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Abstract: In the context of visual place recognition (VPR), continual learning (CL) techniques offer significant potential

for avoiding catastrophic forgetting when learning new places. However, existing CL methods often focus

on knowledge transfer from a known model to a new one, overlooking the existence of unknown black-box

models. This study explores a novel multi-robot CL approach that enables knowledge transfer from black-box

VPR models (teachers), such as those of local robots encountered by traveler robots (students) in unknown

environments. Specifically, we introduce Membership Inference Attack (MIA), a privacy attack applicable to

black-box models, and leverage it to reconstruct pseudo training sets, which serve as the transferable knowl-

edge between robots. Furthermore, we address the low sampling efficiency of MIA by leveraging prior insights

from the literature on place class prediction distributions and unseen-class detection. Finally, we analyze both

the individual and combined effects of these techniques.

1 INTRODUCTION

Visual place recognition (VPR) enables autonomous

robots and self-driving vehicles to classify their place

from visual input (Weyand et al., 2016)(Morita et al.,

2005)(Seo et al., 2018). While conventional VPR

systems rely on supervised learning from direct vi-

sual experiences, they face two fundamental limita-

tions: the high cost of collecting training data in

new environments and catastrophic forgetting when

learning new places. These challenges become par-

ticularly acute in long-term autonomous operations

where robots must continuously adapt to environmen-

tal changes. Recent advancements in continual learn-

ing techniques (Lange et al., 2022)—such as regu-

larization methods, experience replay, and dynamic

network expansion—have yielded promising results

in mitigating catastrophic forgetting and improving

continual adaptation performance (Gao et al., 2022;

Vödisch et al., 2023; Vödisch et al., 2022).

This study explores multi-robot Continual Learn-

ing (CL) for Visual Place Recognition (VPR), fram-

ing CL as knowledge transfer from an old model to a

new one. We extend conventional knowledge trans-

fer between different models of the same robot to

knowledge transfer between different models of dif-

ferent robots. This approach offers key advantages,

including scalability and fault tolerance. Specifically,

Figure 1: Illustration of human-inspired knowledge transfer
(KT) via local-to-traveler interaction, motivating robot-to-
robot KT using VPR models.

a traveling robot can update its knowledge by ac-

quiring information from local robots, avoiding the

cost and risk of collecting training data independently.

Additionally, sharing VPR knowledge ensures criti-

cal information is preserved even if some robots fail.

Despite these advantages, multi-robot CL introduces

new challenges, such as variations in robot capabil-

ities, communication overhead, and concerns related

to privacy and security.

One of the key research challenges in multi-robot

systems is the question: ”Can a pseudo-training set

be reconstructed from a black-box teacher?” For ex-

ample, when a traveling robot explores an unfamiliar

city and encounters a local robot for the first time,

it cannot access the internal parameters or training
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data of the local robot’s VPR model, which thus acts

as a black-box teacher. Generating a pseudo-training

set from such a black box is essential for knowledge

transfer, yet remains a difficult and unresolved prob-

lem. This scenario represents a typical case where

black-box teachers naturally arise in multi-robot con-

tinual learning, and reconstructing pseudo-training

sets is crucial for integrating new data and retraining

models.

Many existing approaches rely on the assump-

tion that the existing model is a white box, allow-

ing access to its internal structure or training set. In-

deed, in single-robot systems, this assumption often

holds, as the existing model belongs to the robot it-

self. However, in multi-robot systems, especially in

open-world scenarios involving heterogeneous or un-

known robots, this assumption is overly optimistic.

In fact, reconstructing a training set from a black-

box model remains an ongoing challenge in machine

learning and is largely an open problem.

In this work, we address the key challenge of re-

constructing (pseudo) training samples from black-

box teachers using membership inference attacks

(MIAs) (Hu et al., 2022) (Fig. 1). Unlike traditional

approaches that analyze the model to reconstruct the

training data, MIA generates samples and predicts the

likelihood that they were part of the model’s training

data. It is the only major privacy attack method effec-

tive with black-box models. However, this flexibility

comes with a downside: low sampling efficiency, par-

ticularly when dealing with high-dimensional input

data, such as images used in VPR. The naive approach

of randomly generating training sample candidates is

highly inefficient. To overcome this limitation, we

propose improving the sampling efficiency of MIA by

leveraging prior knowledge from the VPR literature,

such as place class prediction distributions, and un-

learned class detection techniques. We also evaluate

the effects of these methods both individually and in

combination.

Through extensive experiments, we demonstrate

that the proposed approach significantly enhances

performance in continual learning under a challeng-

ing setup where all robots are black boxes and per-

form poorly.

Our key contributions include:

1. We extend the continual learning (CL) framework

from a single-robot to a multi-robot paradigm,

enabling knowledge transfer between distinct

robots.

2. We introduce a method for reconstructing pseudo-

training samples from a black-box teacher model

using membership inference attacks (MIA), tar-

geting the teacher-student VPR knowledge trans-

fer problem.

3. We empirically demonstrate that even in a

near-worst-case scenario involving only low-

performing black-box robots, collaborative learn-

ing can significantly boost VPR performance.

This work generalizes earlier studies on VPR,

continual learning, and knowledge transfer into a

novel data-free setting applicable to black-box teach-

ers. This study significantly extends our late-breaking

paper in (Tsukahara et al., 2024) and generalizes our

previous research on VPR, including continual learn-

ing (Tanaka, 2015), knowledge transfer from teacher

to student (Takeda and Tanaka, 2021), and knowledge

distillation (Hiroki and Tanaka, 2019), into a novel

data-free variant applicable to black-box teachers. As

autonomous robots continue to proliferate, universal

knowledge transfer protocols and continual domain

adaptation will become increasingly important. This

research lays the foundation for optimizing robot-to-

robot interactions in various VPR scenarios and aims

to enhance robotic autonomy in open-world environ-

ments.

2 RELATED WORK

Visual Place Recognition (VPR). VPR is a special-

ized self-localization task that has garnered consider-

able research attention (Weyand et al., 2016; Morita

et al., 2005; Seo et al., 2018). Compared to other self-

localization tasks, including image retrieval (Garcia-

Fidalgo and Ortiz, 2018), map matching (Sobreira

et al., 2019), sequence matching (Milford and Wyeth,

2012), and multiple-hypothesis tracking (Rozsypalek

et al., 2023), VPR is particularly scalable. This scal-

ability is demonstrated through the development of

compact VPR models for large-scale self-localization

at a planetary scale (Weyand et al., 2016), tuning-free

VPR models for diverse weather and seasonal con-

ditions (Morita et al., 2005), and fine-grained mod-

els with combinatorial spatial partitioning (Seo et al.,

2018).

Continual Learning (CL). Continual learning in

robotics addresses the challenge of maintaining and

updating knowledge over time. Recent advances

span loop closure detection (Gao et al., 2022), visual

odometry (Vödisch et al., 2023), SLAM (Vödisch

et al., 2022), and localization (Cabrera-Ponce et al.,

2023). However, most existing approaches focus on

single-robot scenarios, with limited attention to multi-

robot knowledge transfer. For an overview of CL

taxonomies and techniques, see (Lange et al., 2022).

CL methods have been increasingly applied in both

computer vision (Lomonaco et al., 2022) and robotics
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(Lesort et al., 2020). Benefits of CL in localiza-

tion include online adaptation (Wang et al., 2021)

and real-time learning (Cabrera-Ponce et al., 2023).

While some studies address CL in multi-agent sys-

tems (Casado et al., 2020), research on data-free

multi-robot CL remains sparse.

According to the CL taxonomy (Lange et al.,

2022), the scenario targeted in this study spans

domain-incremental, class-incremental, and

vocabulary-incremental settings, wherein a robot

learns across seasonal domains (e.g., inter-season),

accumulates new place classes, and adapts to new

teacher models (e.g., vocabulary changes).

Privacy Attacks. In machine learning applications

such as medical image analysis, privacy concerns

about reconstructing training samples—e.g., portraits

or sensitive images—during model transfer have led

to a growing body of research on privacy attacks and

defenses (Liu et al., 2021). Among these, model in-

version methods (Fredrikson et al., 2015) are of par-

ticular relevance. These aim to reconstruct pseudo-

training samples (or “impressions”) from teacher

models, which the student model can then learn from.

For example, early zero-shot KT approaches mod-

eled the softmax space with Dirichlet distributions

and reconstructed data from the teacher accordingly

(Nayak et al., 2019). Other works such as DAFL

(Chen et al., 2019) introduced regularization based on

assumed access to activations and outputs. While re-

cent studies have succeeded in reconstructing pseudo-

datasets (Buzaglo et al., 2023), they still assume ac-

cess to the internal architecture of teacher models.

In contrast, membership inference attacks (MIAs) are

the only major method applicable to black-box teach-

ers.

The MIA method proposed in this study draws on

insights from unlearned place detection in VPR (Kim

et al., 2019), and aligns with recent metric-based MIA

techniques (Ko et al., 2023). However, most prior

MIA research has focused on one-shot attacks, and

due to poor sampling efficiency, dataset reconstruc-

tion for VPR knowledge transfer remains an open

challenge in black-box settings.

3 FORMULATION OF

MULTI-ROBOT CONTINUAL

LEARNING

This section first reviews the conventional tasks, in-

cluding visual place recognition (VPR), supervised

learning, and single-robot continual learning (CL).

Building on this, we formulate the multi-robot CL

problem and describe membership inference attacks

(MIAs), which are central to our approach. Further-

more, as preparation for evaluation, we introduce a

metric for assessing knowledge transfer cost.

A VPR model is defined as a function M that takes

an input image x and outputs a probability distribution

over place classes C:

M : x → P(y | x), y ∈C, (1)

where, C denotes a predefined set of place classes,

each corresponding to a real-world spatial region.

For example, in the NCLT public dataset (Carlevaris-

Bianco et al., 2016) used in our experiments, grid-

based partitioning (Kim et al., 2019) is applied, divid-

ing the workspace into 10× 10 grid cells in a bird’s-

eye coordinate system, each cell representing a dis-

tinct place class (Fig. 1). This approach provides

a standardized place definition; however, it increases

intra-class variation, thereby complicating classifica-

tion1 (Fig. 2).

In a traditional supervised learning setting, a robot

experiences a set of place classes C0, converts these

experiences into a training set T0, and trains a model

M0 via supervised learning L:

M0 = L(T0),

where

T = {(xi,yi)}
N
i=1.

In single-robot CL, when a new class set C+
0 is ob-

served with corresponding training data T+
0 , the goal

is to update the existing model M0 to a new model

M1. This is typically done by first reconstructing a

pseudo training set T̄0 using a model inversion func-

tion I (e.g., MIA):

T̄0 = I(M0),

where

T̄ = {(xi,P(y | xi))}
N
i=1.

The reconstructed pseudo set is combined with the

new training data:

T̃+
0 = T̄0 ∪T+

0 ,

and a distilled model M1 is learned using distillation

L̄ (Hinton et al., 2015):

M1 = L̄(T̃+
0 ).

The overall update process is summarized as

M1 = L̄(I(M0)∪T+
0 ). (2)

1Optimizing place definitions to reduce intra-class vari-
ation is a fundamental, ongoing challenge in the VPR com-
munity (Seo et al., 2018). This topic lies beyond the scope
of the present work but is considered complementary.
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Figure 2: Sample input images from independent sessions. Each row corresponds to distinct place classes. Grid partitioning
introduces intra-class variation, challenging the VPR task.

In multi-robot CL, instead of receiving new train-

ing data T+
0 , a new black-box teacher model M+

0 is

provided. In this scenario, a specialized inversion

function I∗ (i.e., MIA) applicable to black-box mod-

els is employed to reconstruct the pseudo training set:

T̄+
0 = I∗(M+

0 ),

where, MIAs aim to approximate the inaccessible

training data of a black-box teacher model via queries

and responses. The overall model update can be writ-

ten as:

M1 = L̄(I(M0)∪ I∗(M+
0 )). (3)

Finally, we consider the knowledge transfer cost

in multi-robot CL. Interactions between the student

and black-box teacher occur via queries (from stu-

dent) and responses (from teacher). The queries

are automatically generated programmatic requests,

typically consisting of short code snippets, incur-

ring negligible communication overhead. Responses,

however, consist of pseudo training samples rep-

resented as high-dimensional real-valued vectors or

tensors, imposing significant communication cost

proportional to the number of samples transferred.

Therefore, this study evaluates the knowledge transfer

cost primarily based on the number of pseudo samples

sent from the teacher to the student, assuming the cost

of queries is negligible.
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4 DATASET RECONSTRUCTION

USING BLACK-BOX

MEMBERSHIP INFERENCE

ATTACKS (BB-MIA)

A critical challenge in applying Membership Infer-

ence Attacks (MIA) to black-box models (BB-MIA)

lies in the high dimensionality of the sample space.

Since the attacker (student) has no access to the

teacher model’s internal parameters or its training

data distribution, generating informative samples to

effectively probe the model’s decision boundaries is

highly non-trivial.

To address this, we approximate the teacher model

with a cascade pipeline comprising two modules: a

pre-trained embedding module and a trainable MIA

module. The embedding module projects high-

dimensional input images into lower-dimensional em-

bedding vectors via a scene graph classifier, a method

validated for generalizability and effectiveness in var-

ious VPR tasks (Takeda and Tanaka, 2021). The

MIA module then employs multiple sampling strate-

gies within the embedding space to enable efficient

MIA sample generation. Details of each module fol-

low.

4.1 Generic Embedding Model

Figure 3 illustrates the approximated pipeline. It con-

sists of three key stages:

1. Semantic Segmentation: Input images are seg-

mented into regions by DeepLab v3+ (Chen et al.,

2018).

2. Scene Graph Generation: Segmented regions

form nodes in a scene graph. Each node is rep-

resented by a 189-dimensional one-hot vector en-

coding semantic labels, orientation, and range

(Lowry et al., 2016). Edges connect spatially ad-

jacent nodes, capturing multimodal features in-

cluding appearance, semantics, and spatial rela-

tions (Yoshida et al., 2024).

3. Graph Neural Network: The scene graph is fed

into a pre-trained graph convolutional network

(GCN) classifier, producing a class-specific prob-

ability map (CPM) of dimension |C| (Ohta et al.,

2023). This CPM serves as the final embedding

vector.

4.2 Black-Box Membership Inference

Attacks

The problem is to reconstruct a pseudo-sample set

{(x,P(y|x))} approximating the training data of a

black-box teacher model, which takes embedding

vectors as input and outputs CPMs. This is an inverse

supervised learning problem.

Uniform Sampling (US) Strategy The simplest

approach samples vectors x ∈ R
|C| from a uniform

distribution, normalizes them with the L1 norm, and

queries the teacher to obtain P(y|x):

xi =
ui

‖ui‖1
, ui ∼U, i = 1, . . . ,N. (4)

Reciprocal Rank (RR) Strategy. The Uniform

Sampling (US) strategy generates samples randomly

and does not take into account the teacher model’s

output distribution. The RR strategy improves on this

by converting uniform samples into reciprocal rank

features (RRF), which reflect the relative strength of

each class in the model’s predictions (Takeda and

Tanaka, 2021):

xi = f RR

(

ui

‖ui‖1

)

, ui ∼U, i = 1, . . . ,N, (5)

where

f RR(x) =

[

1

rank1
,

1

rank2
, . . . ,

1

rank|C|

]

, (6)

and rank j is the position of the j-th element in de-

scending order. In simple terms, the largest value gets

1/1 = 1, the second largest 1/2 = 0.5, the third largest

1/3 ≃ 0.33, and so on. This transforms random values

into features that encode the relative order of classes,

making the samples more informative for probing the

teacher model.

Entropy Strategy. While the RR strategy approxi-

mates general predictive distributions, it may not fit

the target teacher model’s specifics. The Entropy

strategy selects samples with low predictive entropy,

hypothesizing these correspond to training data mem-

bers (Kim et al., 2019). From many RR-generated

samples, the N with the lowest entropy

H(x) =−
|C|

∑
i=1

P(yi|x) logP(yi|x) (7)

are chosen.
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Figure 3: Overview of our VPR pipeline. The architecture includes a generic embedding module to reduce dimensionality and
multiple sampling switches for model inversion analysis (MIA). Switch states shown correspond to the proposed ”Entropy”
method.

Replay/Prior Strategies. Beyond BB-MIA,

replay-based sampling assumes partial access to

the teacher’s training samples (Isele and Cosgun,

2018), contradicting the black-box assumption. Such

settings are plausible with high communication and

memory capacity in multi-robot systems. The Prior

strategy assumes the student has access to its own

training samples for querying the teacher, applicable

when only the student cooperates.

Mixup Strategy. A hybrid approach combines a

small subset R of retained training samples with N−R

samples from RR or Entropy strategies:

xi ∼

{

T Replay, i = 1, . . . ,R

T RR/Entropy, i = R+ 1, . . . ,N
, (8)

where T Replay is the teacher outputs for replayed

(retained) training samples, and T RR/Entropy is the

teacher outputs for samples generated by Reciprocal

Rank or Entropy strategies. This strategy serves as an

oracle baseline, not applicable to black-box teachers.

5 EXPERIMENTAL EVALUATION

This section evaluates the performance of the pro-

posed method in a typical multi-robot continual learn-

ing (CL) scenario, where a traveling robot (student)

sequentially interacts with three teacher robots via

wireless communication. A key focus is the trade-

off between acquiring new knowledge and avoiding

forgetting previously learned place classes.

5.1 Experimental Setup

Experiments utilized the NCLT dataset (Carlevaris-

Bianco et al., 2016), which contains sensor data from

a Segway robot navigating multiple sessions across

different seasons on the University of Michigan North

Campus. Visual Place Recognition (VPR) tasks em-

ploy onboard camera images with ground-truth view-

point GPS annotations. The dataset, originally col-

lected by a single robot, is adapted to multi-robot

scenarios by pairing distinct sessions with different

robots (Mangelson et al., 2018).

The evaluation protocol comprises:

1. Sequential interactions with up to three teachers.

2. Utilization of 27 NCLT sessions:

• One test session: “2012/08/04”

• One session for embedding model training:

“2012/04/29”

• Twenty-five sessions for student/teacher VPR

model training

3. Teacher and student VPR models implemented

as multi-layer perceptrons (MLPs) with a 4,096-

dimensional hidden layer.

4. Evaluation of six distinct knowledge transfer sce-

narios.

5. Performance metrics including:

• Top-1 VPR accuracy measured after:

– Student’s supervised learning

– Knowledge transfer from each teacher se-

quentially

• Knowledge transfer (KT) cost quantified by the

number of samples N used.

• Knowledge retention, assessing avoidance of

catastrophic forgetting.

• Computational efficiency.

Additional details include:

1. Each student and teacher robot is trained on K

place classes from its assigned session, using fully

supervised learning with the corresponding train-

ing data. Following standard continual learning

protocols, training sets are discarded after train-

ing, except for Replay, Prior, and Mixup strategies

where some samples are retained.

2. Sessions are indexed from 0 to 24 chronologically

according to navigation dates.
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Figure 4: Experiment design overview. At stage i = 0, VPR
model is trained on the student’s prior experience. At subse-
quent stages i = 1,2,3, it is updated via knowledge transfer
from distinct teachers.

3. Six scenarios ( j = 0, . . . ,5) evaluate different

student-teacher combinations. For the j-th sce-

nario, models with ID i∈{0,1,2,3} correspond to

the student (i = 0) and teachers (i = 1,2,3), each

trained on K = 10 random place classes from ses-

sion ((6i+ j) mod 25).

4. Sample counts are reported per place class for

simplicity.

5. When encountering a teacher, pseudo-training

samples for classes known to the teacher are re-

constructed from the teacher model, while sam-

ples for classes exclusive to the student are recon-

structed from the student model.

6. For Replay, Prior, and Mixup strategies, the num-

ber of replay samples per class R is set to 1 by

default.

7. Reciprocal Rank Feature (RRF) vectors are ap-

proximated using sparse k-hot RRF with k = 10

as in (Ohta et al., 2023).

Computational costs were modest: MLP training

required tens of seconds, and query sample genera-

tion took approximately 25 milliseconds per sample.

Knowledge transfer cost for a 100-dimensional k-hot

RRF sample was under 128 bits.

5.2 Results and Discussions

We first evaluated the basic performance of the pro-

posed method. Performance was measured initially

after supervised training of the student, and sub-

sequently after sequential knowledge transfers from

new teachers.

At the initial stage, the student’s performance was

predictably low, as the test set included samples from

previously unseen place classes, highlighting the in-

herent difficulty of the VPR task under such condi-

tions.

Figure 5 shows that performance improved with

an increasing number of samples across all five

 0
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Mixup

Figure 5: Top-1 accuracy vs. KT cost (N) under different
replay conditions. K = 10.

strategies, though notable differences were observed

among them:

Replay Strategy: When provided with sufficiently

many samples, this strategy effectively mitigated

catastrophic forgetting (Kang et al., 2023) and con-

sistently achieved the highest accuracy. However, it

does not conform to strict continual learning princi-

ples. The Prior strategy, a variant which queries the

teacher with the student’s own training samples, ex-

hibited inferior performance, likely due to a low prob-

ability of overlap between the student’s and teacher’s

training samples.

US Strategy: Uniform Sampling (US) showed the

lowest performance in all experiments, presumably

due to the uniform distribution not matching the

teacher model’s predictive distribution in the embed-

ding space.

RR Strategy: Despite its simplicity, the Reciprocal

Rank (RR) strategy surprisingly achieved high per-

formance, indicating that the reciprocal rank feature

distribution approximates the teacher’s predictive dis-

tribution well.

Entropy Strategy: The Entropy strategy performed

comparably or better than RR, especially excelling

when the number of samples N was small by effec-

tively selecting high-quality samples.

Mixup Strategy: Mixup balances generalization and

communication cost effectively. Though it requires

retaining a small number R of replay samples, its

knowledge transfer cost is substantially lower than

Replay while still mitigating forgetting and achieving

comparable performance.

Figure 6 illustrates the student’s VPR perfor-

mance evolution through continual learning. The

Replay strategy demonstrated the greatest stability,

followed by Mixup, Entropy, RR, and US. No-

tably, Mixup closely matched Replay’s stability by

leveraging replay samples. Even strictly black-box
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Figure 6: Performance evolution of VPR models across continual learning stages.
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Figure 7: Parameter analysis on (a-c) known class count K

and (d) replay sample size R.

teacher-compliant strategies such as RR and Entropy

approached the performance of non-black-box ap-

proaches (Replay) when more than 20 samples per

class were used. This demonstrates the promise of

the proposed methods in challenging black-box MIA

scenarios.

Figure 7 (a–c) depicts performance variation as

the number of place classes K experienced by each

robot changes. While RR and Entropy strategies ex-

hibited a slight performance decline with increasing

K, their accuracy remained comparable to Replay, ev-

idencing robustness throughout continual learning.

Finally, Figure 7 (d) shows the impact of varying

the number of replay samples R in the Mixup strategy.

Even with a small R (e.g., R = 1), increasing the num-

ber of non-replay samples sufficiently improved VPR

accuracy, suggesting that Mixup’s practical knowl-

edge transfer cost can be minimized without sacrific-

ing performance.

In summary, the proposed approach substantially

improved performance under challenging black-box

MIA settings. In particular, the RR strategy achieved

surprisingly strong results despite its simplicity. The

Entropy strategy further enhanced performance with

minimal additional cost. These findings build upon

insights from non-black-box MIA tasks in VPR

(Takeda and Tanaka, 2021)(Kim et al., 2019) (Sec-

tion 4.2) and lay a foundation for future multi-robot

continual learning research.

6 CONCLUSION AND FUTURE

WORK

This study formulated continual multi-robot learn-

ing for visual place recognition as a teacher-student

knowledge transfer problem, leveraging membership

inference attacks (MIA)— the only major privacy

attack applicable to black-box teachers. To ad-

dress MIA’s critical bottleneck of low sampling ef-

ficiency, we proposed utilizing the student model’s

prior knowledge to improve practical sampling effi-

ciency. Extensive experiments demonstrated signifi-
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cant effectiveness of the approach, revealing the in-

terplay between VPR accuracy, sampling efficiency,

and computational cost.

Our investigation focused on a near-worst-case

scenario where all teachers are black boxes and all

robots have limited initial performance. For practi-

cal deployment, future work should explore leverag-

ing heterogeneous teacher models, including white-

box and high-performing teachers, to further enhance

learning. Moreover, improving VPR performance

may benefit from several well-known extensions: (1)

advancing from grid-based to adaptive workspace

partitioning for place definitions, (2) extending from

single-view to multi-view VPR, and (3) shifting from

passive to active VPR with robot control.

Immediate future directions include applying

these advancements to challenging real-world tasks

and addressing the lost robot problem to realize robust

long-term autonomy in open-world environments.
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