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Abstract:

This article presents an intelligent video surveillance system for theft detection in minimarkets located in

Santiago de Surco, Lima. The proposed solution integrates computer vision techniques with deep learning
models such as Convolutional Neural Networks (CNN) and You Only Look Once (YOLO), implemented
using PyTorch. The system analyzes customer movements in real time to detect suspicious behavior patterns,
including torso twists and concealment attempts. Trained on a dataset of over 2700 real and simulated images,
the model achieved an accuracy of 82%, outperforming traditional surveillance systems by more than 30%.
The solution includes a web interface developed with FastAPI (Fast Application Programming Interface, a
high-performance Python framework for building APIs) and Angular, enabling remote monitoring.
Practically, the system can reduce economic losses by up to 15%, offering a scalable and cost-effective
alternative for improving security in small commercial environments.

1 INTRODUCTION

The increase in thefts in minimarkets located in
Santiago de Surco, Lima, highlights significant
shortcomings in current security systems. In 2022,
142 cases were officially reported, placing this
district among the most affected by property crimes
(Asociacion de Bodegueros del Peru, 2022). These
incidents, often carried out by offenders known as
“tenderos”, individuals who disguise themselves as
regular customers, have resulted in income losses of
up to 15% and a 20% decline in customer traffic.
Current surveillance systems are mostly reactive,
heavily dependent on favorable visual conditions, and
struggle to detect concealed behaviors. Moreover,
their adoption is hindered by both technical and
financial constraints.

In response to this challenge, the present study
proposes an intelligent video-surveillance system
based on Deep Learning (DL), specifically tailored
for small businesses. The core of the system leverages
Convolutional Neural Networks (CNNs), capable of
analyzing visual features in video frames to identify
suspicious actions. The model operates in real time
without human intervention, integrating an automatic
alert mechanism that enables timely responses to
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abnormal activities, thereby contributing to loss
prevention and enhanced commercial security.

This research is particularly relevant in the current
context of rising theft rates in economically
vulnerable areas such as Lima’s minimarkets, further
exacerbated by the post-COVID-19 crisis. In 2022,
for instance, 30% of these businesses reported a 45%
increase in robberies (Asociacion de Bodegueros del
Pert, 2022). Under such conditions, an autonomous,
efficient, and affordable DL-based solution offers a
viable alternative to strengthen surveillance in
resource-constrained retail environments.

Detecting theft in real time is inherently
challenging due to the speed and subtlety with which
offenders operate. Traditional methods—such as
human surveillance or Closed-Circuit Television
(CCTV)—face critical limitations, including operator
fatigue, low-light sensitivity, and blind spots
(Kakadiya et al., 2019). In contrast, deep learning
models can process large volumes of video streams,
identify complex behavioral patterns, and continually
improve detection accuracy, making them more
effective tools in small commercial settings (Zhang et
al., 2020).

Nevertheless, many existing DL-based systems
are designed for large-scale environments and require
costly infrastructure. For example, the framework
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proposed by Zhang et al. (2020) achieves an accuracy
of 83% (dimensionless) but is impractical for small
businesses due to its complex architecture and high
computational requirements. Similarly, Horng and
Huang (2022) designed a system dependent on
multiple cameras, which significantly increases
implementation costs. In contrast, the solution
proposed in this study is operationally simple, cost-
effective, and scalable. It requires fewer cameras,
adapts to different store layouts, and is deployable on
modest hardware resources, making it an accessible
option for local minimarkets.

The contributions of this research are threefold.
First, it introduces an efficient Deep Learning (DL)
model based on You Only Look Once (YOLO),
capable of detecting theft without human intervention
across diverse commercial contexts (Ultralytics,
n.d.). Second, it presents the design of a complete
intelligent-surveillance system that integrates real-
time monitoring with automated alert generation,
reducing reliance on human operators. Third, it
provides empirical evidence demonstrating the
model’s accuracy and practical impact, supporting
future research in object detection and anomaly
detection, and highlighting its potential to reduce
theft in low-income retail environments.

This article is organized as follows: Section 2
reviews the state of the art in computer vision and
deep learning techniques for object detection and
anomalous behavior recognition. Section 3 details the
methodology of the proposed system, including its
technical components, model architecture (YOLOvVS
and Convolutional Neural Networks, CNNs), and
dataset split (80% training / 15% validation / 5%
testing). Section 4 describes the experimental setup,
evaluation metrics—precision (%), recall (%), and
Mean Average Precision (mAP). For clarity, mAP50
and mAP50-95 are reported as dimensionless metrics
that combine both classification and localization
performance. Section 5 presents the discussion,
conclusions, limitations, and recommendations for
future research in intelligent video-surveillance.

2 RELATED WORKS

Several studies have explored the application of Deep
Learning (DL) techniques to enhance video-
surveillance systems, particularly in contexts where
the automatic detection of suspicious behavior is
critical for theft prevention. The following five
studies provide relevant support for the development
of the proposed system.

Kim et al. (2021). The authors presented a system
that uses Three-Dimensional Convolutional Neural
Networks (3D-CNNs) to detect shoplifting in
convenience stores from surveillance footage. The
network was trained on datasets collected from both
real and simulated environments, achieving 85%
accuracy (dimensionless) in detecting individual
actions and 98.9% accuracy (dimensionless) in
predicting criminal intent. However, the architecture
relies on 3D convolutional layers that process spatial
and temporal information simultaneously, which
requires substantial computational infrastructure and
high memory consumption, limiting deployment on
small-scale retail hardware.

De Paula et al. (2022). This study introduced
CamNuvem, a dataset designed for theft-detection
model training in commercial environments. Built
from real videos sourced from social media and
weakly labeled to indicate the presence or absence of
theft, CamNuvem provides an important benchmark
for anomaly detection. The authors evaluated Robust
Temporal Feature Magnitude (RTFM), Weakly-
Supervised Anomaly Localization (WSAL), and
Real-Time Anomaly Detection System (RADS)
models. Reported results show 78-88% accuracy
(dimensionless). Nevertheless, accuracy declined
significantly when analyzing videos containing
specific theft events, highlighting the challenge of
temporal localization. This limitation illustrates the
need for sequence-based approaches (e.g., Long
Short-Term Memory, LSTM) that explicitly capture
temporal dependencies, although such models
increase latency and computational cost.

Han et al. (2024). An indoor surveillance system
was developed combining YOLOvVS with DeepSORT
(Simple Online and Realtime Tracking with Deep
Features). YOLOvV8 performs single-frame object
detection, while DeepSORT assigns consistent IDs
across frames, enabling real-time person tracking
even in occluded areas. The system achieved 93.56%
accuracy (dimensionless) and operated at 22 Frames
per Second (FPS). Although performance metrics are
strong, the authors note that large-scale deployment
is constrained by high computational resource
requirements.

Gawande et al. (2023). The proposed architecture
integrates Mask R-CNN (two-stage instance
segmentation) with YOLOVS5 (single-stage detection)
to enhance recognition under poor visual conditions,
such as occlusions and low resolution. Tested in
academic environments, the system achieved 87.41%
accuracy (dimensionless), outperforming baselines
such as RetinaNet and Region-based Fully
Convolutional Networks (R-FCN). However,
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validation was limited to controlled settings, and the
lack of deployment in real commercial environments
(supermarkets or minimarkets) reduces its external
validity.

Finally, Santos et al. (2024). The authors
developed a system for automatic weapon detection
using Faster R-CNN and YOLO models. The system
considered contextual factors such as object size and
lighting conditions, reporting 85.44% accuracy
(dimensionless) for firearms and 46.68% accuracy
(dimensionless) for knives. The study highlights that
incorporating contextual variables such as body
posture and hand movement improves robustness.
While the focus is weapon detection rather than theft,
the emphasis on context-aware modeling is highly
relevant for shoplifting detection.

3 METHODOLOGIES

3.1 Preliminary Concepts

This surveillance system is designed to reduce theft
in small businesses such as minimarkets by
leveraging Artificial Intelligence (AI). It integrates
computer vision, Convolutional Neural Networks
(CNNs), and a high-speed object detection model
known as You Only Look Once (YOLO). The
prototype is implemented in Python using
frameworks such as PyTorch, which enables real-
time identification of suspicious activities without
requiring constant human oversight.

3.1.1 Convolutional Neural Networks (CNN)

CNNss are a class of Deep Neural Networks (DNNs)
specialized in image and video analysis. They extract
essential visual features—such as object shapes,
contours, and textures—that are critical for accurate
scene interpretation. In this system, CNNs process
video frames captured by surveillance cameras to
identify abnormal behaviors, including concealment
gestures. The networks learn to autonomously detect
body positions and hand movements associated with
shoplifting (Cao et al., 2021).

3.1.2 Real-Time Detection with YOLO

YOLO is a single-stage object detector that divides
the image into a grid and predicts bounding boxes and
class probabilities in a single pass. This design
enables simultaneous multi-object detection with
very low latency. YOLO is particularly effective for
tracking customer—product interactions in confined or
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complex retail environments because it maintains
real-time inference rates (Frames per Second, FPS)
even on modest hardware (Redmon et al., 2016).
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Figure 1: the system identifies customers upon entry and
tracks their interaction with products.

3.1.3 Smart Surveillance

Traditional video surveillance is transformed into an
intelligent system through the integration of deep
learning models. These models can interpret live
visual data and generate alerts for suspicious behavior
in real time, eliminating the need for constant human
monitoring (Krizhevsky et al., 2012; Valera et al.,
2005).

Figure 2: The system detects hand movements associated
with product concealment and generates an automatic alert.

3.1.4 Learning by Demonstration

According to Nguyen et al. (2021) and Paszke et al.
(2019), the system is trained on a dataset that includes
both typical customer behavior and shoplifting
attempts. This approach allows the neural networks to
learn to distinguish between normal actions and those
that represent risk patterns.
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3.2 Method

Object
Detection

Filtering
and
Annotation

Streaming
Output

Figure 3: Shoplifting detection process is illustrated step by
step.

This section describes the principal contributions
of the proposed intelligent surveillance system. The
core innovation lies in the integration of computer
vision and Deep Learning (DL) to deliver a
comprehensive solution capable of detecting and
classifying suspicious behavior across multiple video
streams in real time. The system leverages YOLO-
based architectures to perform high-speed inference
on each captured frame, ensuring efficient operation
even in resource-constrained environments.

Figure 4 illustrates the overall processing
workflow, where independent video streams from
multiple cameras are analyzed in parallel through the
following stages:

= Video Acquisition. The system captures real-
time video streams from one or more cameras
connected to the local processing unit. Each
device produces a continuous, synchronized
sequence of digital frames, ensuring no latency
or frame misalignment across different camera
angles in the minimarket environment.

= Preprocessing. All frames are automatically
resized to 640 x 640 pixels, normalized, and
adjusted for color and brightness. This
preprocessing step guarantees that the YOLO
detector can process inputs consistently,
mitigating distortions from lighting changes or
variable resolutions.

= Object Detection. YOLO analyzes each frame
in a single pass, dividing the image into a grid
to predict bounding boxes, categories (e.g.,
person, theft attempt), coordinates, and
confidence  scores. This  single-stage
architecture  yields  robust, real-time

surveillance, outperforming conventional
multi-stage pipelines.

= Filtering and Annotation. Predictions are
refined using Non-Maximum Suppression
(NMS), which removes redundant, overlapping
bounding boxes while preserving the most
confident detections. Detected objects are
annotated with bounding boxes, class labels,
and accuracy percentages (%), directly overlaid
on the video frames.

=  Streaming Output. Annotated frames are
encoded in JPEG format and transmitted
through dedicated WebSocket channels (one
per camera). A centralized web interface
developed with FastAPI (Fast Application
Programming Interface) and Angular displays
real-time streams. The interface includes
connection status and failure notifications,
enabling secure, multi-camera, and remote
monitoring. Next, we show the process of the

YOLO algorithm below:
Bounding Box
and Class
Prediction
Non-Maximum Confidence
Suppression Thresholding

a

Final
stput

Figure 4: Object detection process using YOLO is
illustrated.

YOLO is a real-time object detection algorithm
that processes the entire image in a single evaluation
cycle, unlike traditional models that analyze image
regions independently. Its detection pipeline consists
of the following steps:

*  Grid Division: The input image is partitioned
into a grid (e.g., 13x13 or 19x19), where each
cell is responsible for detecting objects whose
center falls within its boundaries. This
approach supports distributed and localized
detection across the frame.

*  Bounding Box and Class Prediction: Each grid
cell predicts multiple bounding boxes. For each
box, the algorithm outputs the object’s spatial
coordinates (x, y, width, height), a confidence
score, and a class label.
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= Confidence Thresholding: A Minimum
Confidence Threshold (Typically 0.5) Is
Applied to  Discard Low-Confidence
Predictions. Only Bounding Boxes with High
Reliability Are Retained.

= non-Maximum Suppression (NMS): to Prevent
Duplicate Detections of the Same Object, NMS
Filters Overlapping Bounding Boxes, Keeping
Only the One with the Highest Confidence
Score for Each Object Class.

= Final Output: the Algorithm Produces a
Refined List of Detected Objects, Each with
Bounding Box Coordinates, Class Labels, and
Confidence Scores Ready for Visualization and
System Response.

3.2.1 Learning by Demonstration

the System Was Trained Using an Annotated Dataset
Consisting of 2,782 Images, Captured from both Real
Minimarket Scenarios and Simulated Shoplifting
Environments. the Dataset Included Examples of
Normal Customer Behavior as Well as Theft
Attempts, Ensuring Class Diversity for Model
Learning.
to Guarantee Robust Evaluation and Prevent Data
Leakage, the Dataset Was Divided into Three
Subsets:
®  Training Set (80%). Used to Fit the Model
Parameters by Minimizing the Loss Function
During Iterative Updates.
= Validation Set (15%). Employed to Fine-Tune
Hyperparameters, Monitor Learning Curves,
and Mitigate Overfitting.
= Test Set (5%). Reserved Exclusively for Final
Performance Measurement, Ensuring Unbiased
Assessment of Generalization Capacity.

This Partition Was Conducted with Stratification by
Class Labels (Normal vs. Suspicious) to Maintain
Balance, and all Random Splits Were Generated with
Fixed Random Seeds for Reproducibility. Reported
Evaluation Metrics, Precision (%), Recall (%), and
Average Precision (Map, Dimensionless), Were
Computed Exclusively on the Held-out Test Set.

4 EXPERIMENTS

This Section Describes the Environment and
Resources Used to Validate the Proposed Intelligent
Video-Surveillance ~ System. It Covers the
Development Setup, Cloud Infrastructure, Dataset
Sources, and Supporting Tools Employed During
Experimentation.
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4.1 Experimental Protocol
4.1.1 Development Environment

All experiments were conducted on a local
workstation with the following specifications:

e Central Processing Unit (CPU): Intel® Core™
17-9750HF.

e  Graphics Processing Unit (GPU): NVIDIA®
GeForce® GTX 1650 (4 GB memory).

e Random Access Memory (RAM): 8 GB DDR4.
e  Operating System (OS): Windows 11 x64.

e Frameworks/Libraries: PyTorch 2.0, OpenCV
4.7, YOLOvVS (Ultralytics implementation).

e Programming Languages: Python 3.10 for
back-end development and Angular Material v19
for the web interface.

e Complementary Tools: TensorBoard (for
visualization of training metrics, loss curves, and
convergence plots).

e Database: MongoDB for storage and retrieval of
annotated data and logs.

4.1.2 Additional Infrastructure

To support large-scale training and experimentation,
the system also leveraged Google Colab Pro (cloud
platform), providing access to high-performance
GPUs for accelerated training.

4.1.3 Code Repository

For reproducibility, the complete source code and
trained models are publicly available at:
https://github.com/YOSS201/DeepEyes.git

This repository includes training scripts,
configuration files, and annotation formats, enabling
replication of results and facilitating future
improvements.

4.1.4 Dataset Used

The system was trained on a proprietary dataset
comprising 2,782 images, manually captured and
annotated in  both  real-world minimarket
environments and simulated shoplifting scenarios.
Two labels were defined: “Person” as normal
customer behavior and “Shoplifting” as suspicious or
theft-related actions.

Images were collected under varying conditions
(lighting, camera angles, crowd density) to improve
generalization.
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4.1.5 External Sources

In addition to the proprietary dataset, complementary

resources were used to enhance annotation quality

and balance class representation:

e Roboflow: Provided supplementary annotated
images and labeling assistance.

e Label Studio: Used for annotation management,
data cleaning, and curation.

4.2 Results

This subsection details the results obtained from the
experiments.

metrics/precision(B) metrics/recall(B)

0.84 0.8 1
0.7 1
0.6 1 0.6
0.5
0.4 4 0.4
0.3 4
0.2 1
0.2+
o 100 200 o 100 200
metrics/mAP50(B) metrics/mAP50-95(B)
0.6
0.8
0.5+
0.6 1 0.44
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0.2 1 0.1
(o] 100 200 [o] 100 200

Figure 5: The precision, recall, Mean Average Precision
(mAP50), and mAP50-95 metrics (y-axis) for each training
epochs (x-axis) for the theft detection model presented.

4.2.1 Validation

The system was evaluated using standard deep
learning performance metrics:
=  Precision (%). Indicates the proportion of
correct detections among all predicted
suspicious activities. The system achieved
82%, confirming that most alerts correspond to
true shoplifting behaviors (low false positives).
= Recall (%). Represents the proportion of
actualtheft events correctly detected. The
system reached 80%, showing strong detection
capacity while leaving room for improvement
in minimizing false negatives.
= mAP50 (Mean Average Precision at IoU >
50%, dimensionless). Combines classification
and localization performance. The system
achieved  84%, demonstrating reliable
detection and localization when bounding
boxes overlap ground truth by at least 50%.
= mAP50-95 (Mean Average Precision across
IoU thresholds from 50% to 95%,

dimensionless). Evaluates performance under
stricter localization thresholds. Our system
reached 57%, reflecting moderate robustness
under challenging conditions such as
occlusion, low light, and camera variability.
Below are the labeled images in the dataset versus
the images predicted by the model.

Real deteccion

For training

Figure 6: Labeled images from the dataset used for training
the model are presented on the left, and images processed
by the model showing detection results after training are
shown on the right.

4.2.2 Conclusion of the Trained Model

The trained detector demonstrated precision of 82%
and recall of 80%, confirming strong detection
performance in real and simulated minimarket
environments. The mAP50 of 84% validates reliable
localization, while the mAP50-95 of 57% highlights
the system’s ability to handle more complex scenes,
albeit with performance degradation under extreme
conditions.
The system correctly identified the following

suspicious behaviors:

*  Prolonged presence in sensitive areas

= Sudden movements or leaning towards shelves

= Concealment of items within clothing
These results suggest that the proposed architecture is
well-suited for real-time deployment in small
commercial environments, balancing accuracy and
computational efficiency.

4.3 Comparative Evaluation

4.3.1 Comparison with Traditional Systems

To measure effectiveness, the proposed system was
compared against conventional Closed-Circuit
Television (CCTV) surveillance commonly deployed
in small businesses. Traditional systems rely on
human monitoring, which introduces limitations in
real-time detection, accuracy, and event analysis.
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Table 1: Comparison of Traditional CCTV Systems vs.
Proposed YOLO-based System.

Criterion Traditional System | Proposed System
Evaluated (CCTV) (YOLO + Deep
Learning)
Real-time No (requires | Yes (automatic and
detection constant  human | immediate detection)
monitoring)
Detection 50-60% (variable | 82%  (low false
Presicion due to visual | positive detection)
fatigue)
Recall rate Very low 80% (detection of 3
out of 4 thefts)
Generation  of | Not available Available for

automatic alerts suspicious actions

Stability and | Limited
remote viewing

Multi-platform  and
cloud access

4.3.2 Comparison Between Yolo Versions

To examine improvements across YOLO versions,
three architectures were evaluated during training:
YOLOv5, YOLOvS, and YOLOv11l. Metrics are
reported as precision (%), recall (%), and mAP
(dimensionless).

Table 2: Comparison of metrics for YOLO versions for
training the proposed model.

Metric
. Precision o mAP50 AP50-95
Version %) Recall (%) %) (%)
YOLOvVS | 0.81256 |0.80784 0.83403 0.49208
YOLOVS 0.82451 | 0. 80422 0.84456 0.57787
YOLOvl1l |0.82752 |0.78377 0.815 0.55488

S DISCUSSIONS

Prior research highlights the potential of deep
learning for theft detection but also reveals practical
limitations. Kim et al. (2021) achieved 98.9%
accuracy with a 3D-Convolutional Neural Network
(3D-CNN), though its computational cost prevents
small-scale deployment. De Paula et al. (2022)
introduced the CamNuvem dataset, but their models
addressed theft only at a binary level, without
recognizing specific suspicious actions. Han and
Feng et al. (2024) combined YOLOvV8 with
DeepSORT to track individuals, focusing mainly on
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crowd dynamics rather than theft behavior. Similarly,
Gawande et al. (2023) improved detection under
occlusion and low resolution, but only in academic
scenarios. Santos et al. (2024) developed a Faster R-
CNN and YOLO system for weapon detection,
targeting object-specific threats instead of behavioral
patterns.

In contrast, our approach integrates YOLOvVS with
Convolutional Neural Networks (CNNs) to detect
fine-grained theft-related behaviors, such as product
concealment, in real time and with modest resource
requirements. Controlled experiments validated its
performance with precision = 82%, recall = 80%, and
mAP50 = 84% (dimensionless), showing reliable
detection in realistic minimarket conditions.

Beyond technical accuracy, the system
demonstrates clear economic relevance, with the
potential to reduce =15% in financial losses,
equivalent to S/.12,000 annually for a typical
minimarket. By automating alerts and reducing
dependence on human monitoring, it enhances both
operational security and customer trust.

In summary, this research advances theft
detection by offering a cost-effective, scalable, and
behavior-focused solution, addressing gaps left by
previous deep learning approaches and adapting
effectively to resource-constrained retail
environments.

6 CONCLUSIONS

The results obtained demonstrate that the proposed
system, based on YOLOv8, CNN and learning by
demonstration significantly outperforms traditional
video  surveillance  methods.  Conventional
approaches typically rely on continuous human
supervision, making them vulnerable to errors caused
by fatigue or distraction. In contrast, our system
operates autonomously, identifying suspicious
behaviors and generating real-time alerts.

The model achieved a precision of 82%, a recall
of 80%, and a Mean Average Precision at 50% IoU
(mAP50) of 84%, reflecting a strong balance between
accuracy and detection sensitivity. These metrics
confirm the system’s ability to detect theft-related
behaviors in real-world convenience store
environments with high reliability

In practical terms, the system has the potential to
reduce economic losses by up to 15%, based on data
from local commercial associations and our
experimental results. For a typical minimarket with
annual revenues of S/.80,000, this translates into
potential savings of approximately S/.12,000 per
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year, demonstrating the economic value of deploying
intelligent surveillance in small-scale businesses.

The integration of computer vision and deep
learning represents a robust, scalable, and cost-
effective solution to enhance security in vulnerable
commercial settings, particularly where resources are
limited.

Future work will explore the integration of
Internet of Things (IoT) components, such as shelf
pressure sensors or RFID systems, to provide multi-
source behavioral analysis and contextual awareness.
Additionally, the adoption of edge computing
architectures (e.g., NVIDIA Jetson or Raspberry Pi)
is proposed to enable faster, on-device processing and
improve system performance in environments with
limited connectivity.
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