Identifying Innovation Frontiers Based on Prediction of Citation Network Links Between Papers and Patents

Li Yongjie^{©a}, Zhu Jian^{©b}, Wang Longchao^{©c} and Tang Xiaoli^{©d}

Institute of Medical Information, Chinese Academy of Medical Sciences, Yabao Road No. 3,

Chaoyang District, Beijing, China

Keywords: Graph Neural Network, Innovation Frontiers, Knowledge Flow Clusters, Paper-Patent Citation.

Abstract: This paper proposes a novel method for identifying innovation frontiers based on link prediction in a

heterogeneous citation network integrating academic papers and technological patents. By constructing a unified citation graph and applying the Graph Sample and Aggregate model, we perform node embedding learning and link prediction to uncover potential knowledge flow pathways. Combining graph embedding with clustering analysis, we identify frontier knowledge clusters characterized by high interdisciplinarity, novelty, and knowledge mobility. Preliminary experiments demonstrate that the proposed method outperforms existing graph neural network models in both link prediction and clustering tasks, effectively revealing emerging innovation frontiers at the intersection of scientific and technological knowledge.

1 INTRODUCTION

The concept of the "Innovation Frontier" first emerged in 2011 within the J-Global foresight project, launched by the Japan Science and Technology Agency(Mari, 2011). This initiative aimed to identify emerging areas with potential future technological impact by clustering highly cited scientific papers that were frequently referenced by patents. Research indicates that early-stage, potentially breakthrough discoveries often originate at the intersection of science and technology(Winnink & Tijssen, 2015). Although scholars currently use various terms—such as research hotspots, research fronts, and innovation fronts -to describe frontier-related concepts, the prevailing methodologies for detecting frontiers can be broadly categorized into citation-based approaches and content-based analysis methods. In this study, the innovation frontier is defined as a set of literature representing the flow of basic scientific knowledge into technological applications. We identify innovation frontiers through a combination of paper-patent citation networks, link prediction techniques, semantic similarity measures, and a comprehensive indicator system.

This study focuses on link prediction tasks within citation networks and the identification of innovation frontiers. Link prediction aims to predict missing or potential future connections between nodes based on the existing network structure. In citation networks, this manifests as predicting the existence of citation relationships between two documents (papers or patents), that is, determining whether a paper/patent will cite another in the future. This task is formulated as a binary classification problem. Positive samples correspond to existing citation edges, while negative samples are generated from pairs of nodes with no current link. A model is trained to predict the probability of a citation link forming between any given node pair. Innovation frontier identification is based on the citation network to discover new research hotspots or frontiers of knowledge flow. Specifically, we aim to identify those document collections (knowledge flow clusters) that have rapidly grown or formed new cross-disciplinary knowledge links in recent years by analyzing the structure and evolution of the citation network, recognizing them as innovation frontiers.

alphttps://orcid.org/0009-0004-6306-8288

b https://orcid.org/0009-0008-8222-0280

https://orcid.org/0009-0009-1387-3517

dip https://orcid.org/0000-0001-6946-3482

2 METHODS AND STUDY DESIGN

Figure 1 outlines the overall workflow of the proposed methodology in this study.

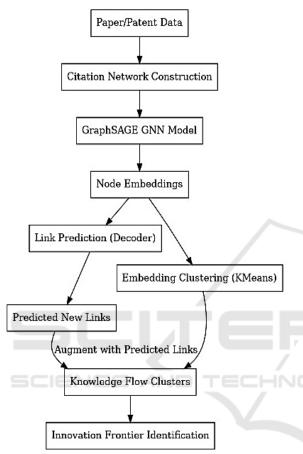


Figure 1: Methodological Flow Diagram.

First step is data collection and graph construction: We organize academic papers and patent data to build a citation network graph, where nodes represent papers or patents, and edges denote citation relationships (Érdi et al., 2013).

Second step is graph neural network-based embedding learning: the constructed citation graph is processed using a Graph Sample and Aggregate (GraphSAGE) model to learn node embeddings. (Hamilton et al.,2017). Through neighbor sampling and aggregation operations, low-dimensional embeddings are generated for each node. The model is trained using a link prediction task, in which existing citation links serve as supervisory signals to update model parameters(Lu & Uddin, 2024). During training, for each real citation edge, we randomly sample several non-existent node pairs as negative

samples and optimize the model using the aforementioned binary classification loss function. Upon completion of training, the model outputs embedding vectors for all nodes, which can be used in downstream tasks.

Thirdly, the methodology proceeds with two parallel processes: link prediction and node clustering. For link prediction, the trained model computes the connection probability for all possible node pairs, identifying potential but currently non-existent citation links. These predicted links represent novel knowledge transfer pathways and are incorporated into the original network to form an expanded "potential citation network." Concurrently, node embeddings are clustered using the K-Means algorithm to partition the network into thematic knowledge communities. Each resulting cluster represents a distinct knowledge domain, revealing the underlying structure of the citation network. (Chai et al., 2024).

Fourthly, after integrating the predicted links into the network and obtaining the clustering partition, we conduct a comprehensive analysis of cluster attributes to identify innovation frontiers. By quantifying and ranking clusters based on multiple indicators, we select the top-scoring clusters as innovation frontier hotspots. The corresponding sets of documents represent recently emerged and rapidly evolving research directions within their respective fields.

In summary, our approach integrates graph neural network-based link prediction with clustering analysis: graph neural network (GNN) embedding learning captures complex relationships within the citation network and predicts potential knowledge links, while clustering uncovers knowledge flow communities. Ultimately, multi-indicator evaluation identifies the most probable innovation frontier areas. This method leverages citation data to reveal microlevel connections in knowledge diffusion while extracting macro-level research hotspots at the domain level—aligning well with the requirements of knowledge discovery and information retrieval in citation network analysis. Each module is closely interconnected, ensuring the scientific rigor and effectiveness of the proposed framework.

2.1 Data Representation and Graph Construction Methodology

We first construct a citation graph that incorporates both academic papers and patents. The node set of the graph consists of two types of entities: scholarly papers and patents, which are uniformly represented as nodes (entities) within the graph structure. Each node can be assigned an initial feature vector based on various attributes such as textual embeddings derived from titles and abstracts, disciplinary categories, author or institutional affiliations, and other relevant metadata. These features serve as input attributes for the model.

The edge set represents citation relationships: a directed edge is created from one node (the citing entity) to another node (the cited entity) if a paper or patent references another paper or patent. After data preprocessing and integration, we obtain a heterogeneous citation network denoted as G = (V, E), where V is the set of nodes representing either papers or patents, and E is the set of directed citation edges capturing the citation relations between them.

To address structural fragmentation in the citation network, we introduce a semantic bridging mechanism that integrates direct citation relationships with indirect connections derived from semantic similarity. Isolated nodes-defined as papers or patents with no existing citation links to connected other documents—are through semantically inferred paths. For each isolated paper, we compute text embeddings (e.g., using RoBERTa) of its title and abstract and identify semantically similar papers (cosine similarity > 0.7). If these similar papers cite patents, we construct an indirect citation path: isolated paper → similar paper → patent. Similarly, for isolated patents, we link them to papers via semantically related patents: paper similar patent ← isolated patent.

The original direct citations and inferred semantic edges are merged into a unified directed graph. This hybrid network enhances connectivity, improves coverage of knowledge diffusion pathways, and captures latent associations across documents. The resulting graph serves as a robust foundation for subsequent graph neural network training, enabling joint learning of explicit citations and implicit semantic relationships. All nodes are treated uniformly, preserving the directed flow of knowledge from cited to citing entities.

2.2 Graph Neural Network-Based Link Prediction Model

To learn low-dimensional representations of nodes in the citation network, we employ GNN model for link prediction. Specifically, we implement the GraphSAGE framework, which generates node embeddings by iteratively aggregating feature information from local neighborhoods. This approach effectively captures both structural properties and semantic attributes of nodes through learned representations.

The proposed model consists of two GraphSAGE convolutional layers (SAGEConv). The aggregation process at layer l can be formally described as follows.

Neighbor Aggregation: For a given node v, at the l-th layer, the model collects the node representations from its neighbor set N(v) at the previous layer and computes their average. This averaging operation aggregates local neighborhood information to enrich the representation of the target node.

$$m_v^{(l)} = \frac{1}{|N(v)|} \sum_{u \in N(v)} h_u^{(l-1)} \tag{1}$$

where $h_u^{(l-1)}$ denotes the embedding of neighbor node u at layer l=1 (when l=1, h_u^0 corresponds to the initial feature vector of node u).

Node Representation Update: The node's own representation from the previous layer, $h_{\rm v}^{(l-1)}$, is concatenated with the aggregated neighbor vector ${\bf m}_{\rm v}^{(l)}$. This combined vector is then passed through a linear transformation and a non-linear activation function to obtain the node's new embedding at the l-th layer. where ${\bf W}^{(l)}$ denotes the learnable weight matrix at layer l , and σ is a non-linear activation function (e.g., ReLU). After two layers of message propagation, we obtain the final d -dimensional embedding vector for each node, $h_{\rm v}=h_{\rm v}^{(2)}$, which encapsulates both the node's own feature attributes and the local structural information from its citation neighborhood in the graph.

$$h_{v}^{(l)} = \sigma \left(W^{(l)} \cdot [h_{v}^{(l-1)} \parallel m_{v}^{(l)}] \right)$$
 (2)

Link Decoding and Prediction: Based on the learned node embeddings, we design a decoding function to predict the likelihood of a citation link forming between any pair of nodes. To maintain model simplicity while preserving effectiveness, we adopt the inner product as the decoder. Specifically, for a pair of nodes u and v, the dot product of their embedding vectors is computed and passed through the sigmoid function to yield the predicted probability of an edge existing between them.

$$\hat{y}_{uv} = \sigma(h_{\mathbf{u}} \cdot h_{v}) \tag{3}$$

where $h_u \cdot h_v$ denotes the dot product between the embedding vectors of nodes u and v. The dot product decoder intuitively measures the similarity between two nodes in the embedding space, where a higher similarity score suggests a greater likelihood of an existing citation link. Compared to more complex decoders—such as multi-layer perceptrons (MLPs)

that take the concatenated embeddings h_u and h_v as input—the dot product decoder offers advantages in terms of fewer parameters, easier training, and competitive performance in citation link prediction tasks.

Training Strategy and Loss Function: We formulate the link prediction task as a binary classification problem and train the GNN model parameters through supervised learning. In this setting, positive samples correspond to existing citation edges in the network, while negative samples are randomly sampled from node pairs that do not have a citation relationship. To maintain class balance and improve training efficiency, we typically sample negative edges at a certain ratio (e.g., 1:1) so that their number is comparable to that of positive edges. Prior to training, the set of existing citation edges is randomly split into training, validation, and test sets (e.g., each occupying a predefined proportion), ensuring that the model is evaluated on unseen samples during performance assessment. The model is trained using the binary cross-entropy (BCE) loss, which optimizes the predicted link probabilities. For any node pair (u, v) with a ground truth label y_{uv} (where 1 indicates the presence of a link and 0 indicates absence), and an unnormalized score $s_{uv} = h_u \cdot h_v$ output by the model, the corresponding loss is computed as:

$$L_{uv} = -y_{uv} \log \sigma(s_{uv}) - (1 - y_{uv}) \log(1 - \sigma(s_{uv}))$$
 (4)

The overall loss L is obtained by averaging over all positive and negative samples in the training set. This loss is then minimized using stochastic gradient descent (SGD) to learn the model parameters. During training, we employ the AdamW optimizer, which incorporates weight decay to prevent overfitting, and iteratively update the model parameters based on minibatches. Model selection is guided by performance evaluation on the validation set, typically measured using metrics such as Area Under the Curve (AUC). The model checkpoint achieving the best validation performance is selected as the final trained model.

Through this training process, the GraphSAGE model learns a function that maps the structure of the citation network and node attributes into low-dimensional embeddings. Once trained, the model can be generalized to new graphs containing previously unseen nodes, thanks to its inductive neighbor aggregation mechanism.

2.3 Clustering Ensemble Method

After obtaining the node embedding representations from the citation network, we further perform clustering analysis in the embedding space to identify knowledge flow communities and detect potential innovation frontier hotspots. Specifically, we employ the K-Means clustering algorithm for unsupervised grouping of node embeddings.

K-Means partitions the set of n node vectors into n clusters $S = S_1, S_2, \dots, S_n$, iteratively optimizing the assignment such that nodes within the same cluster are as similar as possible, while nodes in different clusters are as dissimilar as possible.

The objective function of K-Means aims to minimize the within-cluster sum of squared distances (WCSS) — that is, the sum of squared distances between each node embedding and its assigned cluster centroid:

$$\arg\min_{\{S_i\}_{i=1}^k} \sum_{i=1}^k \sum_{h_v \in S_i} \| h_v - \mu_i \|^2$$
 (5)

$$\mu_i = \frac{1}{S_i} \sum_{h_v \in S_i} h_v \tag{6}$$

where μ_i denotes the mean vector of node embeddings in the i-th cluster, also referred to as the cluster centroid. Through this optimization process, K-Means groups nodes with similar embeddings into the same cluster, ensuring that nodes within a cluster are relatively close to each other in the embedding space—indicating shared citation patterns or thematic characteristics—while nodes in different clusters exhibit substantial separation, reflecting distinct structural or topical features.

Based on the clustering results, each cluster is regarded as a knowledge flow community, comprising a group of academically or technologically related papers and patents connected through dense citation relationships. These clusters typically correspond to specific research domains or thematic topics, within which knowledge circulates intensively. The GraphSAGE embeddings capture both semantic and topological similarities, revealing that documents within the same cluster often exhibit co-citation patterns, shared keywords, or structural proximity in the citation network.

Furthermore, inter-cluster citation edges represent knowledge diffusion across different domains. The presence of multiple citations between two clusters suggests notable interdisciplinary exchange or convergent innovation, often indicative of emerging research intersections or technology fusion.

2.4 Evaluation Metric Design for Emerging Research Fronts

In the approach to identifying innovation frontiers,

we design a set of evaluation indicators tailored to paper clusters, patent clusters, and science-technology interaction clusters, aiming to capture their distinct characteristics associated with being at the "innovation frontier". The indicator system includes measures such as Interdisciplinarity, Novelty, and Industry Knowledge Mobility (IKM). These indicators are then synthesized into a comprehensive Innovation Frontier Index using a weighted aggregation method. The key indicators are described as follows.

2.4.1 Interdisciplinarity

The interdisciplinarity of a paper cluster is used to measure the diversity and cross-disciplinary nature of knowledge sources within the cluster. The Rao-Stirling index, a diversity metric proposed by Stirling, is employed to quantify this interdisciplinarity.

The interdisciplinarity of patents is an important indicator that measures the extent to which patent technologies integrate across different technical domains. It quantifies the breadth of technological convergence by analyzing the distribution of International Patent Classification (IPC) codes of the patent itself and its cited patents. This metric reflects the capability of a patent to integrate knowledge from multiple disciplinary fields, serving as an essential proxy for technological diversification and crossdomain innovation.

2.4.2 Novelty

Novelty is used to measure the degree of innovation in terms of time and content within a research cluster. In this study, we adopt Science Cycle Time as a representative indicator of novelty. The Science Cycle Time is defined as the average difference between the publication year of a paper and the publication years of its cited references. This metric characterizes the temporal span over which knowledge is generated and subsequently utilized in current research.

In the context of patents, a corresponding measure—Technology Cycle Time —is employed. It is defined as the average difference between the filing year of a patent and the publication years of its cited prior art (e.g., other patents or scientific literature). This metric serves to assess the degree of novelty in technological innovation, with shorter cycle times typically indicating more recent and potentially groundbreaking advancements.

2.4.3 Knowledge Mobility

Academic Knowledge Mobility (AKM) is an indicator used to measure the intensity of knowledge transfer from academic research to industrial technologies. It is defined as the average number of patent citations received by each paper within a given paper cluster. Specifically, if the research findings in a particular cluster are frequently cited by patents, this indicates that the scientific knowledge embodied in the cluster has a high degree of spillover value and significant influence on technological development. This reflects relatively active knowledge flow between academia and industry, suggesting strong science-technology linkages and potential for application-driven innovation.

Technology Knowledge Mobility (TKM) is an indicator used to measure the extent to which patent technologies rely on scientific knowledge. It is defined as the average number of academic papers cited per patent within a given patent cluster. If a patent cluster cites a large number of scholarly articles, it indicates that the technological development within that cluster is closely linked to scientific advancements and possesses a strong scientific foundation.

2.4.4 Innovation Frontier Index

Based on the aforementioned definitions, each paper is assigned values for the three indicators described above. These indicators are then weighted using the entropy weight method, a objective weighting approach that determines the relative importance of each indicator based on the amount of useful information it provides. As a result, each paper receives a composite Innovation Frontier Index score that reflects its overall innovativeness and position at the frontier of scientific development.

The same procedure is applied to calculate the Innovation Frontier Index for each patent, enabling a comparable assessment of technological innovations in terms of their novelty, interdisciplinarity, and knowledge mobility.

2.4.5 Weighted Aggregation Method for Cluster-Level Innovation Frontier Index

After computing the document-level metrics for each paper or patent—including interdisciplinarity, novelty, knowledge mobility, and the composite Innovation Frontier Index —it is necessary to further aggregate the indicator information across all nodes within each cluster. This aggregation aims to

characterize the collective innovative features of the entire cluster across multiple dimensions.

Considering that nodes may differ in their structural positions and representativeness within a cluster, this study introduces an embedding-distance-based weighting mechanism to linearly aggregate the individual indicators, thereby constructing a unified cluster-level indicator system .

To quantify the representativeness of each node within its cluster, we compute the Euclidean distance between the node's embedding—generated by the graph neural network—and the centroid of its corresponding cluster in the embedding space. A smaller distance indicates that the node is closer to the semantic center of the cluster, implying higher representativeness and centrality within the knowledge community.

3 EXPERIMENTAL FRAMEWORK

To comprehensively evaluate the effectiveness of the proposed integrated graph construction mechanism and the graph neural network-based approach for identifying innovation frontiers, we conducted systematic experimental studies on the constructed academic paper–technical patent integrated citation network.

3.1 Dataset Overview

The dataset for this study comprises 91,360 academic papers and 92,337 technical patents, constituting a heterogeneous citation network with 183,697 nodes. The paper data is sourced from the Web of Science Core Collection, while the patent data is drawn from the USPTO and EPO databases. The dataset spans the years 2010 to 2023 and primarily covers various disciplines, including biomedicine. During the data preprocessing phase, we extracted the titles, abstracts, publication years, and citation relationships of academic papers, as well as the titles, abstracts, application years, and citation information of patents. For isolated nodes in the network, we employed an indirect citation inference mechanism that combines semantic and citation relationships to construct new connections for these nodes, effectively enhancing network connectivity. The training, validation, and test sets were randomly split in a ratio of 7:1:2.

Based on the GraphSAGE framework, a three-layer graph neural network model is constructed. The

embedding dimension is set to 512 dimensions to fully capture the semantic and structural information within the network, while the hidden layer size is set to 128 dimensions to balance the model's expressive power and computational efficiency. The network is configured with three layers, effectively aggregating information from three-hop neighbors. The number of sampled neighbors per layer is 25, 20, and 15 nodes, respectively. In terms of activation functions, the hidden layer employs the ReLU function, while the output layer utilizes the Sigmoid function. To enhance the model's generalization capability, Dropout regularization is added after each layer, with a dropout rate set to 0.3.

The model training adopts a supervised learning paradigm, modeling link prediction as a binary classification task. The optimizer uses AdamW to provide better convergence stability, with a learning rate set at 1×10⁻⁴ to ensure stable training for largescale networks. The loss function employs Mean Squared Error Loss (MSELoss) to provide a smooth gradient signal. The training is set to 1000 epochs, and an early stopping strategy (patience=50) is adopted to prevent overfitting. The batch size is set to 2048 node pairs, and weight decay is set at 1×10^{-5} for L2 regularization. The learning rate schedule employs the ReduceLROnPlateau strategy, reducing the learning rate to 80% of its original value when the validation set AUC fails to improve for 10 consecutive epochs. The negative sampling strategy samples one negative edge for every positive edge, maintaining node type matching to avoid sampling bias.

3.2 Comparative Analysis of Link Prediction Performance

Initially, we compared the performance of the proposed model with various graph models in the task of link prediction. The experiments selected classic graph neural network models and attention models for comparison, including Graph Convolutional Networks (GCN), GraphSAGE, Graph Attention Networks (GAT), Graph Embedding Network (GEN), graph network models based on Transformer, and Graph Neural Network for Tag Ranking (GraphTR), totaling six models. Evaluation metrics such as AUC, F1, Precision, Recall, and Accuracy were employed to assess the accuracy of link prediction, as presented in Table 1 below.

Table 1: Metrics for Link Prediction.

Model	AUC	F1	Precisi on	Reca 11	Accu racy
GCN	0.7467	0.7466	0.7473	0.74 67	0.74 67
GAT	0.7206	0.7193	0.7246	0.72 06	0.72 06
GEN	0.7484	0.7469	0.7541	0.74 84	0.74 84
Transf ormer	0.7663	0.7657	0.7691	0.76 63	0.76 63
Graph TR	0.7108	0.7088	0.7168	0.71 08	0.71 08
Graph SAGE	0.7729	0.7726	0.7742	0.77 29	0.77 29

In this context, our method has achieved optimal performance across various indicators. As shown in Table 1, our approach, GraphSAGE, achieves an AUC of 0.7729, representing an improvement of approximately 3 percentage points compared to GCN. Precision and Recall have been increased to approximately 77.4% and 77.3%, respectively, which are the highest among all models. Similarly, the Accuracy rate has reached 77.29%, indicating that the model is more accurate in discriminating citation connections. Additionally, to evaluate the model's performance in link ranking, we also employed the Mean Reciprocal Ranking (MRR) @10, Mean Average Precision (MAP)@10, and Precision@10 recommendation metrics to assess the model's ability in predicting the most relevant links, as demonstrated in Table 2 below.

Table 2: Top-N Recommendation Metrics.

Model	MRR @10	MAP@1 0	Precision@1
GCN	0.7653	0.6913	0.6875
GAT	0.4941	0.625	0.6174
GEN	0.6158	0.6468	0.6411
Transformer	0.4379	0.6831	0.6755
GraphTR	0.2318	0.5947	0.5871
GraphSAGE	0.8569	0.7361	0.7266

The experimental results indicate that, for Top-N recommendation metrics, our approach achieves the highest scores in metrics such as MRR@10 and MAP@10 (e.g., MRR@10 is approximately 0.857, and Precision@10 is close to 0.73), demonstrating a significantly superior ability to rank potentially relevant links compared to other models. This implies that our method not only uncovers more genuinely existing hidden citation relationships but also prioritizes the most meaningful potential links, resulting in higher coverage and accuracy. Overall, the proposed integrated model achieves

comprehensive leading performance in link prediction tasks, effectively validating the feasibility and superiority of the citation semantic completion + GNN embedding strategy, as well as the effectiveness of integrating academic and patent information with graph neural network methods in identifying innovative frontier associations.

3.3 Comparative Analysis of Model Clustering Results

After obtaining the embedded representations of nodes (papers or patents), we employed the K-Means algorithm to cluster nodes within the fused citation network, aiming to identify potential clusters of cutting-edge knowledge. To evaluate effectiveness of embeddings generated by different graph neural networks in clustering tasks, we applied K-Means to node representations outputted by six mainstream graph models (GCN, GAT, GEN, Transformer, GraphTR, GraphSAGE) and utilized the Silhouette Score and Calinski-Harabasz Index (CH Index) as metrics for assessing clustering performance. The Silhouette Score measures the compactness and separability of clusters, with a value closer to 1 indicating better clustering performance; the CH Index reflects the ratio of inter-cluster dispersion to within-cluster dispersion, with a higher value indicating a clearer clustering structure. The comparative results of clustering performance across models are presented in Table 3 below.

Table 3: Model clustering performance.

Model	Silhouette Score	CH Index
GCN	-0.0064	321.2708
GAT	-0.0168	145.5318
GEN	0.0016	89.0565
Transformer	0.0069	103.9587
GraphTR	0.1052	5049.5271
GraphSAGE	0.0214	109.5832

Among the evaluated models, GraphSAGE demonstrated superior overall performance for our link prediction and clustering tasks despite its lower CH Index compared to GraphTR. With a Silhouette Score of 0.0214 and CH Index of 109.5832, it consistently outperformed GCN, GAT, GEN, and Transformer-based models. This indicates GraphSAGE's stronger capacity for preserving both local similarities and global separability in the embedding space, thereby providing more stable and cluster-friendly representations for subsequent K-Means partitioning.

In contrast, GCN and GAT produced negative Silhouette Scores (-0.0064 and -0.0168, respectively), suggesting significant cluster overlap and poor separation in their embedding spaces. While GEN and Transformer achieved positive Silhouette Scores, their values remained below 0.01, reflecting limited representation quality and clustering utility. Although GraphTR showed strength in clustering metrics, its high computational complexity, substantial training cost, and relatively weak performance in link prediction reduced its overall suitability for the integrated task.

Therefore, we selected GraphSAGE as the embedding model for its balanced performance in structural representation and computational efficiency. Combined with K-Means clustering, it enables effective and interpretable detection of innovation frontiers with higher clustering consistency and semantic coherence.

4 CONCLUSIONS

This paper primarily revolves around two core tasks: the first is link prediction based on citation networks, aimed at uncovering potential knowledge associations; the second is clustering analysis based on graph embedding, to identify cutting-edge hotspot clusters across different knowledge domains.

Our proposed GraphSAGE-based approach demonstrates superior performance in both link prediction (AUC = 0.7729) and clustering tasks (Silhouette Score = 0.0214) compared to baseline models like GCN and GAT. The semantic bridging mechanism for isolated nodes proved particularly effective in enhancing network connectivity, as evidenced by the improvement in prediction accuracy over conventional methods. The integration of indirect citation paths through semantic similarity thresholds addresses a critical limitation in traditional citation analysis where structural fragmentation often obscures potential knowledge flows.Our multiindicator evaluation system (incorporating Interdisciplinarity, Novelty, and Knowledge Mobility metrics) provides a more nuanced understanding of innovation dynamics than conventional citationbased approaches.

The experimental results fully validated the effectiveness and advantages of this method in integrating structural sparse networks, enhancing recognition accuracy, and mining potential cross-knowledge flows.

ACKNOWLEDGEMENTS

This work was supported by the Innovation Fund for Medical Sciences of the Chinese Academy of Medical Sciences (grant 2021-I2M-1-033).

REFERENCES

- Chai, B., Li, Z., & Zhao, X. (2024). Deep graph clustering by integrating community structure with neighborhood information. Information Sciences, 678, 120951.
- Érdi, P., Makovi, K., Somogyvári, Z., Strandburg, K., Tobochnik, J., Volf, P., & Zalányi, L. (2013). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95(1), 225-242.
- Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive Representation Learning on Large Graphs (Version 4). arXiv. https://doi.org/10.48550/ARXIV. 1706.02216
- Lu, H., & Uddin, S. (2024). A parameterised model for link prediction using node centrality and similarity measure based on graph embedding. Neurocomputing, 593, 127820.
- Mari, J. (2011). An analysis of the achievements of JST operations through Scientific Patenting: Linkage between patents and scientific papers. Paper presented at the 2011 Atlanta Conference on Science and Innovation Policy.
- Winnink, J. J., & Tijssen, R. J. W. (2015). Early stage identification of breakthroughs at the interface of science and technology: lessons drawn from a landmark publication. Scientometrics, 102(1), 113-134.