3 Results

The experimental results report the loop closing ac-

curacy, specifically the mean reciprocal rank (MRR)

score. The average processing time per query frame,

including homography estimation and inlier compu-

tation, is summarized in Table 1. These results clarify

the loop closing performance and highlight the com-

putational efficiency of the proposed approach in a

dynamic environment. Figure 7 shows matching re-

sults for both of the SLCD and DLCD methods.

We can see that the proposed DLCD method

clearly outperforms the baseline SLCD method. In

addition, the fusion method SLCD+DLCD performs

slightly better than the proposed method, demonstrat-

ing the effectiveness of the approach of fusing the two

methods.

6 CONCLUSIONS & FUTURE

WORK

This study introduced a novel loop closure method

for Visual SLAM that leverages human-object inter-

actions (HOIs) as dynamic landmarks in challenging

environments. Unlike conventional approaches that

rely on static features or are limited by illumination

conditions, our method utilizes the salient features of

humans in thermal imagery to detect HOIs, treating

the static objects involved in these interactions as re-

liable cues for loop closure. The proposed pipeline

involves a thermal-domain-specific human tracker,

HOI feature extraction from detected human regions,

and RANSAC-based matching for robust loop clo-

sure. Our approach aims to enhance the stability of

loop closure, particularly in scenarios characterized

by limited static features or significant environmental

dynamics where traditional methods often fail.

Building upon the insights and methodology pre-

sented in this study, future research will explore sev-

eral promising directions:

• Quantitative Evaluation in Diverse Real-World

Scenarios: While the theoretical framework for

utilizing HOIs has been established, comprehen-

sive quantitative evaluation in a wider array of

real-world environments is crucial. This includes

datasets with varying degrees of human activity,

diverse object categories, and more complex en-

vironmental changes (e.g., severe occlusions, ex-

treme temperature variations).

• Integration with Existing SLAM Frameworks:

Our current work focuses on the loop closure

module. Integrating this HOI-based loop closure

method into a full-fledged Visual SLAM system

(e.g., ORB-SLAM, LSD-SLAM) and evaluating

its end-to-end performance would be a significant

next step. This would involve assessing the im-

pact on global map consistency, localization ac-

curacy, and real-time performance.

• Robustness to Ambiguous HOI Detections: The

accuracy of HOI detection is paramount for the

effectiveness of our method. Future work will in-

vestigate techniques to improve the robustness of

HOI detection, especially in cases of partial oc-

clusions, unusual human poses, or ambiguous in-

teractions. This could involve exploring more ad-

vanced deep learning architectures or incorporat-

ing temporal reasoning.

• Scalability for Large-Scale Environments: For ap-

plications in large-scale environments, managing

and matching a potentially vast number of HOI

features could become computationally intensive.

Research into efficient data structures, indexing

methods, and feature aggregation techniques will

be necessary to ensure scalability.

• Extension to Other Dynamic Elements: While this

study focuses on humans, the concept of leverag-

ing dynamic entities interacting with static objects
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Figure 7: Image matching results. Left: DLCD. Right: SLCD.

could be extended to other categories, such as ve-

hicles or other mobile robots. Investigating the ap-

plicability and benefits of such extensions would

broaden the scope of this approach.

• Fusion with Complementary Sensors: Combin-

ing thermal imagery with data from other sensor

modalities (e.g., event cameras for high dynamic

range, LiDAR for precise 3D geometry) could fur-

ther enhance the robustness and accuracy of HOI-

based loop closure, especially in highly challeng-

ing conditions.

7 LIMITATIONS

While the proposed method demonstrates promising

results, it is important to acknowledge several limita-

tions:

• Robustness of HOI Detection: The accuracy of

human-object interaction (HOI) detection directly

impacts the performance of our method. De-

tecting HOIs can be challenging under complex

poses, partial occlusions, or extreme lighting con-

ditions. Although human features are salient in
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thermal images, these challenges still exist.

• Nature of Dynamic Landmarks: Due to the dy-

namic nature of humans, the reliability of loop

closure might be affected if HOIs are transient.

While our focus is on interactions with static ob-

jects, the duration and stability of the interaction

itself can influence the overall robustness of the

system.

• Sparsity of Features: While our method is ef-

fective in environments with few static features,

there might be situations where HOIs themselves

are very rare, leading to an insufficient number of

landmarks. This becomes particularly evident in

environments with minimal human presence or in-

frequent interactions with specific objects.

• Computational Cost: Detecting and track-

ing HOIs, and subsequently performing feature

matching based on them, can be computation-

ally more intensive compared to traditional static

feature-point-based methods. Efficient algorithms

and optimization will be crucial to maintain real-

time performance.

• Dataset Diversity: Current evaluations might be

dependent on specific datasets. A comprehen-

sive quantitative evaluation across a wider range

of real-world scenarios, especially those involving

diverse human activities, object categories, and

complex environmental changes (e.g., severe oc-

clusions, extreme temperature variations), is nec-

essary.
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