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In the context of visual place recognition (VPR), continual learning (CL) techniques offer significant potential

for avoiding catastrophic forgetting when learning new places. However, existing CL methods often focus
on knowledge transfer from a known model to a new one, overlooking the existence of unknown black-box
models. This study explores a novel multi-robot CL approach that enables knowledge transfer from black-box
VPR models (teachers), such as those of local robots encountered by traveler robots (students) in unknown
environments. Specifically, we introduce Membership Inference Attack (MIA), a privacy attack applicable to
black-box models, and leverage it to reconstruct pseudo training sets, which serve as the transferable knowl-
edge between robots. Furthermore, we address the low sampling efficiency of MIA by leveraging prior insights
from the literature on place class prediction distributions and unseen-class detection. Finally, we analyze both
the individual and combined effects of these techniques.

1 INTRODUCTION

Visual place recognition (VPR) enables autonomous
robots and self-driving vehicles to classify their place
from visual input (Weyand et al., 2016)(Morita et al.,
2005)(Seo et al., 2018). While conventional VPR
systems rely on supervised learning from direct vi-
sual experiences, they face two fundamental limita-
tions: the high cost of collecting training data in
new environments and catastrophic forgetting when
learning new places. These challenges become par-
ticularly acute in long-term autonomous operations
where robots must continuously adapt to environmen-
tal changes. Recent advancements in continual learn-
ing techniques (Lange et al., 2022)—such as regu-
larization methods, experience replay, and dynamic
network expansion—have yielded promising results
in mitigating catastrophic forgetting and improving
continual adaptation performance (Gao et al., 2022;
Vodisch et al., 2023; Vodisch et al., 2022).

This study explores multi-robot Continual Learn-
ing (CL) for Visual Place Recognition (VPR), fram-
ing CL as knowledge transfer from an old model to a
new one. We extend conventional knowledge trans-
fer between different models of the same robot to
knowledge transfer between different models of dif-
ferent robots. This approach offers key advantages,
including scalability and fault tolerance. Specifically,
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Figure 1: Illustration of human-inspired knowledge transfer
(KT) via local-to-traveler interaction, motivating robot-to-
robot KT using VPR models.

a traveling robot can update its knowledge by ac-
quiring information from local robots, avoiding the
cost and risk of collecting training data independently.
Additionally, sharing VPR knowledge ensures criti-
cal information is preserved even if some robots fail.
Despite these advantages, multi-robot CL introduces
new challenges, such as variations in robot capabil-
ities, communication overhead, and concerns related
to privacy and security.

One of the key research challenges in multi-robot
systems is the question: ”Can a pseudo-training set
be reconstructed from a black-box teacher?” For ex-
ample, when a traveling robot explores an unfamiliar
city and encounters a local robot for the first time,
it cannot access the internal parameters or training
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data of the local robot’s VPR model, which thus acts
as a black-box teacher. Generating a pseudo-training
set from such a black box is essential for knowledge
transfer, yet remains a difficult and unresolved prob-
lem. This scenario represents a typical case where
black-box teachers naturally arise in multi-robot con-
tinual learning, and reconstructing pseudo-training
sets is crucial for integrating new data and retraining
models.

Many existing approaches rely on the assump-
tion that the existing model is a white box, allow-
ing access to its internal structure or training set. In-
deed, in single-robot systems, this assumption often
holds, as the existing model belongs to the robot it-
self. However, in multi-robot systems, especially in
open-world scenarios involving heterogeneous or un-
known robots, this assumption is overly optimistic.
In fact, reconstructing a training set from a black-
box model remains an ongoing challenge in machine
learning and is largely an open problem.

In this work, we address the key challenge of re-
constructing (pseudo) training samples from black-
box teachers using membership inference attacks
(MIAs) (Hu et al., 2022) (Fig. 1). Unlike traditional
approaches that analyze the model to reconstruct the
training data, MIA generates samples and predicts the
likelihood that they were part of the model’s training
data. It is the only major privacy attack method effec-
tive with black-box models. However, this flexibility
comes with a downside: low sampling efficiency, par-
ticularly when dealing with high-dimensional input
data, such as images used in VPR. The naive approach
of randomly generating training sample candidates is
highly inefficient. To overcome this limitation, we
propose improving the sampling efficiency of MIA by
leveraging prior knowledge from the VPR literature,
such as place class prediction distributions, and un-
learned class detection techniques. We also evaluate
the effects of these methods both individually and in
combination.

Through extensive experiments, we demonstrate
that the proposed approach significantly enhances
performance in continual learning under a challeng-
ing setup where all robots are black boxes and per-
form poorly.

Our key contributions include:

1. We extend the continual learning (CL) framework
from a single-robot to a multi-robot paradigm,
enabling knowledge transfer between distinct
robots.

2. We introduce a method for reconstructing pseudo-
training samples from a black-box teacher model
using membership inference attacks (MIA), tar-
geting the teacher-student VPR knowledge trans-

fer problem.

3. We empirically demonstrate that even in a
near-worst-case scenario involving only low-
performing black-box robots, collaborative learn-
ing can significantly boost VPR performance.

This work generalizes earlier studies on VPR,
continual learning, and knowledge transfer into a
novel data-free setting applicable to black-box teach-
ers. This study significantly extends our late-breaking
paper in (Tsukahara et al., 2024) and generalizes our
previous research on VPR, including continual learn-
ing (Tanaka, 2015), knowledge transfer from teacher
to student (Takeda and Tanaka, 2021), and knowledge
distillation (Hiroki and Tanaka, 2019), into a novel
data-free variant applicable to black-box teachers. As
autonomous robots continue to proliferate, universal
knowledge transfer protocols and continual domain
adaptation will become increasingly important. This
research lays the foundation for optimizing robot-to-
robot interactions in various VPR scenarios and aims
to enhance robotic autonomy in open-world environ-
ments.

2 RELATED WORK

Visual Place Recognition (VPR). VPR is a special-
ized self-localization task that has garnered consider-
able research attention (Weyand et al., 2016; Morita
etal., 2005; Seo et al., 2018). Compared to other self-
localization tasks, including image retrieval (Garcia-
Fidalgo and Ortiz, 2018), map matching (Sobreira
et al., 2019), sequence matching (Milford and Wyeth,
2012), and multiple-hypothesis tracking (Rozsypalek
et al., 2023), VPR is particularly scalable. This scal-
ability is demonstrated through the development of
compact VPR models for large-scale self-localization
at a planetary scale (Weyand et al., 2016), tuning-free
VPR models for diverse weather and seasonal con-
ditions (Morita et al., 2005), and fine-grained mod-
els with combinatorial spatial partitioning (Seo et al.,
2018).

Continual Learning (CL). Continual learning in
robotics addresses the challenge of maintaining and
updating knowledge over time. Recent advances
span loop closure detection (Gao et al., 2022), visual
odometry (Vodisch et al., 2023), SLAM (Vodisch
et al., 2022), and localization (Cabrera-Ponce et al.,
2023). However, most existing approaches focus on
single-robot scenarios, with limited attention to multi-
robot knowledge transfer. For an overview of CL
taxonomies and techniques, see (Lange et al., 2022).
CL methods have been increasingly applied in both
computer vision (Lomonaco et al., 2022) and robotics
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(Lesort et al., 2020). Benefits of CL in localiza-
tion include online adaptation (Wang et al., 2021)
and real-time learning (Cabrera-Ponce et al., 2023).
While some studies address CL in multi-agent sys-
tems (Casado et al., 2020), research on data-free
multi-robot CL remains sparse.

According to the CL taxonomy (Lange et al.,
2022), the scenario targeted in this study spans
domain-incremental, class-incremental, and
vocabulary-incremental settings, wherein a robot
learns across seasonal domains (e.g., inter-season),
accumulates new place classes, and adapts to new
teacher models (e.g., vocabulary changes).

Privacy Attacks. In machine learning applications
such as medical image analysis, privacy concerns
about reconstructing training samples—e.g., portraits
or sensitive images—during model transfer have led
to a growing body of research on privacy attacks and
defenses (Liu et al., 2021). Among these, model in-
version methods (Fredrikson et al., 2015) are of par-
ticular relevance. These aim to reconstruct pseudo-
training samples (or “impressions”) from teacher
models, which the student model can then learn from.

For example, early zero-shot KT approaches mod-
eled the softmax space with Dirichlet distributions
and reconstructed data from the teacher accordingly
(Nayak et al., 2019). Other works such as DAFL
(Chen et al., 2019) introduced regularization based on
assumed access to activations and outputs. While re-
cent studies have succeeded in reconstructing pseudo-
datasets (Buzaglo et al., 2023), they still assume ac-
cess to the internal architecture of teacher models.
In contrast, membership inference attacks (MIAs) are
the only major method applicable to black-box teach-
ers.

The MIA method proposed in this study draws on
insights from unlearned place detection in VPR (Kim
etal., 2019), and aligns with recent metric-based MIA
techniques (Ko et al., 2023). However, most prior
MIA research has focused on one-shot attacks, and
due to poor sampling efficiency, dataset reconstruc-
tion for VPR knowledge transfer remains an open
challenge in black-box settings.

3 FORMULATION OF
MULTI-ROBOT CONTINUAL
LEARNING

This section first reviews the conventional tasks, in-
cluding visual place recognition (VPR), supervised
learning, and single-robot continual learning (CL).
Building on this, we formulate the multi-robot CL
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problem and describe membership inference attacks
(MIAs), which are central to our approach. Further-
more, as preparation for evaluation, we introduce a
metric for assessing knowledge transfer cost.

A VPR model is defined as a function M that takes
an input image x and outputs a probability distribution
over place classes C:

M:x—P(y|x), yecC, (D

where, C denotes a predefined set of place classes,
each corresponding to a real-world spatial region.
For example, in the NCLT public dataset (Carlevaris-
Bianco et al., 2016) used in our experiments, grid-
based partitioning (Kim et al., 2019) is applied, divid-
ing the workspace into 10 x 10 grid cells in a bird’s-
eye coordinate system, each cell representing a dis-
tinct place class (Fig. 1). This approach provides
a standardized place definition; however, it increases
intra-class variation, thereby complicating classifica-
tion! (Fig. 2).

In a traditional supervised learning setting, a robot
experiences a set of place classes Cp, converts these
experiences into a training set 7p, and trains a model
M via supervised learning L:

My =L(Tp),

where
T = {(xi.yi) i1

In single-robot CL, when a new class set Car is ob-
served with corresponding training data TO+, the goal
is to update the existing model My to a new model
M;. This is typically done by first reconstructing a
pseudo training set 7y using a model inversion func-
tion / (e.g., MIA):

Ty =1(Mo),

where

T ={(xi,P(y]x) iy
The reconstructed pseudo set is combined with the
new training data:

T =ToUTy,
gnd a distilled model M is learned using distillation
L (Hinton et al., 2015):

My = L(Ty").
The overall update process is summarized as

My =L(I(My)UT"). (2)

1Optimizing place definitions to reduce intra-class vari-
ation is a fundamental, ongoing challenge in the VPR com-
munity (Seo et al., 2018). This topic lies beyond the scope
of the present work but is considered complementary.
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Figure 2: Sample input images from independent sessions. Each row corresponds to distinct place classes. Grid partitioning

introduces intra-class variation, challenging the VPR task.

In multi-robot CL, instead of receiving new train-
ing data 7", a new black-box teacher model M is
provided. In this scenario, a specialized inversion
function I* (i.e., MIA) applicable to black-box mod-
els is employed to reconstruct the pseudo training set:

T, =r (M),
where, MIAs aim to approximate the inaccessible
training data of a black-box teacher model via queries
and responses. The overall model update can be writ-
ten as:
My = L(I(Mo) UI*(M{)). (3)

Finally, we consider the knowledge transfer cost
in multi-robot CL. Interactions between the student
and black-box teacher occur via queries (from stu-
dent) and responses (from teacher). The queries

are automatically generated programmatic requests,
typically consisting of short code snippets, incur-
ring negligible communication overhead. Responses,
however, consist of pseudo training samples rep-
resented as high-dimensional real-valued vectors or
tensors, imposing significant communication cost
proportional to the number of samples transferred.
Therefore, this study evaluates the knowledge transfer
cost primarily based on the number of pseudo samples
sent from the teacher to the student, assuming the cost
of queries is negligible.
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4 DATASET RECONSTRUCTION
USING BLACK-BOX
MEMBERSHIP INFERENCE
ATTACKS (BB-MIA)

A critical challenge in applying Membership Infer-
ence Attacks (MIA) to black-box models (BB-MIA)
lies in the high dimensionality of the sample space.
Since the attacker (student) has no access to the
teacher model’s internal parameters or its training
data distribution, generating informative samples to
effectively probe the model’s decision boundaries is
highly non-trivial.

To address this, we approximate the teacher model
with a cascade pipeline comprising two modules: a
pre-trained embedding module and a trainable MIA
module. The embedding module projects high-
dimensional input images into lower-dimensional em-
bedding vectors via a scene graph classifier, a method
validated for generalizability and effectiveness in var-
ious VPR tasks (Takeda and Tanaka, 2021). The
MIA module then employs multiple sampling strate-
gies within the embedding space to enable efficient
MIA sample generation. Details of each module fol-
low.

4.1 Generic Embedding Model

Figure 3 illustrates the approximated pipeline. It con-
sists of three key stages:

1. Semantic Segmentation: Input images are seg-
mented into regions by DeepLab v3+ (Chen et al.,
2018).

2. Scene Graph Generation: Segmented regions
form nodes in a scene graph. Each node is rep-
resented by a 189-dimensional one-hot vector en-
coding semantic labels, orientation, and range
(Lowry et al., 2016). Edges connect spatially ad-
jacent nodes, capturing multimodal features in-
cluding appearance, semantics, and spatial rela-
tions (Yoshida et al., 2024).

3. Graph Neural Network: The scene graph is fed
into a pre-trained graph convolutional network
(GCN) classifier, producing a class-specific prob-
ability map (CPM) of dimension |C| (Ohta et al.,
2023). This CPM serves as the final embedding
vector.
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4.2 Black-Box Membership Inference
Attacks

The problem is to reconstruct a pseudo-sample set
{(x,P(y|x))} approximating the training data of a
black-box teacher model, which takes embedding
vectors as input and outputs CPMs. This is an inverse
supervised learning problem.

Uniform Sampling (US) Strategy The simplest
approach samples vectors x € RIS from a uniform
distribution, normalizes them with the L1 norm, and
queries the teacher to obtain P(y|x):

Ui

. ui~U, i=1,....N. (4

Reciprocal Rank (RR) Strategy. The Uniform
Sampling (US) strategy generates samples randomly
and does not take into account the teacher model’s
output distribution. The RR strategy improves on this
by converting uniform samples into reciprocal rank
features (RRF), which reflect the relative strength of
each class in the model’s predictions (Takeda and
Tanaka, 2021):

xi:fRR< 4 ) ui~U, i=1,....,N, (5

il 1

where

RR 1 1 1

F7) = [rankl "ranky rank ¢ O
and rank; is the position of the j-th element in de-
scending order. In simple terms, the largest value gets
1/1 = 1, the second largest 1/2 = 0.5, the third largest
1/3 ~ 0.33, and so on. This transforms random values
into features that encode the relative order of classes,
making the samples more informative for probing the
teacher model.

Entropy Strategy. While the RR strategy approxi-
mates general predictive distributions, it may not fit
the target teacher model’s specifics. The Entropy
strategy selects samples with low predictive entropy,
hypothesizing these correspond to training data mem-
bers (Kim et al., 2019). From many RR-generated
samples, the N with the lowest entropy

€|
H(x) = =) P(yilx)log P(yi|x) (7
i=1

=

are chosen.
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Figure 3: Overview of our VPR pipeline. The architecture includes a generic embedding module to reduce dimensionality and
multiple sampling switches for model inversion analysis (MIA). Switch states shown correspond to the proposed “Entropy”

method.

Replay/Prior  Strategies. Beyond BB-MIA,
replay-based sampling assumes partial access to
the teacher’s training samples (Isele and Cosgun,
2018), contradicting the black-box assumption. Such
settings are plausible with high communication and
memory capacity in multi-robot systems. The Prior
strategy assumes the student has access to its own
training samples for querying the teacher, applicable
when only the student cooperates.

Mixup Strategy. A hybrid approach combines a
small subset R of retained training samples with N — R
samples from RR or Entropy strategies:

{TR“PZ‘W, i=1,...,R
Xj ~

8
i=R+1,...,N’ ®)

RR/Entro
Wt Eany)

where TRePI®Y is the teacher outputs for replayed
(retained) training samples, and TRR/Enropy s the
teacher outputs for samples generated by Reciprocal
Rank or Entropy strategies. This strategy serves as an
oracle baseline, not applicable to black-box teachers.

S5 EXPERIMENTAL EVALUATION

This section evaluates the performance of the pro-
posed method in a typical multi-robot continual learn-
ing (CL) scenario, where a traveling robot (student)
sequentially interacts with three teacher robots via
wireless communication. A key focus is the trade-
off between acquiring new knowledge and avoiding
forgetting previously learned place classes.

5.1 Experimental Setup

Experiments utilized the NCLT dataset (Carlevaris-
Bianco et al., 2016), which contains sensor data from
a Segway robot navigating multiple sessions across
different seasons on the University of Michigan North
Campus. Visual Place Recognition (VPR) tasks em-
ploy onboard camera images with ground-truth view-

point GPS annotations. The dataset, originally col-
lected by a single robot, is adapted to multi-robot
scenarios by pairing distinct sessions with different
robots (Mangelson et al., 2018).

The evaluation protocol comprises:

1. Sequential interactions with up to three teachers.
2. Utilization of 27 NCLT sessions:

* One test session: “2012/08/04”
* One session for embedding model training:
“2012/04/29”

» Twenty-five sessions for student/teacher VPR
model training

3. Teacher and student VPR models implemented
as multi-layer perceptrons (MLPs) with a 4,096-
dimensional hidden layer.

4. Evaluation of six distinct knowledge transfer sce-
narios.

5. Performance metrics including:

» Top-1 VPR accuracy measured after:

— Student’s supervised learning

— Knowledge transfer from each teacher se-

quentially

* Knowledge transfer (KT) cost quantified by the
number of samples N used.

* Knowledge retention, assessing avoidance of
catastrophic forgetting.

* Computational efficiency.

Additional details include:

1. Each student and teacher robot is trained on K
place classes from its assigned session, using fully
supervised learning with the corresponding train-
ing data. Following standard continual learning
protocols, training sets are discarded after train-
ing, except for Replay, Prior, and Mixup strategies
where some samples are retained.

2. Sessions are indexed from O to 24 chronologically
according to navigation dates.
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0
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P 2
Figure 4: Experiment design overview. At stage i =0, VPR
model is trained on the student’s prior experience. At subse-

quent stages i = 1,2,3, it is updated via knowledge transfer
from distinct teachers.

3. Six scenarios (j = 0,...,5) evaluate different
student-teacher combinations. For the j-th sce-
nario, models with ID i € {0, 1,2, 3} correspond to
the student (i = 0) and teachers (i = 1,2,3), each
trained on K = 10 random place classes from ses-
sion ((6i4 j) mod 25).

4. Sample counts are reported per place class for
simplicity.

5. When encountering a teacher, pseudo-training
samples for classes known to the teacher are re-
constructed from the teacher model, while sam-
ples for classes exclusive to the student are recon-
structed from the student model.

6. For Replay, Prior, and Mixup strategies, the num-
ber of replay samples per class R is set to 1 by
default.

7. Reciprocal Rank Feature (RRF) vectors are ap-
proximated using sparse k-hot RRF with k = 10
as in (Ohta et al., 2023).

Computational costs were modest: MLP training
required tens of seconds, and query sample genera-
tion took approximately 25 milliseconds per sample.
Knowledge transfer cost for a 100-dimensional k-hot
RRF sample was under 128 bits.

5.2 Results and Discussions

We first evaluated the basic performance of the pro-
posed method. Performance was measured initially
after supervised training of the student, and sub-
sequently after sequential knowledge transfers from
new teachers.

At the initial stage, the student’s performance was
predictably low, as the test set included samples from
previously unseen place classes, highlighting the in-
herent difficulty of the VPR task under such condi-
tions.

Figure 5 shows that performance improved with
an increasing number of samples across all five
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Figure 5: Top-1 accuracy vs. KT cost (N) under different
replay conditions. K = 10.

strategies, though notable differences were observed
among them:

Replay Strategy: When provided with sufficiently
many samples, this strategy effectively mitigated
catastrophic forgetting (Kang et al., 2023) and con-
sistently achieved the highest accuracy. However, it
does not conform to strict continual learning princi-
ples. The Prior strategy, a variant which queries the
teacher with the student’s own training samples, ex-
hibited inferior performance, likely due to a low prob-
ability of overlap between the student’s and teacher’s
training samples.

US Strategy: Uniform Sampling (US) showed the
lowest performance in all experiments, presumably
due to the uniform distribution not matching the
teacher model’s predictive distribution in the embed-
ding space.

RR Strategy: Despite its simplicity, the Reciprocal
Rank (RR) strategy surprisingly achieved high per-
formance, indicating that the reciprocal rank feature
distribution approximates the teacher’s predictive dis-
tribution well.

Entropy Strategy: The Entropy strategy performed
comparably or better than RR, especially excelling
when the number of samples N was small by effec-
tively selecting high-quality samples.

Mixup Strategy: Mixup balances generalization and
communication cost effectively. Though it requires
retaining a small number R of replay samples, its
knowledge transfer cost is substantially lower than
Replay while still mitigating forgetting and achieving
comparable performance.

Figure 6 illustrates the student’s VPR perfor-
mance evolution through continual learning. The
Replay strategy demonstrated the greatest stability,
followed by Mixup, Entropy, RR, and US. No-
tably, Mixup closely matched Replay’s stability by
leveraging replay samples. Even strictly black-box
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Figure 6: Performance evolution of VPR models across continual learning stages.
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teacher-compliant strategies such as RR and Entropy
approached the performance of non-black-box ap-
proaches (Replay) when more than 20 samples per
class were used. This demonstrates the promise of
the proposed methods in challenging black-box MIA
scenarios.

Figure 7 (a—c) depicts performance variation as
the number of place classes K experienced by each
robot changes. While RR and Entropy strategies ex-
hibited a slight performance decline with increasing
K, their accuracy remained comparable to Replay, ev-
idencing robustness throughout continual learning.

Finally, Figure 7 (d) shows the impact of varying
the number of replay samples R in the Mixup strategy.
Even with a small R (e.g., R = 1), increasing the num-
ber of non-replay samples sufficiently improved VPR
accuracy, suggesting that Mixup’s practical knowl-
edge transfer cost can be minimized without sacrific-
ing performance.

In summary, the proposed approach substantially
improved performance under challenging black-box
MIA settings. In particular, the RR strategy achieved
surprisingly strong results despite its simplicity. The
Entropy strategy further enhanced performance with
minimal additional cost. These findings build upon
insights from non-black-box MIA tasks in VPR
(Takeda and Tanaka, 2021)(Kim et al., 2019) (Sec-
tion 4.2) and lay a foundation for future multi-robot
continual learning research.

6 CONCLUSION AND FUTURE
WORK

This study formulated continual multi-robot learn-
ing for visual place recognition as a teacher-student
knowledge transfer problem, leveraging membership
inference attacks (MIA)— the only major privacy
attack applicable to black-box teachers. To ad-
dress MIA’s critical bottleneck of low sampling ef-
ficiency, we proposed utilizing the student model’s
prior knowledge to improve practical sampling effi-
ciency. Extensive experiments demonstrated signifi-
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cant effectiveness of the approach, revealing the in-
terplay between VPR accuracy, sampling efficiency,
and computational cost.

Our investigation focused on a near-worst-case
scenario where all teachers are black boxes and all
robots have limited initial performance. For practi-
cal deployment, future work should explore leverag-
ing heterogeneous teacher models, including white-
box and high-performing teachers, to further enhance
learning. Moreover, improving VPR performance
may benefit from several well-known extensions: (1)
advancing from grid-based to adaptive workspace
partitioning for place definitions, (2) extending from
single-view to multi-view VPR, and (3) shifting from
passive to active VPR with robot control.

Immediate future directions include applying
these advancements to challenging real-world tasks
and addressing the lost robot problem to realize robust
long-term autonomy in open-world environments.
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