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Abstract: This paper introduces the winning algorithm of the 2024 Shell Eco-marathon Autonomous Urban Challenge 
for autonomous parking. The task requires the vehicle to identify an available parking spot from multiple 
alternatives and precisely navigate into it, fully remaining within the designated area without touching any 
lane markings. Successful task execution requires not only reliable long-range detection of the parking space 
but also an accurate final orientation relative to the parking spot. To solve this task, we propose a novel method 
which relies on the combination neural networks and traditional point cloud processing methods. Since this 
is a highly specific problem tailored to the Shell Eco-marathon setting, and no publicly available solutions 
from other teams have been observed, our earlier algorithm serves as the primary baseline for comparison. 

1 INTRODUCTION 

The Shell Eco-marathon is an international university 
competition that promotes the design of energy-
efficient vehicles and includes autonomous driving 
challenges. In the autonomous category, participants 
must complete three main tasks without any external 
intervention: autonomous driving, obstacle 
avoidance, and parking. SZEnergy Team is a student 
team participating in this competition. The team's 
vehicle is equipped with a 128-channel Ouster 
LiDAR, a ZED2i stereo camera, and an inertial 
measurement unit (IMU) to support autonomous 
functionality. The algorithms run on an NVIDIA 
Jetson Orin onboard computer, using the ROS 2 
framework. 

1.1 The Race 

The competition consists of three main autonomous 
tasks, with the third and final one being autonomous 
parking. Between each task, the vehicle is required to 
come to a complete stop at designated stop lines with 
stop signs. The competition is typically held on a 
closed racing circuit; in 2025, it took place at the 
Silesia Ring in Poland.  
 

 
a  https://orcid.org/0000-0003-3518-1107 
b  https://orcid.org/0000-0001-5083-2073 

 
Figure 1: Conceptual Overview of the Challenge. 

Due to the layout of the track, the distance between 
the last stop sign and the parking area can be as much 
as 50–80 meters. This means that the available 
parking spot may not be visible immediately, even to 
the onboard camera. In the parking challenge, three 
parking spots are placed on different parts of the track 
using adhesive markings, with two of them 
intentionally made unavailable. The core challenge 
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for the algorithm is to reliably detect and select the 
one unoccupied parking spot, see figure 1 and 2. 

 Figure 1 illustrates an autonomous vehicle 
maneuvering through a parking challenge consisting 
of multiple slots. Each parking slot is framed by 0.15-
meter-wide blue lines with white borders (𝑝௟௪) along 
the sides and the back, defining a 2.0-meter-wide (𝑝௪) 
and 4.0-meter-deep (𝑝௛ ) rectangular parking area. 
The parking goal position is represented by the point 
pt, and its desired orientation is indicated by the 
vector 𝑝஑  (marked with an orange arrow and 
displayed two times for clarity). An example 
trajectory to a free parking space is shown with a 
dashed yellow curve, while trajectory to an occupied 
parking space is marked with brown dashed curves. 

The vehicle is equipped with a body-fixed local 
coordinate system, denoted as ( 𝑙௫ , 𝑙௬ ), while the 
global frame is labelled (𝑔௫, 𝑔௬). Accurate alignment 
with the target pose pα is critical for successful 
parking. The 𝑏௟  refers to the base_link frame, and the 
variable distance represents the Euclidean distance 
between 𝑏௟ and the point 𝑝௧.  

 
Figure 2: actual picture of the challenge. 

2 THE ALGORITHM 

The algorithm operates as follows. First, a trained 
neural network identifies a bounding box in the image 
data, which it predicts—based on a certain confidence 
value—to represent a free parking space. The 
algorithm is designed in such a way that, even if 
multiple parking spaces are detected, it only publishes 
the corner points of the bounding box with the highest 
confidence on a ROS topic. This information is then 
used for further processing. 

Initially, these four corner points are only 
available as 2D pixel coordinates. Through a 
deprojection process, the algorithm converts them 
into 3D coordinates and then transform them into the 
appropriate reference frame using the corresponding 
transforms. 

Until reliable LiDAR data becomes available—as 
described in the following sections—The car initiate 
motion towards the estimated center of the parking 
slot based solely on the bounding box identified in the 
camera image. 

After the corner points are transformed into the 
appropriate reference frame, the LiDAR point cloud 
is analysed within the defined region. Specifically, 
the algorithm focuses on the ambient and intensity 
values associated with the points. Based on the 
observations, there is a significant difference in 
ambient response between bare asphalt/concrete and 
painted surfaces, with the latter typically producing 
sharp peaks in the ambient signal (Jing Gong et 
al.,2024). 

Our objective is to identify which points in the 
cloud correspond to the painted parking area. In 
earlier versions of the software, this was attempted by 
comparing each point’s ambient value to a global 
average. In the current approach, however, the 
algorithm relies solely on detecting significant peaks 
in ambient values, as they have proven to be a more 
reliable indicator of painted regions. 

In the context of parking spot detection and the 
actual parking maneuver, our algorithmic objective is 
to generate a pose-type ROS topic. The position 
component of this pose is defined such that its lateral 
coordinate aligns with the center of the parking spot, 
while its longitudinal coordinate is aligned with the 
starting edge of the painted boundary lines. This 
position can optionally be adjusted in the longitudinal 
direction depending on how deep the vehicle is 
intended to enter the parking space (Weikang et 
al.,2024). 

The more critical aspect, however, is the 
orientation of this pose. It is essential that the vehicle 
aligns itself straight within the parking area, avoiding 
any skewed positioning. This requirement arises 
because the camera-based parking space detector 
only returns a 2D bounding box with width and 
height, but without any reliable orientation 
information. Therefore, the detection is augmented 
with LiDAR-based analysis to derive a pose that 
includes an accurate angular alignment relative to the 
actual orientation of the painted parking lines (Hata 
and Wolt, 2014) 

The construction of the final pose proceeds as 
follows: within the filtered bounding box, the LiDAR 
point cloud is traversed ring by ring (i.e., by 
increasing radial distance), and points exhibiting a 
significant ambient value peak are collected. Ideally, 
four such points can be detected per ring. Pairs of 
points lying within 15 cm of each other — a threshold 
chosen based on the official width specification of the 
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painted parking lines in the competition rulebook — 
are then clustered. 

 
Figure 3: The original pointcloud in the deprojected area. 
The points in the left represent the same points in the right  

The purpose of this clustering is to compute a 
representative midpoint between the two edge 
markings of the parking spot These midpoints serve 
as the basis for determining the centerline of the 
parking space, from which the desired pose position 
and orientation are derived for accurate parking 
alignment (Figure 5).  

 
Figure 4: The red dots represent the points where are the 
ambient value peaks are. The green dots represent the 
uncategorized points. 

Once the points corresponding to the painted line 
segments — hereafter referred to as uncategorized 
parking points (The green dots on Figure 4) — are 
obtained, the next step is to determine whether each 
point belongs to the left or right side of the parking 
space. 

Initially, the two points closest to the bottom edge 
of the bounding box are identified. The point located 
nearer to the lower-left corner is designated as the 
front-left point, while the other is assigned as the 
front-right point. 

As the vehicle approaches the parking space, 
additional uncategorized parking points are detected. 
These are incrementally classified as either left- or 
right-side points based on their relative position and 

orientation with respect to the initial front-left and 
front-right references. Once at least two points have 
been classified on each side, an average directional 
orientation is computed per side. New points are 
subsequently assigned by comparing their local 
orientation to the corresponding side's average. 

To minimize false detections and prevent 
misclassification due to lateral noise or ambiguity, a 
strict angular threshold is enforced, allowing a new 
point to be associated with a side only if its orientation 
deviates minimally from the corresponding average 
direction. 

In addition to positional and orientational criteria, 
a lateral distance constraint is also incorporated when 
classifying points to the left or right side of the 
parking space. According to the Shell Eco-marathon 
rulebook, the width of a parking space ( 𝑝௪ሻ . is 
specified in 2.0 meters. Therefore, during side 
classification, it is verified that the distance between 
a newly detected point and the corresponding point 
on the opposite side falls within this acceptable range. 
To account for potential sensor noise and minor 
deviations in perception, a tolerance margin is 
introduced. If a candidate point lies closer than 1.8 m 
or farther than 2.1 m from any point already assigned 
to the opposite side, it is rejected as likely noise or not 
part of the actual painted boundary (Smith and 
Müller, 2023). 

The final pose estimation is performed once a 
sufficient number of reliable points have been 
classified on both sides of the parking space. 

At this stage, two lines are constructed based on 
the initial points from the left and right boundaries, 
using the respective local orientation estimates. These 
lines model the painted borders of the parking slot. 

The lateral (cross-track) position is computed as 
the midpoint between the two lines, effectively 
aligning the pose with the centerline of the parking 
space. 

The longitudinal position is derived from the 
positions of the front-left and front-right points, 
which typically mark the entrance of the parking 
space. 

The orientation of the final pose is determined by 
averaging the orientations of the left and right sides, 
ensuring the vehicle aligns parallel to the painted 
boundaries and does not park at an angle (Figure 5). 
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Figure 5: This figure shows the result of our algorithm. The 
yellow and blue dots represent the two sides of the parking 
place, the red arrow is our goal pose. 

2.1 3D Point Deprojection 

To transform 2D image coordinates into 3D camera-
space coordinates, a standard deprojection process 
based on the pinhole camera model is applied. Given 
a pixel location (𝑢 ,𝑣) and its corresponding depth 
value 𝑍  (measured along the optical axis), the 3D 
point (𝑋,𝑌,𝑍) in the camera coordinate frame can be 
computed using the camera's intrinsic parameters as 
follows: 

 𝑋 = ሺ𝑢 − 𝑐௫ሻ ∗ 𝑍𝑓௫  (1) 𝑌 = ൫𝑣 − 𝑐௬൯ ∗ 𝑍𝑓௬  (2) 𝑍 = 𝑍 (3) 

Here, 𝑓௫  and 𝑓௬  represent the focal lengths in 
pixels along the horizontal and vertical axes, 
respectively, while 𝑐௫  and 𝑓௫  denote the optical 
center (principal point) of the image. These 
parameters are typically obtained from the camera's 
intrinsic calibration matrix (𝐾): 

 𝐾 = ൥𝑓௫ 0 𝑐௫0 𝑓௬ 𝑐௬0 0 1 ൩  
(4) 

 
This computation yields a 3D point in the camera 

coordinate frame. To express this point in another 
reference frame - fixed local ( 𝑙௫ , 𝑙௬ ) or global 
coordinate system (𝑔௫, 𝑔௬) - an additional rigid-body 
transformation must be applied using the appropriate 
extrinsic parameters (rotation and translation) 
(Zhang, 2000). 

2.2 Results 

Before diving into the evaluation results, we first 
define the three key questions this study aimed to 
address: 

• How does our algorithm perform under 
different weather conditions? 
Specifically, can we develop a method that 
remains robust and functional in both ideal and 
adverse environmental scenarios, such as rain? 

• Can the new method effectively filter outliers, 
thereby improving the robustness of the 
estimated pose orientation? 
Although this paper does not provide an in-
depth analysis of pose position accuracy, we 
aim to indirectly enhance positional robustness 
by improving orientation stability. 

• To what extent does the new method impact the 
difficulty of detecting parking slots? 
In other words, does the added complexity of 
outlier filtering and LiDAR-based refinement 
compromise the system’s responsiveness or 
detection range? 

 
The comparison of the algorithms is presented 

through two separate scenarios using two different 
log files. 

While the measurement conditions varied in terms 
of location and weather, the hardware setup of the 
vehicle remained identical. From a software 
perspective, there is no difference in the input data 
between the two versions. 

There is a measurement where two parking spots 
are available and the left one is free, under sunny and 
ideal weather conditions and There is the second case 
where there are three parking spots, with the right one 
being free, under rainy weather conditions. 

One of the key evaluation criteria for the proposed 
method is its performance under varying 
environmental conditions, particularly in comparison 
to our previous parking slot detection approach. A 
primary metric is the distance from which the first 
valid points—belonging to either the left or right 
painted boundary of the parking slot—can be reliably 
detected, as well as the distance from which a full 
pose can be estimated. 

In rainy conditions, the new method was able to 
detect valid feature points on both sides of the parking 
slot from a distance of approximately 15 meters and 
successfully estimate a reliable pose at 11.4 meters 
from the parking slot’s entrance edge. In contrast, the 
previous algorithm failed to detect painted boundary 
features reliably under such weather conditions. 
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Under clear and sunny weather, the new algorithm 
detected the parking slot boundaries at approximately 
13 meters and computed the pose at approximately 11 
meters, maintaining consistent performance. All 
distance measurements are referenced relative to the 
leading edge of the parking slot. 

Another key aspect of the evaluation is the 
consistency of the estimated orientation during the 
entire detection process. Figure 6 shows the absolute 
orientation values of the generated poses throughout 
a representative trial compared with the ground truth 
value. The red dotted line marks the point where the 
source of orientation data changes: the first 39 outputs 
are generated by a neural network using the camera 
image, and all data points after that are provided by 
the LiDAR-based detection algorithm. show that the 
output of our algorithm deviates from the ground 
truth by a maximum of ±0.05 radians (approximately 
±2.8 degrees). 

During the entire measurement, the vehicle 
followed a trajectory as illustrated in Figure 1, 
gradually approaching the pt point 

Across the full measurement sequence, the 
orientation values remained centered around the 
correct alignment, without significant drift or sudden 
fluctuations. This level of consistency is essential for 
ensuring that the vehicle aligns itself correctly within 
the parking slot and avoids skewed or off-angle final 
positioning (Figure 6). 

 
Figure 6: The figure illustrates the pose orientation output 
by the algorithm as a function of each measurement (X-axis 
count), expressed in radians. The estimated orientations are 
compared to the ground truth to evaluate the algorithm’s 
accuracy. The plot includes both the predictions made by 
the neural network without LiDAR input and those refined 
using the LiDAR point cloud. The section to the right of the 
red dashed line marks the point at which orientation 
estimation begins to incorporate LiDAR data. 

It is important to note that the measurements were 
taken on wet asphalt, where the original version of the 
algorithm—relying solely on camera input—did not 

switch to the LiDAR-based method. As a result, this 
particular sequence is not included in the diagram. 

When comparing the results with the previous 
version of the algorithm—where the main difference 
lies in the method used to identify the uncategorized 
parking points—a significant improvement is 
observed. In the earlier implementation, the filtered 
point cloud obtained through deprojection was 
analysed by calculating an average ambient value. 
Points presumed to belong to the painted lines of the 
parking space were identified by applying a fixed 
threshold based on deviation from this average. 

However, when analysing the same log file, our 
previous method failed to detect the parking space 
under rainy conditions using the LiDAR. As a result, 
the vehicle relied solely on the camera-based 
bounding box detection for parking. While the final 
pose estimation was still positionally acceptable, the 
orientation did not fully satisfy the competition 
requirements, highlighting the limitations of the prior 
approach in low-visibility scenarios (Bézi, 2023). 

Under sunny weather conditions, the previous 
method was able to detect the first points belonging 
to the painted markings of the parking space from a 
greater distance—approximately 18 meters. 
However, due to the absence of orientation 
constraints during the classification of uncategorized 
parking points into left and right categories, the older 
algorithm tended to include several outliers as valid 
points. These misclassifications directly impacted the 
stability and accuracy of the estimated orientation, 
leading to inconsistent pose definitions despite the 
early detection advantage. 

 
Figure 7: Several points from the water-filled barrier were 
incorrectly categorized among the left-side points of the 
parking space.  

Figure 8 presents a comparison between the 
orientation values estimated by the new and the 
previous algorithms, evaluated against ground truth in 
a measurement when both algorithms worked 
correctly. The ground truth reference was established 
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through manual measurements at 25 key points using 
visual aids to define the expected orientation curve. 

The plot also includes orientation values derived 
from the camera image; thus, during the initial ~50 
frames, both algorithms output the same orientation. 
As the vehicle progresses (after the red dotted line) 
however, the orientation estimated by the new 
algorithm remains significantly closer to the ground 
truth. Most notably, the final orientation computed by 
the new algorithm deviates by only 0.01 radians (≈ 
0.57°) from the ground truth. 
 

 
Figure 8: Pose orientation comparison on a dry surface, 
where both the original and the improved algorithms were 
active. Similar to Figure 6, this measurement includes the 
entire dataset, which explains why the outputs of the old 
and new algorithms are identical before the red dashed line. 
In this section, both methods relied solely on camera image 
information for orientation estimation. 

2.3 Key Findings 

Based on the previous comparison between the two 
algorithms, the following conclusions can be drawn: 

• The previous algorithm is capable of detecting 
points from one or both sides of the parking slot 
from a slightly greater distance. 

• However, it is more prone to picking up noise, 
which leads to inaccurate orientation 
estimation. 

• It also struggles to maintain a consistent and 
precise position throughout the maneuver. 

• The previous algorithm did not provide usable 
results under rainy conditions. 

3 CONCLUSIONS 

In this work, we have presented a LiDAR-based 
algorithm developed for autonomous parking within 
the highly constrained and competitive environment 
of the Shell Eco-marathon Autonomous Urban 
Challenge. The method combines neural network-

based camera detection with a robust LiDAR point 
cloud analysis pipeline to derive reliable pose 
estimates for precise vehicle alignment within painted 
parking slots. 

Our comparative evaluation against a previous 
algorithm revealed several key findings. While the 
earlier solution showed some advantages in early 
detection range under ideal weather conditions—
being able to identify features from up to 18 meters 
away—its lack of strong orientation constraints and 
susceptibility to noise significantly impacted its 
accuracy. This often resulted in unstable pose 
estimates, particularly in the presence of nearby 
environmental features such as reflective barriers or 
rain-induced artifacts. Additionally, the prior method 
failed to provide meaningful output under rainy 
conditions, a critical limitation in real-world 
scenarios. 

The new algorithm, in contrast, demonstrated a 
high level of robustness across varying environmental 
conditions. Even in challenging rainy weather, it 
successfully detected the key features of the parking 
slot and generated a stable and accurate pose estimate 
from more than 11 meters away. One of the most 
notable advantages is the orientation stability 
achieved through the improved classification and 
clustering process. By using ambient signal peaks and 
carefully calibrated geometric thresholds, the new 
system achieved an estimated orientation that 
deviated by no more than ±0.05 radians (≈ ±2.8°) 
from the ground truth throughout the entire 
maneuver—demonstrating consistent and accurate 
alignment. Moreover, the final orientation deviated 
by as little as 0.01 radians from the ground truth, 
demonstrating near-perfect alignment with the 
intended pose. 

The practical impact of these improvements is 
reflected in the SZEnergy Team’s successful 
execution of the parking challenge, which played a 
decisive role in securing the overall victory in the 
2024 Shell Eco-marathon competition. This validates 
not only the effectiveness of the proposed algorithm 
but also its ability to operate reliably in real-time on 
embedded automotive hardware, such as the NVIDIA 
Jetson Orin platform. 
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Table 1: A summary of the method’s overall performance 
is presented in Table 1. While the new approach slightly 
reduced the effective detection range, it significantly 
improved the robustness of orientation estimation and 
ensured reliable performance even in adverse weather 
conditions. 

Evaluation Aspect Observation 
Performance under 
varying weather 
conditions 

Yes – the method 
remains functional 

 

Orientation robustness Increased 
Detection range Slightly reduced 

 
Beyond the competition, this work highlights a 

promising approach for reliable low-speed 
autonomous maneuvering in structured 
environments. The methods introduced—such as 
ambient-based LiDAR filtering, dynamic point 
classification using geometric and angular thresholds, 
and hybrid camera–LiDAR fusion—can be 
generalized to other applications, including 
autonomous valet parking or warehouse robotics. 

Future work may focus on extending this 
approach to support parking in unmarked or partially 
occluded scenarios, incorporating learning-based 
clustering for even more resilient point classification, 
and adapting the system for real-time re-evaluation of 
parking strategy during motion. Furthermore, 
integrating confidence estimation into the pose 
generation pipeline could improve fail-safety and 
allow more nuanced decision-making under uncertain 
conditions. 

In summary, the presented solution not only meets 
the specific challenges of the Shell Eco-marathon but 
also offers a foundation for scalable, reliable, and 
interpretable pose estimation methods applicable 
across a broader range of autonomous navigation 
tasks. 

4 FUTURE WORKS 

A key motivation behind the development of the 
presented multi-modal fusion approach is the inherent 
limitation of our current vision-based neural network. 
At present, the network provides only an axis-aligned 
2D bounding box around the detected parking space 
in the image plane, which contains no information 
about the orientation of the parking slot relative to the 
vehicle (Xu and Hu, 2020). This lack of angular 
precision can lead to suboptimal initial pose 
estimates, which in turn increases the reliance on 
downstream corrections derived from LiDAR-based 
geometric analysis. 

To address this limitation, one of our primary 
directions for future development is to enhance the 
neural network's output by moving beyond bounding 
box predictions (G. S. Wong et al.,2023). 
Specifically, we plan to investigate neural 
architectures that are capable of detecting the precise 
corner points of the parking space markings. By 
obtaining four distinct corner points, it would become 
possible to estimate not only the location but also the 
rotation of the parking slot directly from the image 
data, yielding a more informative and structured 
representation of the target area (Figure 9) (Zhang et 
al., 2023). 

 
Figure 9: The goal is to develop a neural network capable 
of detecting the corner points of the parking spot. 

This refined output could then be fused with 
LiDAR-based data in a more synergistic manner. The 
vision-based orientation estimate could provide a 
strong prior for initializing the pose, while the LiDAR 
data could serve as a robust source of confirmation 
and fine-tuning, especially in less favorable 
environmental conditions (e.g., poor lighting, 
occlusions, or rain). This would result in a more 
balanced fusion where both modalities contribute 
complementary strengths—visual perception offering 
contextual understanding and semantic cues, and 
LiDAR providing precise geometric verification. 

Ultimately, by combining structured visual output 
with LiDAR refinement, we expect to achieve greater 
robustness, improved early pose estimation, and 
reduced computational effort required for correction. 
This could also open the door to real-time, low-
latency pose estimation suitable for dynamic 
decision-making in competitive autonomous racing 
scenarios. 
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