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This paper presents a novel recommender system framework that integrates Knowledge Graphs (KGs) and
Large Language Models (LLMs) through dynamic semantic prompt generation. Rather than relying on static
templates or embeddings alone, the system dynamically constructs natural language prompts by traversing
RDF-based knowledge graphs and extracting relevant entity relationships tailored to the user and recommen-
dation task. These semantically enriched prompts serve as the interface between structured knowledge and the
generative capabilities of LLMs, enabling more coherent and context-aware suggestions. We validate our ap-
proach in three practical scenarios: personalized product recommendation, identification of users for targeted
marketing, and product bundling optimization. Results demonstrate that aligning prompt construction with
domain semantics significantly improves recommendation quality and consistency. The paper also discusses
strategies for prompt generation, template abstraction, and knowledge selection, highlighting their impact on
the robustness and adaptability of the system.

1 INTRODUCTION

Recommender systems play a key role in tailor-
ing digital experiences across domains such as e-
commerce, media streaming, and online services.
By leveraging user profiles, contextual signals, and
historical interactions, these systems aim to suggest
items that align with user interests, thus boosting en-
gagement and driving decision-making. Traditional
recommendation approaches—ranging from collab-
orative filtering to content-based methods—have
evolved significantly with the integration of semantic
knowledge and natural language technologies.
Recent advances in Large Language Models
(LLMs) have transformed the field of natural lan-
guage processing, enabling models to interpret, gen-
erate, and reason over text with remarkable fluency.
This progress has opened new avenues for building in-
telligent, conversational recommendation interfaces.
However, LLMs alone lack domain-specific ground-
ing, which can lead to generic or inconsistent sugges-
tions when applied to structured decision-making sce-
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narios.

Knowledge Graphs (KGs) offer a powerful mech-
anism to enrich recommendation processes with do-
main semantics. By organizing information into
entities and relationships using formal representa-
tions such as Resource Description Framework (RDF)
triples, KGs capture intricate, structured knowledge
about products, users, and their interrelations. The in-
tegration of KGs with LLMs has the potential to com-
bine the expressiveness of natural language with the
precision of structured data.

In this work, we propose a hybrid recommenda-
tion framework that bridges KGs and LLMs through
dynamic semantic prompt generation. Instead of stat-
ically encoding knowledge into embeddings or manu-
ally defining rules, our system dynamically traverses
RDF graphs to extract relevant information, which
is then used to formulate natural language prompts
tailored to the recommendation task at hand. These
prompts guide the LLM in generating contextually
aligned and semantically grounded recommendations.

The central research questions addressed in this
paper are:

P1. How can semantic knowledge from a Knowl-
edge Graph be dynamically transformed into prompts
that effectively guide an LLM?
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P2. How can the alignment between task-specific
goals and KG-derived semantics improve the quality
of recommendations generated by LLMs?

P3. What are the implementation strategies and ar-
chitectural components required to integrate semantic
prompting into a web-based recommender system?

To address these questions, we design and eval-
uate a recommendation pipeline that operationalizes
RDF triples as input for LLM-guided reasoning via
prompt engineering. The system is validated through
three application scenarios involving product sugges-
tion, promotional targeting, and bundling strategies.

The remainder of the paper is organized as fol-
lows: Section 2 provides background on recom-
mender systems, semantic technologies, and LLM in-
tegration. Section 3 details our methodology for se-
mantic prompt generation. Section 4 introduces the
system architecture and implementation. Section 5
presents the experimental evaluation. Section 6 re-
views related work, and Section 7 concludes with fi-
nal remarks and directions for future research.

2 BACKGROUND

2.1 Recommender Systems

Recommender systems have become a crucial com-
ponent of many online platforms, offering personal-
ized suggestions to users based on their preferences
and behaviors. Over the years, various types of rec-
ommender systems have been developed, each with
unique strengths and weaknesses. The three main
types are collaborative filtering, content-based filter-
ing, and hybrid approaches. Each of these methods
employs different techniques to generate recommen-
dations and addresses different aspects of the recom-
mendation problem (Ricci et al., 2010).
Collaborative filtering is one of the most widely
used techniques in recommender systems. It works
by analyzing user behavior and preferences, typically
through user-item interaction matrices, to find sim-
ilarities between users or items (Su and Khoshgof-
taar, 2009). The two primary approaches within col-
laborative filtering are user-based and item-based fil-
tering. User-based filtering recommends items to a
user based on the preferences of similar users, while
item-based filtering suggests items similar to those the
user has previously liked. The strengths of collabora-
tive filtering include its ability to provide recommen-
dations without needing explicit content information
and its effectiveness in leveraging the wisdom of the
crowd. However, it suffers from the cold start prob-
lem, where new users or items with insufficient inter-

actions are challenging to recommend accurately, and
it can struggle with sparsity in the user-item interac-
tion matrix (Schafer et al., 2007).

Content-based filtering, on the other hand, relies
on the features of the items themselves to make rec-
ommendations (Lops et al., 2011). This approach
builds user profiles based on the attributes of items
they have previously interacted with and recommends
new items that share similar characteristics. Content-
based filtering is particularly effective in domains
where item features are well-defined and structured,
such as in recommending movies based on genres,
actors, and directors. One of the main advantages of
content-based filtering is its ability to handle the cold
start problem more effectively for new items, as long
as their features are known. However, it has limita-
tions in terms of recommendation diversity, as it tends
to suggest items that are too similar to those the user
has already seen, potentially leading to a narrow user
experience (Aggarwal et al., 2016).

Hybrid recommender systems combine the
strengths of collaborative filtering and content-based
filtering to overcome their individual limitations
(Burke, 2002). By integrating multiple recommen-
dation strategies, hybrid systems can provide more
accurate and diverse suggestions. These systems can
use various methods to combine recommendations,
such as switching between techniques based on
the context, weighting the contributions of differ-
ent methods, or blending their outputs. Hybrid
systems can address the cold start problem more
effectively by using content-based approaches for
new items and collaborative filtering for items with
sufficient interaction data. They also tend to provide
a better balance between relevance and diversity in
recommendations. However, hybrid systems can
be more complex to implement and require more
computational resources, making them potentially
more expensive to deploy and maintain (Zhang et al.,
2019).

In recent years, the development of deep learning
and advanced machine learning techniques has further
enhanced the capabilities of recommender systems.
Techniques such as neural collaborative filtering,
graph-based recommendation, and the use of knowl-
edge graphs have shown promising results in improv-
ing recommendation accuracy and explainability (He
et al., 2017) and (Wang et al., 2019). These advanced
methods leverage large-scale datasets and complex
models to capture intricate patterns in user behav-
ior and item characteristics. While they offer signif-
icant improvements in performance, they also intro-
duce challenges related to model interpretability and
the need for substantial computational resources. As
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recommender systems continue to evolve, balancing
accuracy, diversity, explainability, and resource effi-
ciency remains a key focus for researchers and prac-
titioners in the field (Wang et al., 2020).

2.2 Knowledge Graphs

Knowledge Graphs (KGs) are structured represen-
tations of knowledge that connect entities, such as
people, places, and concepts, through relationships
or edges. These graphs consist of nodes represent-
ing entities and edges depicting the relationships be-
tween them (Hogan et al., 2021). The primary pur-
pose of KGs is to provide a comprehensive and inter-
connected view of knowledge, allowing for efficient
querying and inference. Knowledge Graphs lever-
age semantic information to create meaningful con-
nections and are widely used in various applications,
including search engines, natural language process-
ing, and Al systems. Their ability to integrate and
organize vast amounts of heterogeneous data makes
them valuable tools for managing complex informa-
tion landscapes (Paulheim, 2017).

The construction of Knowledge Graphs involves
several key processes, such as entity extraction, re-
lationship extraction, and graph embedding. En-
tity extraction identifies and categorizes entities from
unstructured data sources, while relationship extrac-
tion identifies the connections between these entities
(Shen et al., 2014). Graph embedding techniques then
transform the graph structure into low-dimensional
vector spaces, enabling machine learning algorithms
to process and analyze the data effectively. Knowl-
edge Graphs can be manually curated, automatically
generated, or created using a combination of both ap-
proaches (Nickel et al., 2015). The rich, intercon-
nected nature of KGs enables advanced data analysis,
supporting tasks like link prediction, entity resolution,
and semantic search (Ji et al., 2021).

In the context of recommender systems, Knowl-
edge Graphs enhance recommendation quality by
providing additional contextual information and rela-
tionships between items. By integrating KGs, recom-
mender systems can move beyond simple user-item
interactions and incorporate richer data about item
attributes, user preferences, and domain knowledge
(Zhang et al., 2019). For instance, a movie recom-
mendation system can leverage a KG to understand
relationships between actors, directors, genres, and
user ratings, allowing it to generate more nuanced and
accurate recommendations. The semantic relation-
ships captured in KGs enable the system to make in-
ferences and discover hidden patterns, leading to im-
proved recommendation diversity and relevance (Cao
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et al., 2019).

Furthermore, Knowledge Graphs facilitate ex-
plainability in recommender systems by providing
transparent and interpretable insights into the rec-
ommendation process. When a recommendation is
made, the system can trace the reasoning through
the KG, offering explanations such as ”This movie is
recommended because it shares similar themes with
movies you have previously enjoyed and features an
actor you frequently watch” (Wang et al., 2018). This
transparency enhances user trust and satisfaction, as
users can understand the rationale behind the recom-
mendations. Additionally, KGs help address the cold
start problem by leveraging the semantic relationships
to recommend new items based on their attributes and
connections within the graph. As a result, integrating
Knowledge Graphs into recommender systems not
only improves overall accuracy but also boosts user
engagement and trust through explainable Al.

2.3 Large Language Models

Large Language Models (LLMs) have revolutionized
the field of Natural Language Processing (NLP) with
their ability to understand and generate human-like
text. At the heart of the most advanced LLMs is
the Transformers architecture, a deep learning model
introduced in the seminal paper Attention Is All You
Need by (Vaswani et al., 2017). Transformers lever-
age a mechanism called atfention, which allows the
model to weigh the influence of different parts of the
input data at different times, effectively enabling it to
focus on relevant parts of the text when making pre-
dictions.

Prior to Transformers, Recurrent Neural Networks
(RNNs) and their variants like Long Short-Term
Memory (LSTM) networks were the standard in NLP.
These architectures processed input data sequentially,
which naturally aligned with the sequential nature of
language. However, they had limitations, particularly
in dealing with long-range dependencies within text
due to issues like vanishing gradients (Pascanu et al.,
2013). Transformers overcome these challenges by
processing all parts of the input data in parallel, dras-
tically improving the model’s ability to handle long-
distance relationships in text.

Chat models, a subset of LLMs, are special-
ized in generating conversational text that is coher-
ent and contextually appropriate. This specialization
is achieved through the training process, where the
models are fed vast amounts of conversational data,
enabling them to learn the nuances of dialogue. Chat-
GPT, for instance, is fine-tuned on a dataset of conver-
sational exchanges and it was optimized for dialogue
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by using Reinforcement Learning with Human Feed-
back (RLHF) - a method that uses human demonstra-
tions and preference comparisons to guide the model
toward desired behavior (OpenAl, 2023a).

The transformative impact of LLMs, and partic-
ularly those built on the Transformers architecture,
has been profound. By moving away from the con-
straints of sequential data processing and embracing
parallelization and attention mechanisms, these mod-
els have set new standards for what is possible in the
realm of NLP. With the ability to augment generation
with external data or specialize through fine-tuning,
LLMs have become not just tools for language gen-
eration but platforms for building highly specialized,
knowledge-rich applications that can retrieve infor-
mation in a dialogue-like way, find useful information
and generate insights for decision making.

The ability to augment the generation capabilities
of LLMs using enriched context from external data
sources is a significant advancement in Al-driven sys-
tems. An LLM context refers to the surrounding in-
formation provided to a LLM to enhance its under-
standing and response generation capabilities. This
context can include a wide array of data, such as text
passages, structured data, and external data sources
like Knowledge Graphs. Utilizing these external data
sources allows the LLM to generate more accurate
and relevant responses without the need for retrain-
ing. By providing detailed context, such as product
attributes, user reviews, or categorical data, the model
can produce insights that are tailored and contextually
aware.

2.4 Prompt Engineering

One key aspect of providing contexts to LLMs is the
ability of designing and optimizing prompts to guide
LLMs in generating the answers. This is what is
called Prompt Engineering. Its main goal is to max-
imize the potential of LLMs by providing them with
instructions and context (OpenAl, 2023b).

In the realm of Prompt Engineering, instructions
are the crucial first steps. Through them, engineers
can detail the roadmap to an answer, outlining the de-
sired task, style and format for the LLM’s response
(White et al., 2023). For instance, To define the style
of a conversation, a prompt could be phrased as "Use
professional language and address the client respect-
fully” or ”Use informal language and emojis to con-
vey a friendly tone”. To specify the format of dates
in answers, a prompt instruction could be "Use the
American format, MM/DD/YYYY, for all dates”.

On the other hand, as mentioned earlier, context
refers to the information provided to LLMs alongside

the core instructions. The most important aspect of
a context is that it can provide information that sup-
ports the answer given by the LLM, and it is very
useful when implementing question-answering sys-
tems. This supplemental context can be presented in
various formats. One particularly effective format is
RDF triples, which represent information as subject-
predicate-object statements. RDF triples are a stan-
dardized way of encoding structured data about enti-
ties and their relationships, making them ideal for em-
bedding precise information into prompts. By includ-
ing RDF triples in a prompt, we can clearly convey
complex relationships and attributes in a format that
the LLM can easily process, leading to more accurate
and relevant responses. According to (Wang et al.,
2023), prompts provide guidance to ensure that Chat-
GPT generates responses aligned with the user’s in-
tent. As a result, well-engineered prompts greatly im-
prove the efficacy and appropriateness of ChatGPT’s
responses.

3 METHODOLOGY

Our proposal in this study is to use LLM’s context
and Prompt Engineering to build a recommender sys-
tem based on a Knowledge Graph that integrates data
on products, features, categories, brands, sales and
users. Figure 3 shows a segment of this KG showing
relationships between a "Notebook™ and other entities
such as user "David”, brand "HP”, products “Printer”
and “Router”, and feature “’portable”. The KG struc-
tures the relationships between these entities, which
will enable the generation of a context to be presented
to an LLM.

Mouse

®
Personal Computer
@
also/ buy
be\ongs;to_category
Notebook Router
[ ] also_view [ ]
portable belongs_to_brand
[ ] . Z /
HP buy also\buy
mention
~.David Printer
® [ ]

Figure 1: Consumer behaviour graph.

There are various types of relationships that ex-
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ist within the KG used in our recommender system.
The following table summarizes them. Each row rep-
resents a specific relationship type, connecting differ-
ent types of entities. The relationship "buy” indicates
that a user has purchased a particular product. The
relationship “mention” originating in User” captures
instances where a user has mentioned specific features
of a product in their comments or reviews. It provides
insight into what aspects of a product are important to
users.

Table 1: Summary of Product Relationships and Associated
Purchase probabilities.

Entity Type 1 Relationship Entity Type 2
User buy Product
User mention Feature

Product mention Feature
Product also_buy Product
Product also_view Product
Product belongs_to_category Category
Product belongs_to_brand Brand

The relationship “mention” originating in "Prod-
uct” shows which features are associated with spe-
cific products based on user comments and reviews.
It helps in understanding the attributes and character-
istics commonly linked to products. The “also_buy”
relationship indicates that users who bought one prod-
uct also bought another product. It is useful for iden-
tifying complementary products and making bundle
recommendations. The “also_view” relationship sig-
nifies that users who viewed one product also viewed
another product. It helps in recommending products
that are often considered together by users. Finally,
the belongs_to_category” and “belongs_to_brand” re-
lationships helps in organizing products and enabling
category-based and brand-based recommendations.

One key-aspect of our methodology is that rela-
tionships in the KG are assigned weights, which in-
fluence the recommendation outcomes by prioritizing
certain connections over others. These weights are
derived from the significance of the relationships as
determined by domain knowledge and data analysis.
The table below presents these weights.

Table 2: Summary of Product Relationships and Associated
Purchase Probabilities.

Relationship Min Occ. | Purchase Prob.
also_buy 5 High
also_view 1 Medium
belongs_to_brand - Medium
belongs_to_category - Low

Our recommender system incorporates explain-
able Al principles, ensuring that the rationale be-
hind each recommendation is transparent to and in-
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terpretable by users. By leveraging the relationships
and their corresponding weights in the KG, the sys-
tem can provide detailed explanations for its sugges-
tions. For instance, a recommendation might be jus-
tified based on the strong association between a prod-
uct and its brand, or the positive user comments it has
received, or both. This explainability enhances user
trust and satisfaction, as users can understand why
certain products are being recommended.

Regarding to the extraction and transformation of
data from the KG, we use RDF triples as the funda-
mental data units, comprising three components: a
subject, a predicate, and an object. These triples en-
capsulate the semantic relationships between entities,
forming the backbone of the knowledge representa-
tion. To integrate these RDF triples effectively within
the context of the LLM, we transform them into a
structured format that the LLM can readily interpret
and utilize during inference. This transformation in-
volves reformatting the RDF triples into a natural lan-
guage or structured template that preserves the origi-
nal semantic relationships while making the informa-
tion accessible to the LLM. The following example
illustrates an RDF triple and its corresponding format-
ted version:

original RDF triple:

Relationship

formatted triple for LLM context:
Entity1|Relationship|Entity2

Figure 2: Formatted triple for LLM context.

In the final step, we leverage Prompt Engineering
to steer the LLM in generating targeted recommen-
dations. When RDF triples are formatted for inclu-
sion in a prompt, they can subsequently be appended
to questions directed at the LLM. The prompt itself
presents the triplets variable alongside instructions on
interpreting the relationships within these triplets, a
structured approach to guide the assistant’s under-
standing and response generation. It offers a concrete
dataset for analysis and instruction on how to interpret
the relationships.

messages = [
{"role": "system",
"content": "You are a helpful assistant."},
{"role": "user",

"content": f"Consider the following
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relationships represented as triplets:
\n{formatted_triplets}"},

{"role": "user",

"content": "Consider that if a person has
bought a product that participates in a
relation "also_buy’ with other products,
there is a high probability for this
person to buy these other products."},

In addition to incorporating the formatted RDF
triples, the prompts also include specific instructions
for the LLM on how to interpret and weight the re-
lationships represented in these triples. This ensures
that the LLM not only understands the entities and
their connections but also prioritizes certain relation-
ships based on their relevance to the user’s query. Fur-
thermore, the user’s question is integrated into the
prompt, guiding the LLM to focus on the specific
needs and preferences of the user. By combining
these elements—formatted triples, interpretative in-
structions, and the user query—the prompt provides
a comprehensive framework that enables the LLM to
generate highly tailored and contextually rich recom-
mendations. This approach ensures that the LLM’s
outputs are not only aligned with the knowledge graph
but also finely tuned to the nuances of the user’s re-
quest.

4 ARCHITECTURE

The architecture of the application is structured
around three main components: the backend layer for
data acquisition and preparation, the integration layer
with language models, and the user interface layer.
The backend layer is responsible for the data aquisi-
tion and processing to prepare the formatted triples.
The data used in this study was sourced from CSV
files, which contain the entities and the relationships
between them.

To efficiently manage and process this data, we
employed Apache Spark in conjunction with the
GraphFrames library. The data processing begins
with initializing a Spark session, providing the foun-
dation for creating a graph-based structure, where ver-
tices represent entities, and edges represent the rela-
tionships. Data is read from the CSV files to construct
appropriate lists and then to transform these lists in
Spark Dataframes, which are then used to construct
a graph within the GraphFrame framework. This
graph structure allows us to represent the data as RDF
triples, where each edge in the graph corresponds to a
triple consisting of a subject, predicate, and object.

Once the data is prepared, the challenge is to for-

| !

.

OpenAl
GPT-4

Figure 3: Recommender system architecture.

mat this information in a manner that can be seam-
lessly integrated into a prompt for the LLM. This in-
volves creating a textual representation of the RDF
triples that is both comprehensible to the LLM and ca-
pable of providing the necessary context for answer-
ing a given question. The formatting process includes
the conversion of RDF triples into natural language
sentences or structured statements that retain the se-
mantic relationships encoded in the RDF format. This
step ensures that the rich semantic information con-
tained within the Knowledge Graph is preserved and
made accessible to the LLM.

The Integration Layer with Language Models han-
dles the interaction between the prepared data and the
Large Language Model. It incorporates the formatted
RDF triples into the context fed to the LLM, ensuring
that the semantic relationships captured in the knowl-
edge graph are effectively utilized during inference.
Additionally, this layer implements Prompt Engineer-
ing techniques, where specific prompts are crafted to
guide the LLM in interpreting and prioritizing rela-
tionships within the triples, as well as responding to
the user’s query with accurate and contextually rich
recommendations.

The user interface layer is designed to enable
seamless interaction between the user and the rec-
ommender system, serving as a bridge between user
intent and semantically grounded recommendations.
It not only facilitates the input of natural language
queries but also presents the output of the system
in a transparent and interpretable manner. By sur-
facing recommendations that are generated through
the reasoning capabilities of the LLM and grounded
in structured knowledge graph data, the interface en-
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sures that semantic relationships and decision ratio-
nale are clearly conveyed to the user.

S EVALUATION

The dataset used in our evaluation is a propri-
etary one, consisting of approximately 5,200 enti-
ties and 16,600 relationships. There are relation-
ships in the dataset such as: ’buy” relationships indi-
cating purchases made by users, “mention” relation-
ships reflecting product attributes mentioned by users,
“also_buy” relationships denoting products that are
frequently bought together, ~also_view” relationships
showing products that are often viewed together, "be-
longs_to_category” relationships classifying products
into specific categories, and “belongs_to_brand” rela-
tionships linking products to their respective brands.
To assess the explainability of the proposed recom-
mender system, we evaluated it using the following
three questions: (1) What products could David buy?,
(2) Which product categories should be prioritized for
a discount? and (3) Which two products would be the
most suitable candidates for a bundle discount?

Each of these questions was submitted to the sys-
tem, and the results were analyzed with a focus on
how effectively the system leveraged semantic knowl-
edge to generate contextually relevant and semanti-
cally coherent recommendations. Particular attention
was given to the system’s ability to incorporate struc-
tured domain relationships into the output, ensuring
that the suggested items aligned with the underlying
meaning and intent of each query.

5.1 What Products Could David Buy?

For this query, the system was asked to recommend
potential products for David based on his previous
purchases and mentions, as well as his preferences
indicated by the RDF triples. The system incorpo-
rated formatted triples and relevant prompts to iden-
tify products that align with David’s purchasing his-
tory, and presents the graph show below, indicating
products and associated probabilities

The recommendation explains that, analyzing cus-
tomer behavior patterns, the system identified that
products commonly purchased alongside a Notebook,
such as a Mouse, Router, and Printer, hold a high
probability (80%) of being appealing to David. The
strong connection between these items is reinforced
by the ’also_buy’ relation, which shows that these
products are often bought together with a Notebook.
Additionally, the Router is recommended with the
same high probability due to its frequent co-viewing
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Recommendations for David

Webcam 20%

Monitor 50%

Printer 80%

Products

Router 80%

Mouse 80%

0 20 20 60 80 100
Probability (%)

Figure 4: Recommendations for a particular user.

with a Notebook, as indicated by the also_view’ rela-
tion. Furthermore, considering brand loyalty, the sys-
tem suggests that David might be interested in pur-
chasing a Monitor from the same brand (HP) as the
Notebook, assigning it a medium probability (50%)
under the ’belongs_to_brand’ relation. Lastly, the sys-
tem identifies a Webcam as a product in the same cat-
egory as the Notebook (Personal Computer), although
with a lower probability (20%), suggesting it as a less
likely but still relevant option. We present other ex-
plainable recommendations in the following table.

Table 3: Product Recommendations for users.

User | Recommendation

Sophia | Sophia bought a *USB Drive’. There is a
high probability she would buy a 'Router’
because both are linked by the ’also_buy’
relationship.

Eva Eva bought a "Headset’. There is a high
probability she would buy a ’Tablet’ or
’Smartphone’ because these products are
linked by the ’also_buy’ relationship.

Chris | Chris bought a "Webcam’. There is a high
probability he would buy a *Keyboard’ due
to the ’also_view’ relationship.

Liam | Liam bought a "Mouse’. There is a high
probability he would buy a *Notebook’ be-
cause both are linked by the ’also_buy’ re-
lationship.

Alice | Alice bought a "Tablet’. There is a high
probability she would buy a ’Headset’ or
"Keyboard’ as they are connected by the
“also_buy’ relationship.

5.2 'Which Product Categories Should
Be Prioritized for a Discount?

The recommender system suggests prioritizing dis-
counts on products within the ’Input Device’ cat-
egory to increase sales. This category, which in-
cludes items like Mice, Keyboards, Webcams, Smart-
phones, Headsets, and Tablets, has a medium prob-
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ability of leading to additional purchases when dis-
counted. The medium probability indicates that cus-
tomers who have purchased one product in this cate-
gory are somewhat likely to buy another, especially if
brands like Logitech, Samsung, and Sony are consid-
ered.

On the other hand, categories such as *Storage De-
vice’, ’Output Device’, and "Personal Computer’ ex-
hibit low probabilities for additional purchases. Prod-
ucts in these categories, such as USB Drives, SSDs,
Monitors, Printers, and Notebooks, typically have
longer lifecycles or higher price points, which reduces
the likelihood of repeat purchases or cross-category
purchases.

. Probabilities of Product Categories for Discount Strategy

50%

Probability (%)

Input Device Storage Device Output Device  Personal Computer
fi

Figure 5: Recommendations for product categories.

Figure 6 shows the probabilities for each product
category in the context of a discount strategy. The
’Input Device’ category stands out with a medium
probability (50%), indicating it as the most promising
category for increasing sales through discounts. The
other categories ’Storage Device’, ’Output Device’,
and ’Personal Computer’, all have lower probabilities
(20%), suggesting they are less likely to benefit from
discounting.

5.3 Which Two Products Would Be the
Most Suitable Candidates for a
Bundle Discount?

The recommender system identified four pairs of
products as suitable candidates for a bundle dis-
count, based on the analysis of relationships such as
“also_buy’, also_view’, *belongs_to_brand’, and ’be-
longs_to_category’. Here are the recommended pairs:

» Tablet and Headset: The ’also_buy’ relationship
indicates that customers who purchase a Tablet of-
ten also buy a Headset. This pair is highly likely
to benefit from a bundle discount.

* Notebook and Router: Both ’also_view’ and
“also_buy’ relationships suggest that customers
who are interested in a Notebook are also likely
to want a Router, making this pair a strong candi-

date for bundling.

* SSD and Router: Data shows that customers who
purchase a Router also frequently buy SSDs, mak-
ing this pair another potential bundle option.

Keyboard and Mouse: These products are linked
by both brand (Logitech) and category (’Input De-
vice’). While the probability of purchasing one
after the other may be medium to low, bundling
them could increase this likelihood.

The following figure shows a bar graph represent-
ing the probabilities for each pair of products iden-
tified as suitable candidates for a bundle discount.
The graph shows that the Tablet & Headset, Note-
book & Router, and SSD & Router pairs all have a
high probability of 80% for cross-purchasing, mak-
ing them strong candidates for bundling. The Key-
board & Mouse pair has a slightly lower probability
of 50%, but bundling them could still encourage ad-
ditional sales due to their shared brand and category.

Probabilities for Suitable Bundle Discount Candidates

Keyboard & Mouse 50%

SSD & Router 80%

Product Pairs

Notebook & Router 80%

Tablet & Headset 80%

10 20 30 40 50 60 70 80
Probability (%)

Figure 6: Recommendations for bundles.

6 RELATED WORK

There is a growing trend underscoring the intersec-
tion of Recommender Systems and Natural Language
Processing, specially with LLMs serving as a pow-
erful tool for advancing recommendation strategies.
The emergence of LLMs has opened new frontiers in
the recommender systems domain, as they possess the
ability to comprehend and generate human-like text,
which has led to a growing number of studies explor-
ing their potential in enhancing recommendation sys-
tems (Zhao et al., 2023) and (Balloccu et al., 2024).
Knowledge Graphs (KGs) have gained attention
for their ability to encode structured, semantic in-
formation, which can be invaluable in enhancing the
reasoning capabilities of LLMs. Recent studies, like
(Pan et al., 2024) and (Zhu et al., 2023), have explored
integrating KGs with LLMs to improve the quality of
responses in various tasks, including question answer-
ing, entity extraction, and knowledge graph reason-
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ing. Approaches typically involve either using KGs
as input context for LLMs or leveraging LLMs for
dynamic KG construction. According to (Pan et al.,
2024), KGs can enhance LLMs by providing external
knowledge for inference and interpretability. The syn-
ergy between KGs and LLMs has shown promising
results in capturing rich, domain-specific knowledge
and enhancing explainability, particularly in systems
requiring complex reasoning.

On the other hand, numerous techniques have
emerged to enhance the extraction abilities of LLMs,
improving their effectiveness in various applications
like question answering, knowledge retrieval, and
reasoning tasks. Prompt engineering, Retrieval-
Augmented Generation (RAG), GraphRAG and Text-
to-SQL are among of these popular techniques.
Prompt engineering has been increasingly recognized
for its potential to significantly improve the perfor-
mance of LLMs by instructing them to behave differ-
ently from their default. (White et al., 2023) demon-
strated how carefully designed prompts can enable
more precise responses from LLMs across a range of
tasks, underscoring the importance of prompt design
in leveraging model capabilities. According to the au-
thors, prompt patterns significantly enrich the capa-
bilities that can be created in a conversational LLM.
Indeed, this approach is essential for guiding LLMs to
understand and respond to queries more effectively,
by encapsulating the query within a context that the
model is more likely to comprehend and respond to
accurately.

(Giray, 2023) states that, by employing prompt
engineering techniques, academic writers and re-
searchers can unlock the full potential of language
models, harnessing their capabilities across various
domains, and that this discipline opens up new av-
enues for improving Al systems and enhancing their
performance in a range of applications, from text gen-
eration to image synthesis and beyond. The authors
presents the prompt components that can be manipu-
lated by engineers to guide text generation of an LLM.
These componentes include an instruction, a context,
an input data and an output indicator. Instruction out-
lines what the LLM is expected to do, providing clear
directions to guide the model’s response. The con-
text gives background information necessary for the
model to generate relevant and informed responses.
The input data refers to the actual data fed into the
model for processing, like a question, an image or a
set of data points. And the output indicator tells the
model how to format its response and what type of
output is expected.
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7 CONCLUSIONS

This article has elucidated the critical role of
techniques such as Prompt Engineering, Retrieval-
Augmented Generation (RAG) and text-to-SQL in en-
hancing the functionality and applicability of LLMs
in accessing and integrating external data sources.
The Python scripts utilized in our analyses are openly
accessible at (Seabra, 2024). These methodologies
are fundamental in interacting with and leverage vast,
dynamic external knowledge repositories, without the
need of retraining a model.

Notably, these approaches have been applied with
notable success to various data-intensive environ-
ments, including documents, knowledge graphs, and
databases. By enabling LLMs to dynamically query
and retrieve relevant information from these struc-
tured and unstructured data sources, the techniques
enhance the model’s ability to generate informed and
contextually accurate outputs. This synergy not only
maximizes the utility of existing data but also expands
the potential applications of LLMs across different
sectors, including business intelligence, legal advise-
ment, and academic research.

The promising results obtained from these tech-
niques underscore the potential for data interaction
and retrieval. However, to fully ascertain their ef-
fectiveness and scalability, future work should focus
on testing these methodologies across more volumi-
nous and diverse data sets, encompassing extensive
documents, knowledge graphs (KGs), and expansive
databases. Such rigorous testing is essential to vali-
date the robustness and adaptability of the strategies
employed, ensuring that they maintain high levels of
accuracy and efficiency when scaled.

Moreover, exploring these techniques in larger,
more complex data environments will also shed light
on their limitations and the potential need for refine-
ment or adaptation. As mentioned in the paper, the
continuous expansion of token limits in LLMs marks
a significant trend in the evolution of artificial in-
telligence technologies. As these limits grow, de-
velopers are empowered to work with increasingly
larger blocks of text in a single submission, enabling
a deeper and more comprehensive analysis of data.
This future exploration will not only bolster the con-
fidence in deploying these techniques in real-world
scenarios but also pave the way for their optimiza-
tion and potential customization to specific domains
or data types, ultimately enhancing the utility and im-
pact of LLMs across various sectors.
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