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Question answering over Scholarly Knowledge Graphs (SKGs) remains a challenging task due to the complex-
ity of scholarly content and the intricate structure of these graphs. Large Language Model (LLM) approaches
could be used to translate natural language questions (NLQs) into SPARQL queries; however, these LLM-
based approaches struggle with SPARQL query generation due to limited exposure to SKG-specific content
and the underlying schema. We identified two main types of errors in the LLM-generated SPARQL queries:
(i) structural inconsistencies, such as missing or redundant triples in the queries, and (ii) semantic inaccu-
racies, where incorrect entities or properties are shown in the queries despite a correct query structure. To
address these issues, we propose FIRESPARQL, a modular framework that supports fine-tuned LLMs as a
core component, with optional context provided via retrieval-augmented generation (RAG) and a SPARQL
query correction layer. We evaluate the framework on the SciQA Benchmark using various configurations
(zero-shot, zero-shot with RAG, one-shot, fine-tuning, and fine-tuning with RAG) and compare the perfor-
mance with baseline and state-of-the-art approaches. We measure query accuracy using BLEU and ROUGE
metrics, and execution result accuracy using relaxed exact match(RelaxedEM), with respect to the gold stan-
dards containing the NLQs, SPARQL queries, and the results of the queries. Experimental results demonstrate
that fine-tuning achieves the highest overall performance, reaching 0.90 ROUGE-L for query accuracy and

0.85 RelaxedEM for result accuracy on the test set.

1 INTRODUCTION

Question Answering (QA) over Knowledge Graphs
(KGs), which allows users to query structured data
using natural language, has gained considerable at-
tention (Huang et al., 2019; Omar et al., 2023). The
task of QA over KGs usually takes a natural language
question (NLQ) as an input and translates it into for-
mal queries, typically SPARQL, that retrieve precise
answers from the underlying KG. Previous studies in
this domain have been centered around large-scale
and encyclopedic KGs such as DBpedia, Freebase,
and Wikidata. In these generic KGs, QA systems
benefit from extensive community resources, well-
documented schema, and relatively simple entity-
relation structures. Recently, the emergence of large
language models (LLMs) has inspired a growing body
of research exploring their potential to address the
task of QA over KGs (Wang et al., 2024b; Omar
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etal., 2023) and benchmarked on datasets such as LC-
QuAD (Trivedi et al., 2017), QALD (Perevalov et al.,
2022), and WebQuestions (Berant et al., 2013).
However, applying these techniques to QA to
Scholarly Knowledge Graphs (SKGs) presents signif-
icant challenges due to the intricate nature of schol-
arly data and the complex structure of SKGs (Jiang
et al.,, 2023; Pliukhin et al., 2023; Taffa and Us-
beck, 2023). Unlike encyclopedic KGs, SKGs cap-
ture domain-specific and technical content such as re-
search contributions, research problems, methodolo-
gies, datasets, and evaluation, which are often rep-
resented in complex ontological structures. Several
studies have investigated the potential of using LLMs
for this task, exploring optimization techniques such
as zero-shot learning, few-shot learning, and fine-
tuning (Taffa and Usbeck, 2023; Lehmann et al.,
2024). Despite the improvements of LLMs on the
task of QA over SKGs, LLMs face limitations when
handling KG-specific parsing due to their lack of di-
rect access to entities within the KGs and insuffi-
cient understanding of the ontological schema, partic-
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ularly for low-resource SKGs like the Open Research
Knowledge Graph (ORKG)(Auer et al., 2023).

Insights from our pilot experiment revealed two
major categories of errors LLMs tend to make in
this task: (i) Structural inconsistencies, where gen-
erated SPARQL queries contain missing or redundant
triples, and (ii) Semantic inaccuracies, where queries
reference incorrect entities or properties, despite fol-
lowing the correct structural form. To address these
limitations, we propose FIRESPARQL, a LLM-based
modular framework for SPARQL query generation
over SKGs. Atits core, FIRESPARQL supports FIne-
tuned LLMs adapted to the SKG domain and offers
relevant context provided via REtrieval-augmented
generation (RAG) and a lightweight SPARQL correc-
tion layer. These components are designed to improve
both the structural and semantic accuracy of the gen-
erated queries.

We investigate the effectiveness of this framework
using the SciQA Benchmark (Auer et al., 2023), com-
paring multiple configurations, including zero-shot,
one-shot, and fine-tuned models with and without
RAG, against baselines and state-of-the-art methods.
We assess performance based on BLEU and ROUGE
scores for SPARQL query accuracy, and use a re-
laxed Exact Match metric to evaluate the execution
accuracy of the returned query results. Our findings
demonstrate that domain-specific fine-tuning yields
the most consistent and robust performance, signifi-
cantly enhancing both query accuracy and execution
result accuracy. Notably, the best-performance con-
figuration is fine-tuned LLaMA3-8B-Instruct with 15
training epochs, achieving 0.77, 0.91, 0.86, 0.90, and
0.85 on BLEU-4, ROUGE-1, ROUGE-2, ROUGE-
L, and RelaxedEM(all), respectively. However, our
experiments reveal that incorporating RAG into ei-
ther the zero-shot or fine-tuned model does not yield
further improvements and can even degrade perfor-
mance.

The main contributions of this paper are three-
fold: (1) We identify and systematically categorize
the common error types in LLM-generated SPARQL
queries for QA over SKGs, distinguishing between
structural inconsistencies and semantic inaccuracies.
(2) We propose FIRESPARQL, a modular frame-
work for SPARQL query generation that integrates a
core fine-tuned LLM with an optional RAG module
and a lightweight SPARQL correction layer. (3) We
conduct comprehensive experiments on the SciQA
Benchmark under multiple configurations, includ-
ing zero-shot, one-shot, fine-tuning, and their RAG-
augmented variants, benchmarking against baselines
and state-of-the-art methods using different model
sizes and training epochs.
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All resources and codes are available in our
GitHub repository . For reproducibility, we
have released the best-performing fine-tuned
model—LLaMA-3-8B-Instruct  trained for 15
epochs—on Hugging Face. 2.

2 RELATED WORK

2.1 Traditional Methods for QA over
KGs

Before the emergence of LLMs, QA over KGs is pri-
marily addressed through knowledge graph embed-
ding(KGE), neural network modeling, and reinforce-
ment learning (RL). These methods typically relied
on modeling the structure of the KG and carefully en-
gineered the features of the KG for entity linking, re-
lation prediction, and path ranking. KGE-based ap-
proaches transform entities and relations into low-
dimensional vector spaces to support efficient reason-
ing. Huang et al. (Huang et al., 2019) propose the
KEQA framework for answering the most common
types of questions by jointly recovering the question’s
head entity, predicate, and tail entity representations
in the KG embedding spaces. Graph neural networks
(GNNs) have also been leveraged to reason over the
structure of KGs. Yasunaga et al. (Yasunaga et al.,
2021) introduce QA-GNN, leveraging joint reason-
ing, where the QA context and KG are connected to
form a joint graph and mutually update their represen-
tation through GNNs. Some studies emphasized RL
to navigate the KG and identify answer paths. Hai
et al. (Cui et al., 2023) propose AR2N, an inter-
pretable reasoning method based on adversarial RL
for multi-hop KGQA, to address the issue of spuri-
ous paths. AR2N consists of an answer generator and
a path discriminator, which could effectively distin-
guish whether the reasoning chain is correct or not.

2.2 QA over Generic KGs Such as
DBpedia and Wikidata

QA over generic Knowledge Graphs (KGs), such as
DBpedia and Wikidata, has been extensively stud-
ied and serves as the foundation for many advances
in the field. Early systems primarily focused on se-
mantic parsing and graph-based reasoning (Berant
et al., 2013; Trivedi et al., 2017). More recently,

Uhttps://github.com/sherry-pan/FIRESPARQL.git
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attention has shifted to neural and LLM-based ap-
proaches. Bustamante and Takeda (Bustamante and
Takeda, 2024) explore the use of entity-aware pre-
trained GPT models for SPARQL generation, show-
ing notable improvements in handling KG-specific
structures. Similarly, Hovcevar and Kenda (Hovce-
var and Kenda, 2024) integrate LLMs with KGs in
industrial settings to support natural language inter-
faces. Meyer et al. (Meyer et al., 2024) assess the
SPARQL generation capabilities of various LLMs,
pointing out both strengths and limitations in terms of
structural correctness and execution accuracy. Other
studies such as Kakalis and Kefalidis (Kakalis and
Kefalidis, 2024) focus on domain-specific extensions,
like GeoSPARQL, and propose techniques for auto-
matic URI injection. All in all, these works contribute
a rich landscape of methods for mapping natural lan-
guage questions to structured SPARQL queries across
diverse knowledge bases.

2.3 SPARQL Generation for QA over
SKGs

QA over SKGs, such as the Open Research Knowl-
edge Graph (ORKG), has gained attention due to
its potential to support scientific exploration and
knowledge discovery. Unlike generic knowledge
graphs, SKGs capture fine-grained scholarly infor-
mation, which introduces additional complexity in
terms of schema diversity and domain-specific termi-
nology. With the advent of LLMs, there has been
a surge of interest in applying these models on the
task of QA over SKGs. Lehmann et al. (Lehmann
et al., 2024) conduct a comprehensive evaluation on
the effectiveness of LLMs on the SciQA benchmark,
demonstrating the models’ strengths in generating flu-
ent SPARQL queries but also noting common pitfalls
such as entity disambiguation and schema misalign-
ment. Taffa and Usbeck (Taffa and Usbeck, 2023)
specifically focus on adapting LLMs to the scholarly
setting, emphasizing the need for domain-specific
prompts and training data. Meanwhile, Pliukhin et
al. (Pliukhin et al., 2023) explore fine-tuning strate-
gies that improve LLM performance in one-shot sce-
narios. These studies collectively suggest that while
LLMs offer promising capabilities, their effectiveness
in the scholarly domain hinges on adaptation through
fine-tuning, prompt engineering, and schema-aware
correction mechanisms.

3 ERROR TYPE ANALYSIS ON
GENERATED SPARQL
QUERIES

Despite the improvements of LLMs on QA over
SKGs, LLMs face limitations when handling KG-
specific parsing. The experimental results conducted
by Soren Auer et al.(Auer et al., 2023) showed that
only 63 out of 100 handcrafted questions could be an-
swered by ChatGPT, of which only 14 answers were
correct. To better understand why LLMs fail to gen-
erate the correct SPARQL query to a NLQ, we con-
duct a pilot experiment on using ChatGPT(GPT-4)
with a random one-shot example to generate SPARQL
queries for 30 handcrafted questions in the SciQA
benchmark datasets.

Insights from this pilot experiment revealed two
major categories of errors LLMs tend to make in this
task: semantic inaccuracies and structural inconsis-
tencies. Semantic inaccuracies occur when LLMs fail
to link the correct properties and entities in ORKG,
despite generating SPARQL queries with the correct
structure. Our observations reveal that LLMs tend to
rely on the example provided in the one-shot learn-
ing process to generate the correct structure for a cer-
tain type of question, but often struggle with linking
the correct properties and entities because LLMs do
not learn the content of the underlying KG. Structural
inconsistencies arise due to LLMs’ lack of an onto-
logical schema of the underlying KG, leading to er-
rors in query structure, such as missing or abundant
links (triples), despite correctly linking to the men-
tioned entities or properties.

Figure 1 shows the example of the semantic inac-
curacies and structural inconsistencies problem with
the generated SPARQL queries in our pilot study.
In the example of the semantic inaccuracies prob-
lem, ChatGPT failed to link the correct property
orkgp:P15687; instead, it linked to a wrong property
orkgp:P7101. In the example of the structural incon-
sistencies problem, the SPARQL query generated by
ChatGPT directly links Contribution to Metrics and
fails to detect the correct schema of the ORKG where
Contribution and Metric are connected via Evalua-
tion.

4 METHODOLOGY

As we mentioned in Section 3, generating executable
and semantically accurate SPARQL queries over
SKGs using LLMs remains a challenging task due to
two main types of errors: semantic inaccuracies and
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® Fail to link the correct properties and entities in ORKG
E.g. Incorrect property used: orkgp:P7101

3@? What is the maximum sample size?

PREFIX orkgp: <http://orkg.org/orl

<http://orkg.org/orkg/!

SELECT 7sample_size

WHERE {
orkgriR135371 orkgp
2cont [orkgp:P15667

»
ORDER BY DESC(?sanple_size)

&)

PREFIX orkgp: <http://orkg.org/orkg/predicate/>

PREFIX orkgc: <http://orkg.org/orkg/class/>
PREFIX orkgr: <http://orkg.org/orkg/resource/>

SELECT MAX(?sampleSize) AS 7naxsampleSize
VHERE {
?study_orkgp:P31 orkgc:Study;
orkgp:P7161) 7samplesize.

i

O orkgp:P15687 rdfs:label Sample size (n) Q orkgp:P7101 rdfsilabel has elements

Structural inconsistencies Problem

[):() Make errors in query structure, such as missing or abundant links (triples)

E.g. Missing Evaluation triple

0 What are the metrics used by paper "Using NMF-based text summarization
% to improve supervised and unsupervised classification?

n

PREFIX orkgp: <http://orkg.org/orkg/predicate/>
PREFIX orkgc: <http://orkg.org/orkg/class/>
PREFIX orkgr: <http://orkg.org/orkg/resource/>

orkg.org/orkg/predicate/>

PREFIX orkgp: <http://
PREFIX orkgc: <http://orkg.org/orkg/class/>
PREFIX orkgr: <http://orkg.org/orkg/resource/>

SELECT 7metrics, 7metrics_labels SELECT ?metric
WHERE { WHERE {

TR (R Tetele, i bssed text sumarization]) Toaper orkgp:Pal rcontribution;
oy ihese t sumarize rdfs:label ?title.

7papers orkgp:P31
?cont orkgp:P34 ?contribution orkgp:P7046 ?metric.

Ho e FILTER(REGEX(STR(?title), "Using NMF-based text
summarization to improve supervised
r and unsupervised classification"))

Figure 1: Examples of semantic inaccuracies and structural inconsistencies problem with the generated SPARQL queries.

structural inconsistencies. To address these issues,
we propose FIRESPARQL, a modular framework de-
signed to improve both the semantic accuracy and the
structural consistency of generated SPARQL queries.
The framework consists of three core components: (1)
Fine-tuned LLMs, (2) Retrieval-Augmented Genera-
tion (RAG), and (3) SPARQL correction. The final
SPARQL queries are evaluated at both the query accu-
racy and execution result accuracy using ground truth
comparisons. An overview of the framework and the
evaluation setup is shown in Figure 2.

4.1 Fine-Tuning

At the core of FIRESPARQL is a fine-tuning module
applying Low-Rank Adaptation (LoRA) (Hu et al.,
2021) for parameter-efficient fine-tuning. Unlike full-
parameter fine-tuning, LoRA freezes the pre-trained
model weights and injects trainable low-rank decom-
position matrices into each layer of the Transformer
architecture. This approach significantly reduces the
number of trainable parameters required for down-
stream tasks while maintaining strong performance.
Fine-tuning LLMs has proven effective in scientific
knowledge extraction (Muralidharan et al., 2024) and
KG construction (Ghanem and Cruz, 2024; Wang
et al., 2024a).

To address structural inconsistencies in generated
SPARQL queries, often arising from a limited under-
standing of the SKG schema, we fine-tune LLMs so
that the ontology and structural patterns of the under-
lying SKG are implicitly captured during fine-tuning.
The fine-tuning data can include the ontology de-
scriptions, RDF triples, or task-specific labeled exam-
ples. In our implementation, we use NLQ-SPARQL
query pairs as training data, which implicitly en-
code the structure and vocabulary of the target SKG.
This results in a fine-tuned LLM capable of generat-
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ing syntactically correct and semantically meaningful
SPARQL queries directly from natural language ques-
tions.

We further investigate the impact of training
epochs on fine-tuning performance. The number of
epochs determines how many times the model iterates
over the training data, directly influencing its ability
to capture domain-specific patterns. The prompt tem-
plate for SPARQL generation is shown in Listing 1.

Listing 1: Prompt template for SPARQL generation.

The Open Research Knowledge Graph (
ORKG) 1is a semantic knowledge
graph designed to represent,
compare, and retrieve scholarly
contributions. Given a natural
language question in English,
your task 1s to generate the
corresponding SPARQL query to
this question. The generated
SPARQL query should be able to
query the ORKG, getting correct
answer to the input question.

Give me only the SPARQL query, no
other text.

Input question: {input question}

Output SPARQL query:

42 RAG

RAG (Lewis et al., 2020) has been proposed to enable
LLMs access to external and domain-specific knowl-
edge for knowledge-intensive NLP tasks, which could
be a promising way to address the issue of semantic
inaccuracies, where generated SPARQL queries fail
to link to the correct properties or entities. These in-
accuracies often stem from the model’s limited expo-
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sure to SKGs or ambiguous entity/property mentions
in the input question. Therefore, we propose an op-
tional RAG module in the framework to enhance the
model’s contextual understanding of the underlying
SKGs. Given an NLQ, relevant context is retrieved
from the SKG in the form of candidate entities, prop-
erties, or subgraphs. A prompt template then incor-
porates this contextual information alongside the in-
put question, which is passed to the finetuned LLM
to generate a more semantically accurate SPARQL
query. In our implementation, we use RAG to re-
trieve candidate properties from a curated list of dis-
tinct ORKG properties, including their URLs and la-
bels. These candidates are then incorporated as con-
textual information in the prompt template to guide
SPARQL generation.

4.3 SPARQL Corrector

Despite improvements through fine-tuning and RAG,
generated SPARQL queries may still contain minor
structural or syntactic errors that hinder successful ex-
ecution. These include unnecessary text in the out-
put, missing or extra punctuation, or subtle syntax is-
sues such as missing spaces between variable names.
To address this, we introduce a lightweight SPARQL
correction layer based on LLMs. This module takes
the initially generated query and its natural language
question as input and refines it to ensure syntactic va-
lidity, which increases the likelihood of generating ex-
ecutable SPARQL queries. The cleaned queries are
then passed to the evaluation stage. The prompt we
used to clean the input SPARQL query is shown in
Listing 2.

Listing 2: Prompt for SPARQL correction.

Given a question and its
corresponding SPARQL query,
there might be errors in the
query such as missing spaces
between variable names,
unnecessary repetition, etc.

Please clean the SPARQL and return
only the cleaned SPARQL (no
explanation):

question: {Natural language question}

query: {Generated SPARQL query}

5 EXPERIMENTS

5.1 Datasets

We conduct experiments on the SciQA benchmark
dataset, a recently released resource designed to
evaluate question answering systems over scholarly
knowledge graphs (Auer et al., 2023). SciQA pro-
vides a diverse set of natural language questions
aligned with the Open Research Knowledge Graph
(ORKG). SciQA contains 100 handcrafted natural
language questions (HQs) with paraphrases, corre-
sponding SPARQL queries with their results. In ad-
dition, a set of 2465 questions (AQs) has been semi-
automatically derived from eight question templates.
The RDF data dump is also released on Zenodo > to-
gether with the benchmark.

We choose SciQA because the underlying KG
for this dataset, the ORKG, is built for representing
and querying the semantic content of research papers,
not just their metadata. Unlike DBLP, which mainly
provides bibliographic metadata such as citation and
authorship information, ORKG captures fine-grained
scientific statements in a machine-readable format,
enabling fact-based, content-level question answer-
ing. ORKG goes beyond citation networks and au-
thorship details to represent fine-grained scientific
claims, methodologies, comparisons, and findings.
This semantic depth enables fact-centric and content-
level QA, making SciQA a more suitable benchmark
for evaluating systems that aim to reason about scien-
tific knowledge.

5.2 Baselines and the State of the Art

As a baseline, we adopt a zero-shot setting in which
the model generates SPARQL queries without any
task-specific fine-tuning or example guidance. This
setup evaluates the model’s out-of-the-box ability to
understand the task and map natural language ques-
tions to structured SPARQL queries. For the state-of-
the-art comparison, we implement the one-shot ap-
proach in which the model is provided with the most
semantically similar question from the training set,
along with its corresponding SPARQL query, as an
in-context demonstration. The most similar example
is identified by computing cosine similarity between
the input question and all training questions using
Sentence-BERT embeddings. To find the most sim-
ilar question from the training set, Sentence-BERT
is better than vanilla BERT because it produces sen-
tence embeddings optimized for semantic similarity.

3https://zenodo.org/records/7744048
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FIRESPARQL framework

'
NLQ-SPARQL Prompt template x\
Pairs [1]
Vanilla LLM SKG
- Candidate Retrieved
Ontology LoRA m properties and relevant
(] )
C]- entities context
P4 Fine-tuned LLM @
Y
x — &
6 Fine-tuning e RAG
SPARQL Queries
(]
-
Final SPARQL SPARQL corrector e
Ground truth / Answers to the
SPARQL queries \—» generated.SPARQL Ground truth answers
queries
SKG
Eval 1: SPARQL Eval 2: SAPRQL Execution
generation performance N performance
Evaluation

Figure 2: FIRESPARQL framework (yellow boxes) and evaluation setup (grey boxes).

This configuration has shown strong performance in
recent studies by helping the model better understand
the tasks (Lehmann et al., 2024; Liu et al., 2022).

5.3 Implementation

We fine-tuned two instruction-tuned models, Llama
3.2-3B Instruct and Llama 3-8B Instruct, using 1,795
NLQ-SPARQL pairs from the SciQA training set.
The models were trained under various epoch config-
urations (3, 5, 7, 10, 15, and 20) to analyze perfor-
mance across training durations. All fine-tuning ex-
periments were conducted on a single NVIDIA H100
GPU. We used DeepSeek-R1-Distill-Llama-70B as
the underlying model for the RAG component. All
SPARQL queries are executed over the ORKG data
dump released together with the benchmark on Zen-
odo using Qlever (Bast and Buchhold, 2017)

The execution times for fine-tuning the two Llama
models across different numbers of epochs are sum-
marized in Table 3 in the Appendix.
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5.4 Evaluation Metrics

We employ a combination of string-based and
execution-based evaluation metrics to assess the qual-
ity of the generated SPARQL queries. Similar to other
research, we use BLEU-4 and ROUGE scores, which
measure token-level and n-gram overlaps, to evalu-
ate the similarity between generated queries and the
ground-truth queries. These metrics provide insights
into how closely the structure and content of the gen-
erated queries align with the reference queries. Ad-
ditionally, we assess the execution performance of
the generated SPARQL queries using two variants of
Relaxed Exact Match (RelaxedEM): success and all.
The RelaxedEM(success) metric considers only those
queries that were syntactically valid, successfully ex-
ecuted against the ORKG RDF dump, and returned
non-empty results. In contrast, the RelaxedEM(all)
metric evaluates the correctness of the query results
across the entire test set, including queries that may
have failed or returned empty results.

Unlike the original Exact Match, which is very
strict, our Relaxed Exact Match incorporates several
preprocessing steps. First, we remove variable names
from the returned results to avoid penalizing differ-
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ences that do not affect semantics. Second, we split
the results line by line and eliminate duplicate lines
to normalize the output structure. Finally, we com-
pare the set of lines in the results using exact match-
ing. The metric RelaxedEM provides a more toler-
ant and realistic evaluation of query execution per-
formance in scholarly knowledge graph settings. The
above-mentioned dual evaluation approach allows us
to comprehensively analyze both the syntactic qual-
ity and the practical effectiveness of the generated
SPARQL queries.

5.5 Results

Table 1 shows the results of different metrics on
different strategies, different models, and different
epochs. Figure 3 shows the results of different metrics
with different epochs for LoRA fine-tuning. All the
scores are the average scores of three runs. The stan-
dard deviation of BLEU-4, ROUGE scores, Relaxe-
dEM(success), and RelaxedEM(all) across different
model variants (e.g., zero-shot, one-shot, fine-tuning,
and RAG) and training epochs is consistently low
(std < 0.0265), indicating stable performance across
all three runs. Therefore, we use the average scores
as a reliable and representative summary of model ef-
fectiveness. In the next section, we discuss the main
takeaways from these results.

6 DISCUSSION

In this section, we present the key experimental find-
ings and outline the limitations and directions for fu-
ture work.

6.1 Discussion on the Results

Our experimental findings provide several key in-
sights into the effectiveness of the FIRESPARQL
framework and the performance of different strategies
for SPARQL query generation with different epoch
settings and different model sizes.

6.1.1 Fine-Tuning Performance

As shown in Table 1, fine-tuning LLMs on
NLQ-SPARQL pairs leads to significant improve-
ments over both the zero-shot baseline and the one-
shot state-of-the-art methods. The highest perfor-
mance is achieved by the fine-tuned LLaMA-3-8B-
Instruct model trained for 15 epochs, attaining scores
of 0.77 (BLEU-4), 0.91 (ROUGE-1), 0.86 (ROUGE-
2),0.90 (ROUGE-L), and 0.85 (RelaxedEM on all test

cases). These results indicate that, across both query-
level (BLEU, ROUGE) and execution-level (Relaxe-
dEM) evaluations, SPARQL queries generated by
finetuned models are not only more accurate but also
structurally well-formed and executable. This high-
lights the effectiveness of supervised adaptation for
learning the ontology and structure of the underlying
SKG during training.

6.1.2 Model Size Impact

As shown in Fig 3, LLaMA-3-8B-Instruct consis-
tently outperforms LLaMA-3.2-3B-Instruct after fine-
tuning across all evaluation metrics. This demon-
strates that larger model capacity enhances the abil-
ity to internalize domain-specific patterns from train-
ing data, including the structure and semantics of the
target SKG. Interestingly, the trend reverses in the
one-shot setting: LLaMA-3.2-3B-Instruct performs
better than the 8B variant on most metrics, except
for RelaxedEM(success), as shown in Table 1. This
performance gap might be attributed to the fact that
LLaMA-3.2-3B-Instruct was released after LLaMA-
3-8B-Instruct and incorporates pruning and distilla-
tion techniques, which were specifically applied to the
1B and 3B variants (Ila, ). These techniques help to
preserve performance while significantly improving
efficiency, making the LLaMA-3.2-3B-Instruct model
capable of strong instruction-following performance
on resource-constrained devices. As a result, despite
its smaller size, LLaMA-3.2-3B-Instruct may benefit
from a more refined architecture and training strate-
gies, allowing it to better leverage in-context exam-
ples in one-shot settings compared to the larger, but
earlier, 8B model.

6.1.3 RAG Performance

As shown in Table 1, the score of RelaxedEM(all)
drops from 0.85 to 0.29 when incorporating RAG
into the fine-tuned LLaMA-3-8B-Instruct trained for
15 epochs, which does not lead to additional perfor-
mance gains, and it even degrades the task perfor-
mance. This decline can be attributed to the noisy
or misaligned nature of the retrieved context, such
as incorrect or irrelevant property suggestions from
the ORKG, which may introduce confusion instead
of providing useful guidance since we don’t have a
context checker to validate whether the context is rel-
evant or not. Prior studies (Jin et al., 2024; Joren et al.,
2024) have similarly observed that low-quality RAG
context can conflict with the knowledge already en-
coded in fine-tuned models, ultimately leading to re-
duced task performance.
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Table 1: BLEU, ROUGE and RelaxedEM scores with different strategies, different models and different epochs.

Strategy Model Epoch | BLEU4 | ROUGE-l | ROUGE?2 | ROUGEL | RefxedEM | RelaxedEM
(success) (all)
zoro-shot (basclin) Tlama-3.2-3b-Instruct B 0.03 0.36 0.18 0.35 0.00 0.00
llama-3-8b-Instruct - 0.03 0.39 0.18 0.38 0.00 0.00
ot Tlama-3 2-3b-Instruct B 0.03 036 0.18 0.36 0.00 0.00
zero-shot_rag llama-3-8b-Instruct - 0.03 0.36 0.18 0.38 0.00 0.00
Tlama-3.2-3b-Instruct B 0.58 081 0.73 0.78 0.78 0.40
one-shot (SOTA) llama-3-8b-Instruct - 0.38 0.61 0.50 0.59 0.89 0.29
llama-3.2-3b-Instruct-lora_
decpseckrl distll-lama. 70 20 0.32 0.63 0.51 0.60 042 0.06
ft_rag Ilama3-8b-Instruct-lora_
deepseckr - distill llama.T0b 15 0.58 0.81 0.72 0.77 0.85 0.29
3 0.67 0.86 0.79 0.83 0.88 053
5 0.62 0.83 0.75 0.79 071 0.36
i ) 7 0.52 0.77 0.67 0.73 0.79 0.27
llama-3.2-3b-Instruct-lora 10 0.56 0.79 0.70 0.76 0.70 022
15 0.60 0.81 0.73 0.78 0.88 0.40
i 20 0.70 0.86 0.79 0.84 0.80 0.54
3 0.75 0.90 0.84 0.88 0.99 0.79
5 0.74 0.90 0.85 0.87 0.98 0.73
ama3-8bInstruct 1 7 0.70 0.87 0.80 0.84 0.96 0.69
ama-J-eb-Instruct-lora 10 0.71 0.88 0.81 0.85 0.94 0.69
15 0.77 0.91 0.86 0.90 0.98 0.85
20 0.74 0.89 0.84 0.88 0.99 0.82
Avg BLEU-4 Avg ROUGE-L
0.900 3B
0.75 88
0.875
0.70 0.850
70825
2 0.65 5
w p=}
@ 5]
X 0.800
0.60
0.775
0.55 0.750
3B
8B
. . . 0.725
3 5 7 10 15 20 3 5 7 10 15 20
Epochs Epochs
Avg RelaxedEM (success) Avg RelaxedEM (all)
100
3B
80 8B
95
70
90
S g
= =~ 60
S S
g 85 2
= =
5 5 50
g g
& 80 I
40
75
30
3B
70 8B
T T T T T T 20 T T T T T T
3 5 7 10 15 20 3 5 7 10 15 20

Epochs

Epochs

Figure 3: Average BLEU-4, ROUGE-L and RelaxedEM scores with different epochs on different fine-tuned models.

6.1.4 One-Shot Performance

As shown in Table 1, the one-shot setting, us-
ing the most similar example from the training set,
achieved strong performance, second only to the fine-
tuned models. Specifically, the one-shot approach
reached scores of 0.58 (BLEU-4), 0.81 (ROUGE-
1), 0.73 (ROUGE-2), 0.78 (ROUGE-L), and 0.40
(RelaxedEM(all)) on LLaMA-3.2-3B-Instruct model.
Compared to the best-performing fine-tuned model,
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the one-shot approach achieved comparable perfor-
mance on query accuracy. However, in terms of
execution accuracy, it lagged behind, with a Re-
laxedEM(all) score of 0.40, substantially lower than
the 0.85 achieved by the fine-tuned LLaMA-3-8B-
Instruct model. These results suggest that while fine-
tuning remains essential for maximizing execution ac-
curacy, one-shot learning provides a simple yet effec-
tive alternative in scenarios where high-quality fine-
tuning datasets are unavailable.
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6.1.5 SPARQL Corrector Performance

The integration of a SPARQL corrector layer sig-
nificantly improved the syntactic validity and exe-
cution accuracy of queries generated by the fine-
tuned LLaMA models. As illustrated by the ex-
amples provided in the Appendix, the raw out-
puts often contained structural and formatting errors,
such as missing whitespace between keywords (e.g.,
SELECT Ymodel?model_Ibl). This issue leads to
syntax errors and failed executions when submitted to
the QLever endpoint. The corrector layer effectively
resolved these inconsistencies by standardizing spac-
ing, punctuation, and query structure—ensuring com-
pliance with SPARQL syntax. This post-processing
step is particularly valuable in handling complex
query patterns involving nested clauses and aggrega-
tion. Consequently, we observed a notable improve-
ment in the execution success rate and semantic align-
ment with the reference queries. These results un-
derscore the importance of incorporating lightweight
correction mechanisms alongside fine-tuned models
for reliable SPARQL query construction.

6.1.6 Training Epoch Sensitivity

As shown in Figure 3, the number of fine-tuning
epochs has a significant impact on all metrics for both
LLaMA-3.2-3B-Instruct and LLaMA-3-8B-Instruct
models. First, both models start with high scores on
all metrics at epoch 3 and then slightly decline dur-
ing the early training phases (epochs 3—7), suggesting
that the models may require sufficient training time to
properly internalize the SKG-specific structures and
semantics. Second, the training dynamics reveal an
upward trend in performance from 7 epochs onward,
with the best performance at 20 epochs for the 3B
model and 15 epochs for the 8B model. This indicates
that larger models tend to converge faster and exhibit
stronger generalization early on, while smaller mod-
els require more epochs to achieve competitive per-
formance.

6.1.7 Performance on HQs and AQs

The execution results in Table 2 reveal a clear
performance gap between handcrafted questions
(HQs) and auto-generated questions (AQs) on
query execution accuracy. For AQs, the best-
performing fine-tuned model achieves very strong
performance, with 438 queries falling into the
success-execution_non-empty_exact-match_1
category, indicating successful execution, non-empty
results, and perfect alignment with the ground-truth
answers. In contrast, none of the HQs achieved this

Table 2: Query execution results on HQs and AQs across
three runs with the best-performed fine-tuned model.

#HQ #AQ Total
test set 21 492 513
sucess-execution_non-empty_exact-match_1 0 438 438
sucess-execution_non-empty_exact-match_0 5.67 5.00 10.67
sucess-execution_empty 14.67 34.00 48.67
fail-execution-syntax-error 0.67 15.00 15.67

level of exact matching. Instead, most generated
queries for HQs either produced empty results despite
being syntactically valid (14.67 on average across
three runs) or only partially overlapped with the
ground-truth anwsers (5.67). A small number of the
generated queries for HQs (0.67) also failed due to
syntax errors. These findings suggest that while the
model generalizes effectively to the more uniform,
template-based structure of AQs, it faces significant
challenges when dealing with the semantic richness
of HQs. In particular, the large proportion of empty
results for HQs highlights their susceptibility to
semantic inaccuracies: even when the generated
queries are structurally sound, the model often fails
to correctly identify or link the intended entities
and properties, resulting empty answers.  This
reinforces the earlier observation by Soren Auer et
al.(Auer et al., 2023) that HQs pose a more realistic
and demanding test of model robustness, exposing
limitations that remain hidden when evaluating solely
on synthetic, template-driven data.

6.2 Error Analysis on Failed SPARQL
Queries

We further analyzed the generated SPARQL queries
that either failed to execute or returned empty results,
by comparing them with the corresponding ground
truth queries. Under the best-performing configu-
ration—using the fine-tuned LLaMA3-8B-Instruct
model trained for 15 epochs—448 out of 513 gener-
ated SPARQL queries were executed successfully via
QLever without any syntax errors and returned mean-
ingful results. Meanwhile, 14 queries failed due to
syntax errors, and 51 queries were executed success-
fully but returned empty results.

To better understand the causes of failure, we ex-
amined the error messages for the 14 syntactically in-
valid queries and inspected the queries that returned
empty results. Our analysis revealed that 11 out of
the 14 syntactically invalid queries shared the same
error message:

Invalid SPARQL query: Variable ?metric

is selected but not aggregated. All

non-aggregated variables must be part

of the GROUP BY clause. Note: The

GROUP BY in this query is implicit

because an aggregate expression was
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used in the SELECT clause.

This indicates that these queries included aggregate
functions (e.g., MAX (?value)) in the SELECT clause
but did not include the non-aggregated variables (e.g.,
?metric, ?metric_lbl) in a GROUP BY clause. In
SPARQL 1.1, such usage is invalid unless all non-
aggregated variables are explicitly grouped. This re-
flects a lack of adherence to SPARQL’s syntax rules
around aggregation and grouping.

The remaining 3 queries failed with the following
error:

Invalid SPARQL query: Token ’SELECT’:

mismatched input ’SELECT’ expecting

e
This indicates that the queries contained improperly
structured subqueries. Specifically, full SELECT state-
ments nested directly inside a WHERE clause without
being enclosed in curly braces ({}). SPARQL re-
quires subqueries to be syntactically isolated within
their own scope using curly braces. These errors
likely stem from incorrect handling of nested query
structures during generation.

These findings highlight the current limitations of
fine-tuned LLMs in capturing the formal syntactic
constraints of the SPARQL query language, particu-
larly in scenarios involving nested subqueries and ag-
gregation functions. As a potential extension to our
approach, prompt engineering techniques that include
explicit syntax error examples or constraint reminders
could be incorporated during SPARQL generation to
encourage the model to produce syntactically valid
SPARQL, especially for complex constructs like ag-
gregation and subqueries.

6.3 Limitations and Future Work

While FIRESPARQL demonstrates strong perfor-
mance in generating SPARQL queries over the
ORKG, several limitations remain, which also high-
light directions for future research: Our current exper-
iments are limited to a single domain-specific bench-
mark, SciQA, which is built on top of the ORKG. To
assess the generalizability of our approach, it is cru-
cial to evaluate FIRESPARQL on a broader range of
benchmarks across different domains and knowledge
graphs. This would help determine whether the ob-
served improvements are transferable or highly task-
specific. Although our framework includes an op-
tional RAG module, its effectiveness is currently hin-
dered by the quality of the retrieved context. In many
cases, irrelevant or incorrect candidate properties are
introduced, leading to performance degradation. Fu-
ture work should focus on developing more accurate
and semantically aware retrieval mechanisms that can
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provide high-quality, contextually relevant informa-
tion—such as topological subgraphs or query tem-
plates—without introducing noise. FIRESPARQL re-
lies on supervised fine-tuning using NLQ-SPARQL
pairs, which may not always be available. In fu-
ture work, we aim to explore alternative data for fine-
tuning LLMs such as synthetic training data or lever-
aging weak supervision from ontology or subgraphs.

7 CONCLUSION

In this paper, we introduced FIRESPARQL, a mod-
ular framework for SPARQL query generation over
SKGs. By systematically analyzing common error
types, structural inconsistencies, and semantic inac-
curacies, we designed a three-module architecture
comprising fine-tuned LLMs for SPARQL genera-
tion, optional RAG for providing relevant context,
and a lightweight SPARQL correction layer. Our em-
pirical evaluation on the SciQA benchmark demon-
strates that domain-specific fine-tuning, especially us-
ing LoRA for efficient parameter updates, signifi-
cantly improves both the syntactic quality and exe-
cution accuracy of generated SPARQL queries. No-
tably, our best-performing configuration, based on
the LLaMA-3-8B-Instruct model fine-tuned for 15
epochs, achieves state-of-the-art results across all
evaluation metrics, including BLEU, ROUGE, and re-
laxed exact match (RelaxedEM). While RAG does not
enhance performance in the presence of fine-tuning,
this points to the importance of high-quality context
retrieval. Importantly, our results also reveal a sub-
stantial performance gap between auto-generated and
handcrafted questions, underscoring the difficulty of
adapting LLMs to the semantic complexity and vari-
ability for handcrafted questions. FIRESPARQL of-
fers a reproducible and configurable framework that
can be adapted based on resource availability, paving
the way for more robust, interpretable, and scalable
QA systems over SKGs.
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APPENDIX ?benchmark orkgp:HAS_DATASET ?
dataset;
orkgp:HAS_EVALUATION ?
Table 3: Epoch-wise fine-tuning runtime of 1lama models eval.
using a single NVIDIA H100 GPU. ?paper orkgp:HAS_BENCHMARK ?
model epochs | running time(hh:mm:ss) benchmark.
3 00:09:18 OPTIONAL {
3 88%??2 ?paper orkgp:HAS_MODEL ?model.
lama-3.2-3b-Instruct 10 003742 ?model rdfs:label ?model_1bl.
15 00:37:41 }
20 00:57:45 }
3 00:10:46
5 00:16:53
7 00:26:35
lama-3-8b-Instruct 10 003804
15 00:55:21
20 OL:14:11

Listing 3: The example of generated SPARQL query before

the SPARQL corrector.
SELECT ?model ?model_1bl
WHERE {
?dataset a
orkgc:
Dataset;
rdfs:label
?
dataset_
1bl.

FILTER (str (?dataset_1lbl) ="
FTD dataset™")

?benchmark orkgp:HAS_
DATASET ?dataset;
orkgp:HAS_
EVALUATION
?eval.
?paper orkgp:HAS_
BENCHMARK ?benchmark.
OPTIONAL {?paper orkgp:
HAS_MODEL ?model.
?model rdfs:
label

model_1bl.}
}<leot_id|>

Listing 4: The example of generated SPARQL query after
the SPARQL corrector.
SELECT ?model ?model_1bl
WHERE {
?dataset a orkgc:Dataset;
rdfs:label ?dataset_1lbl.
FILTER (str(?dataset_1lbl) = "FTD
dataset")
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