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Visual SLAM (Simultaneous Localization and Mapping) is a foundational technology for autonomous navi-
gation, enabling simultaneous localization and mapping in diverse indoor and outdoor environments. Among
its components, loop closure plays a vital role in maintaining global map consistency by recognizing revisited
locations and correcting accumulated localization errors. Conventional SLAM methods have primarily relied
on RGB cameras, leveraging feature-based matching and graph optimization to achieve high-precision loop
detection. Despite their success, these methods are inherently sensitive to illumination conditions and often
fail under low-light or high-contrast scenes. Recently, thermal infrared cameras have gained attention as a ro-
bust alternative, particularly in dark or visually degraded environments. While various thermal-inertial SLAM
approaches have been proposed, they still depend heavily on static structures and visual features, limiting their
effectiveness in textureless or dynamic environments. To address this limitation, we propose a novel loop clo-
sure method that utilizes Human-Object Interaction (HOI) as dynamic-static composite landmarks in thermal
imagery. Although humans are conventionally considered unsuitable as landmarks due to their motion, our
approach overcomes this by introducing HOI feature points as landmarks. These feature points exhibit both a
human attribute, characterized by stable detection across RGB and thermal domains via person tracking, and a
static-object attribute, characterized by contact with visually consistent, semantically meaningful objects. This
duality enables robust loop closure even in dynamic, low-texture, and dark environments, where traditional
methods typically fail.

Conventional loop closure methods in Visual
SLAM have primarily been developed under the as-

Visual SLAM (Simultaneous Localization and Map-
ping) plays an essential role in both indoor and out-
door robotic navigation by enabling robots to simul-
taneously estimate their own position and construct a
map of the surrounding environment. Within Visual
SLAM, loop closing is a critically important func-
tion (Klein and Murray, 2007; Cummins and New-
man, 2008; Mur-Artal et al., 2015a; Ali et al., 2022;
Adlakha et al., 2020). It allows the system to rec-
ognize previously visited locations and integrate cur-
rent observations with past map information, thereby
mitigating the accumulation of localization errors and
maintaining global map consistency. However, real-
world environments are dynamic and often present
significant challenges to loop closure due to factors
such as lighting changes, viewpoint variations, occlu-
sions, and differences in image features, all of which
can significantly degrade the accuracy and robustness
of the process.
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sumption of RGB cameras (visible light sensors).
These approaches typically extract image features
such as SIFT (Lowe, 2004) or ORB (Rublee et al.,
2011) and estimate camera motion and environmental
structure based on the geometric relationships among
these features. Over time, the field has progressed
from early filter-based techniques (Montemerlo et al.,
2002) to more advanced graph optimization-based
methods, such as ORB-SLAM (Mur-Artal et al.,
2015b) and LSD-SLAM (Engel et al., 2014), achiev-
ing high-precision localization, robust mapping, and
real-time performance. Nonetheless, RGB-based
methods are fundamentally limited by their reliance
on lighting conditions. In environments with low illu-
mination or high dynamic range, extracting sufficient
image features becomes difficult, leading to substan-
tial degradation in overall system performance (Sapu-
tra et al., 2022).

To overcome the limitations of RGB cameras,
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human object interaction : HOI

Figure 1: Humans are typically unsuitable as traditional
landmarks due to their dynamic nature. However, this study
focuses on Human-Object Interaction (HOI) with static ob-
jects, demonstrating their effectiveness as landmarks.

thermal infrared (IR) cameras have attracted increas-
ing attention for loop closure applications (Saputra
et al., 2022; Shin and Kim, 2019; van de Molengraft
et al., 2023; Li et al., 2025; Xu et al., 2025). As they
do not require visible light, thermal cameras offer a
promising solution for maintaining localization and
map consistency under visually degraded conditions,
such as darkness, smoke, or dust. Several studies
have explored this direction, including Graph-Based
Thermal-Inertial SLAM (Saputra et al., 2022), which
combines thermal imagery with IMU data, and Fire-
botSLAM (van de Molengraft et al., 2023), which
targets disaster scenarios with poor visibility due to
smoke. Other approaches include WTI-SLAM (Li
et al., 2025), designed for weakly textured thermal
images, and SLAM in the Dark (Xu et al., 2025),
which employs self-supervised learning to achieve ac-
curate loop closure. Additionally, Sparse Depth En-
hanced SLAM (Shin and Kim, 2019) leverages sparse
depth from external sensors to improve localization
accuracy. While these works demonstrate the poten-
tial of thermal-based approaches for loop closure in
harsh conditions, many of them still heavily rely on
static structures and feature points in the environment.
Thus, robustness remains limited in scenes that are
weakly textured or feature-sparse.

To address these challenges, this study proposes
a novel loop closure method that utilizes humans—
a small set of object categories commonly present
in human environments—as dynamic landmarks (Fig.
1). While humans are inherently dynamic and may
seem unsuitable as conventional landmarks, this work
focuses on human-object interactions (HOIs) (Antoun
and Asmar, 2023), leveraging the static objects in-
volved in such interactions as reliable cues. In ther-
mal imagery, human features are especially salient
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(Teixeira et al., 2010), making them highly effective
for detecting HOIs. The proposed method operates in
three main steps. First, a thermal-domain-specific hu-
man tracker is trained to accurately localize human
regions within thermal images. Second, HOI fea-
tures are extracted from the detected human regions.
Third, loop closure is performed by matching these
HOI features between query and reference images us-
ing RANSAC (Random Sample Consensus) (Chum
et al., 2003). This approach aims to enable stable loop
closure even in challenging environments with limited
static features or dynamic elements, where conven-
tional feature-based methods often struggle.

2 RELATED WORK

Loop closing has developed as one of the core chal-
lenges in SLAM for robotics. In the early stages,
Klein and Murray introduced PTAM (Parallel Track-
ing and Mapping), which separated real-time camera
tracking from mapping, enabling high-precision map-
ping in small-scale environments (Klein and Mur-
ray, 2007). Subsequently, FAB-MAP, proposed by
Cummins and Newman (Cummins and Newman,
2008), adopted a Bayesian approach based on the co-
occurrence probability of visual features, significantly
improving the reliability of loop detection. FAB-
MAP 2.0 extended this framework to enable loop
closure based solely on visual appearance in large-
scale environments (Cummins and Newman, 2010).
In 2015, ORB-SLAM by Mur-Artal et al. (Mur-Artal
et al., 2015a) gained widespread adoption by employ-
ing the lightweight and high-precision ORB descrip-
tor, demonstrating robust performance in real-world
applications. More recently, advances in deep learn-
ing have led to learning-based approaches from the
feature extraction stage, as seen in NetVLAD (Arand-
jelovic et al., 2018), a CNN-based place recogni-
tion method. Furthermore, Bi-directional Loop Clo-
sure (Ali et al., 2022) considers temporal context in
both forward and backward directions, improving ro-
bustness. To ensure performance under conditions
where visible light is unavailable, such as in darkness
or smoke-filled environments, studies like DeepTIO
(Adlakhaet al., 2020) have explored the integration of
thermal imagery with inertial measurements, indicat-
ing that multi-modal approaches adapted to specific
sensing domains will be crucial in the future.

Recent loop closure techniques have achieved
rapid innovation through advances in deep learn-
ing, neural rendering, semantics, and self-supervised
learning. For instance, GLC-SLAM (Chen et al.,
2024) integrates loop closure with a 3D scene rep-
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resentation based on Gaussian Splatting, achieving
both photorealistic rendering and precise localization.
SGLC (Wang et al., 2024) targets loop closure in Li-
DAR SLAM by introducing a coarse-fine-refine strat-
egy using semantic graphs, enabling accurate pose
correction and map consistency in large-scale envi-
ronments. DK-SLAM (Qu et al., 2024) presents a uni-
fied deep learning-based pipeline from keypoint de-
tection to loop closure, significantly improving local-
ization accuracy and generalization with monocular
cameras. Loopy-SLAM (Liso et al., 2024) incorpo-
rates loop closure into dense NeRF-based scene rep-
resentations, allowing relocalization and map consis-
tency without relying on voxel grids. A novel trend
is introduced by AutoLoop (Lahiany and Gal, 2025),
which automates the fine-tuning process of existing
SLAM models via agent-based curriculum learning,
enabling fast and autonomous adaptation for loop clo-
sure. Additionally, 2GO (Lim et al., 2025) proposes
an extremely efficient approach capable of detecting
loops from just two viewpoints, dramatically reduc-
ing the computational cost of SLAM systems through
lightweight multi-view inference. These cutting-edge
studies contribute to enhancing the robustness, scala-
bility, and autonomy of loop closure, each leveraging
different sensors, representations, and learning strate-
gies.

Loop closure based on thermal infrared cameras
has recently gained attention as a robust solution for
maintaining localization and map consistency in dark,
smoky, or dusty environments where visible light can-
not be used. Graph-Based Thermal-Inertial SLAM
(Saputra et al., 2022) integrates thermal imagery with
IMU data and applies probabilistic neural pose graph
optimization to achieve both accuracy and robustness,
demonstrating effectiveness across various scenarios
including indoor and outdoor handheld cameras and
SubT tunnels. Sparse Depth Enhanced SLAM (Shin
and Kim, 2019) improves loop consistency by sup-
plementing direct thermal SLAM with sparse depth
measurements from external sensors, demonstrating
the effectiveness of multimodal fusion. Firebot-
SLAM (van de Molengraft et al., 2023), designed for
smoke-obscured disaster environments, significantly
improves situational awareness by generating maps
and loop closing using thermal imagery alone in con-
ditions of zero visibility. WTI-SLAM (Li et al., 2025)
addresses the difficulty of loop detection in weakly
textured thermal images by introducing a specialized
feature extraction and tracking algorithm, enabling
loop closure in cases where traditional visible-light
SLAM methods fail. SLAM in the Dark (Xu et al.,
2025), proposed by Xu et al., introduces a unified
deep model that learns pose, depth, and loop closure

entirely from thermal imagery in a self-supervised
manner, achieving high-accuracy loop closure using
only thermal sensing. These studies suggest new di-
rections for robust loop closure in extreme environ-
ments through sensor fusion and learning-based ap-
proaches grounded in thermal infrared imaging.

3 PROBLEM FORMULATION

Following prior work, we formulate loop closure as
an image retrieval problem. Given a query image
captured at the current location, the objective is to
find a matching image from a database of previously
observed images that corresponds to the same physi-
cal location. This formulation casts loop closure as a
place recognition task, where a successful match in-
dicates a loop has been detected. This perspective en-
ables the integration of image retrieval techniques—
such as feature extraction, similarity computation,
and geometric verification—into the SLAM pipeline
to achieve robust loop detection. Under this formu-
lation, the performance of loop closure is typically
assessed using the metrics of precision and recall.
Precision indicates the proportion of correctly iden-
tified loop closures among all retrieved results, re-
flecting the system’s ability to minimize false posi-
tives. Recall measures the proportion of actual loop
closures that are successfully detected, indicating the
system’s ability to avoid false negatives. These met-
rics often present a trade-off, and the design of the
retrieval system must balance them appropriately de-
pending on the characteristics of the target environ-
ment and the requirements of the task. To capture
both precision and recall characteristics in a single
metric, we adopt a ranking-based evaluation criterion,
namely the Mean Reciprocal Rank (MRR), in our ex-
periments. MRR evaluates the rank position of the
first correct match in the retrieval results, thereby pro-
viding a balanced view of detection accuracy and re-
liability.

It should be noted, however, that loop closure
differs from general image retrieval in several ways.
First, in practice, loop closure is not triggered for ev-
ery incoming image. Instead, a pre-processing step
ensures that only sufficiently feature-rich query im-
ages are selected, avoiding loop detection attempts
on low-texture or ambiguous inputs. Second, a post-
processing step often evaluates the confidence of the
retrieved result, and if the confidence is low, the result
is discarded and not used in the subsequent SLAM op-
timization. These pre- and post-processing steps are
crucial for maintaining the stability and reliability of
SLAM in real-world conditions. For simplicity, the
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proposed method in this work does not explicitly in-
clude such pre- or post-processing steps. We assume
that a query image is already suitable for loop detec-
tion and that the retrieved results are directly used for
matching and verification.

Traditional loop closure approaches have primar-
ily used static objects in the environment as land-
marks. This strategy offers advantages due to the
fixed nature of such landmarks, allowing for con-
sistent and reliable feature extraction. Additionally,
decades of research have contributed to the maturity
and robustness of this approach. However, it also has
several limitations. Variations in lighting conditions,
viewpoints, seasons, and time of day can significantly
alter the visual appearance of scenes, introducing am-
biguity and leading to false positives or missed de-
tections. Moreover, in appearance-based SLAM sys-
tems that lack absolute distance measurements, align-
ing local maps built at different scales becomes dif-
ficult due to scale ambiguity. In large-scale environ-
ments, the growing size of the map increases compu-
tational costs, and the presence of moving objects or
temporally varying structures can further destabilize
the system and lead to incorrect loop closures.

To address these limitations, we propose a novel
loop closure method that employs dynamic entities,
specifically humans, as landmarks. One notable ad-
vantage of this approach is that humans exhibit clear
thermal signatures in thermal images, making them
relatively easy to detect compared to surrounding en-
vironments. This feature opens up the possibility of
effective loop detection in dark environments where
humans are prominent landmarks. Using dynamic hu-
mans as landmarks also enhances the adaptability of
SLAM systems to dynamic environments, which are
challenging for traditional static-object-based meth-
ods. Furthermore, leveraging human motion patterns
and behaviors may offer additional cues for more
complex scene understanding and localization.

However, this approach also presents significant
challenges. Thermal images are often noisy, and hu-
man appearance can vary substantially depending on
posture, clothing, and carried items, making detec-
tion and re-identification difficult. Humans constantly
move, appear, and disappear, introducing high vari-
ability and instability when used as landmarks. As
a result, achieving high-precision loop detection re-
mains extremely challenging, and a single misiden-
tification can severely compromise the entire system.
Limitations of thermal cameras further complicate the
problem. Thermal imagery lacks color information
and often provides limited shape or semantic detail,
making it difficult to extract meaningful features com-
pared to RGB imagery. Additionally, variations in
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body temperature can alter thermal signatures over
time, hindering consistent feature extraction.

4 APPROACH

Figure 2 illustrates the system architecture of the pro-
posed method. As shown, the system consists of three
main components: static landmark-based loop closure
detection (SLCD), dynamic landmark-based loop clo-
sure detection (DLCD), and an information fusion
module that integrates the outputs of these two LCD
modules.

The SLCD component can employ any existing
method such as conventional thermal SLAM. In this
study, as described in Section 4.1, we utilize a clas-
sical approach based on SuperPoint matching. The
DLCD component is our newly introduced dynamic
landmark-based LCD, detailed in Section 4.2. The
information fusion module fuses the outputs from the
two LCD modules; while it is not the main focus of
this study, we provide a simple implementation exam-
ple in Section 4.3.

4.1 Static Landmark-Based LCD

As a conventional static landmark-based LCD
(SLCD) method, this study adopts a feature match-
ing approach using only 2D coordinates extracted by
the SuperPoint feature extractor (DeTone et al., 2018).
The detailed procedure is as follows.

4.1.1 Mutual Nearest-Neighbor Matching

For each feature point in the query image, the near-
est feature point in the reference image is found, and
vice versa. Only feature point pairs mutually nearest
in both directions are retained as matches, effectively
reducing false matches.

4.1.2 Geometric Consistency Verification

Matches are filtered by constraining the vertical co-
ordinate difference based on the image height to be
within a predefined threshold, enhancing the geomet-
ric validity of the matching results.

4.1.3 Homography Estimation via RANSAC

Random samples of matched feature pairs are selected
to estimate a homography (planar projective trans-
form). All matched points are then projected by this
homography, and points with reprojection error below
a threshold are considered inliers. This process is re-
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Figure 2: The SLCD module performs loop closure detection using static landmarks based on conventional methods like
SuperPoint matching. The DLCD module, newly proposed in this research, performs loop closure detection using dynamic
landmarks. The Information Fusion module integrates the results from both the SLCD and DLCD modules.

peated multiple times, and the homography with the
largest inlier set is chosen as the final model.

4.2 Dynamic Landmark-Based LCD

To overcome the limitations discussed previously,
several prior works offer important insights. In the
domain of loop closure and image change detection
(LCD-ICD), studies show that if the relative position
between landmark A and object B remains invariant,
they can be considered “pseudo-static,” allowing their
use as features in dynamic environments over short
SLAM durations. Research on Human-Only SLAM
(Tanaka, 2002) treats occlusion boundaries between
humans and occluding objects as landmarks, mitigat-
ing false negatives by exploiting intermediate prop-
erties between dynamic and static objects. Building
on these ideas, HO3-SLAM (Human-Object Occlu-
sion Ordering SLAM) (Liang and Tanaka, 2024) ef-
fectively utilizes occlusion boundary points as key-
points for loop closure (see Fig. 1). HO3-SLAM no-
tably exploits the stability of human attributes across
RGB and thermal (T) domains and the reliability of
static object attributes in appearance, shape, and se-
mantics, providing valuable guidance for robust loop
closure in dynamic environments.

4.2.1 HOI Feature Extraction

The proposed dynamic landmark-based loop closure
detection proceeds as follows. Given each image
frame, human regions are detected from thermal im-
ages. Detected bounding boxes are tracked and as-
signed unique human IDs. Pixel-wise AND operation
between bounding boxes and human regions identifies
precise human areas with IDs.

Figure 3: As a simple example of an HOI feature, this
experiment utilizes the bottom-most point formed at the
boundary between the human and the object. Top-left: Hu-
man tracking result; Top-right: Temperature thresholding;
Bottom-left: AND operation; Bottom-right: HOI feature
point.

For each human ID, at every horizontal pixel co-
ordinate x within the bounding box, the pixel with
the largest vertical coordinate y (closest to the im-
age bottom) belonging to the human region is selected
(Fig. 3). These “bottom points” serve as Human-
Object Interaction (HOI) feature points, possessing
two key properties: (1) human attributes that are sta-
bly detectable via tracking in both RGB and thermal
domains, and (2) static object attributes that are in-
variant in appearance, shape, and semantics, func-
tioning as reliable landmarks. The set of HOI fea-
ture points is defined as landmarks and recorded in
the map along with frame IDs. These landmarks ex-
tracted from the current frame are matched against
previously recorded landmarks. The matching score
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is computed between landmark sets of current and
past frames using RANSAC (Section 4.2.2) to eval-
uate matching reliability. Loop closure candidates are
ranked based on these matching scores.

4.2.2 RANSAC Feature Matching

Because outliers are inevitable in feature matching,
we apply the RANSAC algorithm to increase the re-
liability of the estimated geometric transform. The
algorithm starts by randomly selecting four non-
repeating correspondence pairs (the minimum re-
quired to estimate a homography) from the initial
matching set between the query and database images.
A tentative homography matrix is computed from
these samples. Linear algebraic issues such as sin-
gularities invalidate the trial. The homography model
projects points from the reference image to the query
image; correspondences with reprojection error below
the inlier threshold (Ziyer = 5.0 pixels) are consid-
ered inliers. The process iterates up to a maximum
number of trials (Ngias = 100) to find the homography
with the largest inlier count. If fewer than four initial
matches exist, homography estimation is aborted and
RANSAC terminated.

4.2.3 Training Thermal Infrared (TIR) Human
Tracker

Tracking humans in darkness is critical for applica-
tions including surveillance, security, and disaster res-
cue. Conventional RGB cameras fail under low illu-
mination, necessitating thermal infrared (TIR) cam-
eras. Developing a TIR human tracker requires exten-
sive annotated data, but manual labeling is costly. We
propose a training method that reduces this burden by
synchronously capturing RGB and TIR videos from
co-located cameras. A pretrained high-performance
RGB tracker generates bounding boxes and human
IDs automatically on RGB videos, creating pseudo-
labels. These pseudo-labels paired with correspond-
ing TIR frames train the TIR tracker, enabling robust
human tracking in darkness without manual annota-
tions. Both RGB and TIR trackers use ByteTrack
(Zhang et al., 2022) as their backbone.

4.3 Information Fusion

To leverage complementary information and improve
robustness in image retrieval, this study integrates the
baseline static landmark-based LCD (Section 4.1) and
the proposed dynamic landmark-based LCD (Sec-
tion 4.2). This integration aims to maximize the
strengths of both methods and enhance retrieval ac-
curacy.
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For effective fusion of the two retrieval results, we
adopt Reciprocal Rank Fusion (RRF) (Cormack et al.,
2009), a widely used technique to combine rankings
from heterogeneous sources. RRF fairly balances the
contribution of each method’s top results, improving
overall performance.

The fusion process proceeds as follows.

4.3.1 Ranking Generation for Each Method

SLCD and DLCD produce separate ranked lists of
database images in descending order of matching
scores for a given query.

4.3.2 Reciprocal Rank Computation

For each database image, the reciprocal rank is calcu-
lated for its rank r in each method by:

1
k+r
where k is a constant parameter. Based on prelimi-
nary experiments, we set k = 0 in this study. Lower

ranks yield higher reciprocal rank values, giving more
weight to more relevant images.

RRF =

4.3.3 Summation of Reciprocal Ranks and Final
Score

For each database image, reciprocal ranks from
SLCD and DLCD are summed to obtain a final fusion
score:

Fusion Score = RRFs; cp + RRFpi cp.

Sorting database images by these fusion scores pro-
duces the final retrieval ranking.

This reciprocal rank fusion allows images ranked
highly by either method to be properly emphasized,
thus enhancing overall retrieval performance.

S EXPERIMENTS

The primary objective of this experiment is to eval-
uate the loop closing performance of a mobile robot
operating in low-light indoor environments. Specif-
ically, we assess the effectiveness of the proposed
method using thermal images captured by a thermal
camera in the presence of dynamic elements such as
humans.

5.1 Setup

The experimental platform is a tricycle-drive mo-
bile robot equipped with an onboard computer. A
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Figure 4: Experimental environment, robot, and robot tra-
jectory.

monocular thermal camera (HIKMICRO Pocket2) is
mounted on the front of the robot. This camera has
a resolution of 256x192 pixels; thermal images are
continuously recorded during motion. The data are
collected in video mode, with an empirically mea-
sured average frame rate of approximately 25 Hz.
Each frame is timestamped and precisely synchro-
nized with odometry data (position: x,y; orientation:
0) estimated from the robot’s encoders. These data
are used to construct the ground-truth dataset for loop
closure evaluation. The temperature range of the ther-
mal camera is configured to 20-30°C to enhance con-
trast between human bodies and the background. As a
result, human subjects (with body temperatures of ap-
proximately 36°C) appear as high-intensity regions,
enabling clear identification as dynamic landmarks.

Experiments were conducted in an indoor envi-
ronment measuring approximately 7.0 m by 3.0 m
(Fig. 4). Six rectangular tables were arranged
throughout the space, with four individuals randomly
seated around each table. This layout was designed
to reproduce conditions in which humans function as
prominent high-temperature regions in thermal im-
agery. The robot autonomously navigated a clockwise
path around the room while continuously recording
thermal images. The experiment was conducted to
evaluate loop closing performance in this dynamic en-
vironment. Figure 5 shows thermal images captured
by the robot’s on-board camera.

The collected dataset (1996 frames) includes
seated individuals who appear as dynamic high-
intensity regions. Odometry and timestamps were
recorded alongside each frame to serve as input for
loop closure evaluation.

Loop closing performance was evaluated using the
number of inliers from homography estimation as the
key metric. Specifically, the mean reciprocal rank
(MRR) score was calculated based on the ranking

Figure 6: Image matching process. For each row, from left
to right, the images represent the following: Input Image,
Feature Map, Top-1 Ranked Reference Image, and Ground-
Truth Reference Image.

of ground-truth loop-closure pairs using RANSAC-
based inlier counts. In addition, the average process-
ing time per query frame was measured to assess com-
putational efficiency.

All thermal images were synchronized with
odometry data via linear interpolation based on ac-
quisition timestamps. High-intensity regions at the
lower part of each image were extracted via thresh-
olding to obtain bottom-edge feature points, which
serve as dynamic landmarks. Ground-truth loop clo-
sures were determined by identifying database frames
within 0.2 m of the query frame’s odometric position.
Figure 6 shows the image matching process in the
proposed method, DLCD.
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Table 1: Performance results.

MRR
DLCD 0.222
SLCD 0.124
DLCD+SLCD | 0.224

5.2 Baseline and Proposed Methods

The evaluated methods detect loop closures between
thermal images using feature point matching followed
by homography estimation via RANSAC. Image fea-
tures were precomputed and loaded as sets of 2D co-
ordinates. Homographies were estimated using the
Direct Linear Transform (DLT) algorithm applied to
homogeneous coordinates, with RANSAC employed
for outlier rejection. In each RANSAC iteration,
four randomly selected correspondences were used
to compute a homography hypothesis. Inliers were
determined as correspondences with projection errors
below a 5.0-pixel threshold. The model with the max-
imum number of inliers over 100 trials was selected
as the final result. If fewer than four correspondences
were available, homography estimation was skipped.

We compare the conventional SLCD, the proposed
DLCD, and their fusion as described in Section 4.3.
Each method is evaluated to assess its performance
and robustness in a dynamic environment.

5.3 Results

The experimental results report the loop closing ac-
curacy, specifically the mean reciprocal rank (MRR)
score. The average processing time per query frame,
including homography estimation and inlier compu-
tation, is summarized in Table 1. These results clarify
the loop closing performance and highlight the com-
putational efficiency of the proposed approach in a
dynamic environment. Figure 7 shows matching re-
sults for both of the SLCD and DLCD methods.

We can see that the proposed DLCD method
clearly outperforms the baseline SLCD method. In
addition, the fusion method SLCD+DLCD performs
slightly better than the proposed method, demonstrat-
ing the effectiveness of the approach of fusing the two
methods.

6 CONCLUSIONS & FUTURE
WORK

This study introduced a novel loop closure method
for Visual SLAM that leverages human-object inter-
actions (HOIs) as dynamic landmarks in challenging
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environments. Unlike conventional approaches that
rely on static features or are limited by illumination
conditions, our method utilizes the salient features of
humans in thermal imagery to detect HOIs, treating
the static objects involved in these interactions as re-
liable cues for loop closure. The proposed pipeline
involves a thermal-domain-specific human tracker,
HOI feature extraction from detected human regions,
and RANSAC-based matching for robust loop clo-
sure. Our approach aims to enhance the stability of
loop closure, particularly in scenarios characterized
by limited static features or significant environmental
dynamics where traditional methods often fail.

Building upon the insights and methodology pre-
sented in this study, future research will explore sev-
eral promising directions:

¢ Quantitative Evaluation in Diverse Real-World
Scenarios: While the theoretical framework for
utilizing HOIs has been established, comprehen-
sive quantitative evaluation in a wider array of
real-world environments is crucial. This includes
datasets with varying degrees of human activity,
diverse object categories, and more complex en-
vironmental changes (e.g., severe occlusions, ex-
treme temperature variations).

Integration with Existing SLAM Frameworks:
Our current work focuses on the loop closure
module. Integrating this HOI-based loop closure
method into a full-fledged Visual SLAM system
(e.g., ORB-SLAM, LSD-SLAM) and evaluating
its end-to-end performance would be a significant
next step. This would involve assessing the im-
pact on global map consistency, localization ac-
curacy, and real-time performance.

* Robustness to Ambiguous HOI Detections: The
accuracy of HOI detection is paramount for the
effectiveness of our method. Future work will in-
vestigate techniques to improve the robustness of
HOI detection, especially in cases of partial oc-
clusions, unusual human poses, or ambiguous in-
teractions. This could involve exploring more ad-
vanced deep learning architectures or incorporat-
ing temporal reasoning.

Scalability for Large-Scale Environments: For ap-
plications in large-scale environments, managing
and matching a potentially vast number of HOI
features could become computationally intensive.
Research into efficient data structures, indexing
methods, and feature aggregation techniques will
be necessary to ensure scalability.

» Extension to Other Dynamic Elements: While this
study focuses on humans, the concept of leverag-
ing dynamic entities interacting with static objects
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Figure 7: Image matching results. Left: DLCD. Right: SLCD.

could be extended to other categories, such as ve-
hicles or other mobile robots. Investigating the ap-
plicability and benefits of such extensions would
broaden the scope of this approach.

* Fusion with Complementary Sensors: Combin-
ing thermal imagery with data from other sensor
modalities (e.g., event cameras for high dynamic
range, LiDAR for precise 3D geometry) could fur-
ther enhance the robustness and accuracy of HOI-
based loop closure, especially in highly challeng-
ing conditions.

7 LIMITATIONS

While the proposed method demonstrates promising
results, it is important to acknowledge several limita-
tions:

* Robustness of HOI Detection: The accuracy of
human-object interaction (HOI) detection directly
impacts the performance of our method. De-
tecting HOIs can be challenging under complex
poses, partial occlusions, or extreme lighting con-
ditions. Although human features are salient in
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thermal images, these challenges still exist.

Nature of Dynamic Landmarks: Due to the dy-
namic nature of humans, the reliability of loop
closure might be affected if HOIs are transient.
While our focus is on interactions with static ob-
jects, the duration and stability of the interaction
itself can influence the overall robustness of the
system.

Sparsity of Features: While our method is ef-
fective in environments with few static features,
there might be situations where HOIs themselves
are very rare, leading to an insufficient number of
landmarks. This becomes particularly evident in
environments with minimal human presence or in-
frequent interactions with specific objects.

¢ Computational Cost: Detecting and track-
ing HOIs, and subsequently performing feature
matching based on them, can be computation-
ally more intensive compared to traditional static
feature-point-based methods. Efficient algorithms
and optimization will be crucial to maintain real-
time performance.

* Dataset Diversity: Current evaluations might be
dependent on specific datasets. A comprehen-
sive quantitative evaluation across a wider range
of real-world scenarios, especially those involving
diverse human activities, object categories, and
complex environmental changes (e.g., severe oc-
clusions, extreme temperature variations), is nec-
essary.
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