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Abstract: Artificial intelligence (AI) models have fundamentally improved its capacity to treat several topics and 
domains. The purpose of this paper is to use these methods especially Large Language Models (LLMs) to 
generate knowledge databases in the context of Information Technology Service Management (ITSM). The 
work starts by extracting information from documents and perform analysis on these documents using Natural 
Language Processing (NLP) techniques to group them into rigorous knowledge base articles that are easy to 
classify and search. This paper presents a method that applies generative AI for building a knowledge database 
in the context of ITSM (Information Technology Service and Management).

1 INTRODUCTION 

A knowledge base (KB) is defined as the underlying 
set of facts and actions which a computer system has 
available to solve a problem. It can be written as a 
document that provides information, guidance, or 
solutions on a specific topic, issue, or question (Wang, 
Q., 2017).  A ticket is a record of a specific issue, 
request, or inquiry submitted by a user or customer to 
a support team. It typically includes details about the 
problem, the user’s contact information, and any 
relevant context (Li, 2014).  AI models are included to 
manage this type of problems, the goal is a achieve a 
performant resolution. A description of specific AI 
tasks can be found in this site.2 In this paper, we try 
to present a use case that use LLM models to generate 
a resolution for several problems related to the ITSM 
topic (Mo, Y.,2024).  

2 PROPOSED METHOD 
DESCRIPTION 

One way to approach this project is to index the 
information from the documents and perform a 
Question Answering task to extract the text that 
corresponds to a specific label. The labels are usually 

 
a  https://orcid.org/0000-0001-5311-0375 
 

2 https://huggingface.co/task 

organized into a template for all corresponding 
documents. For example, we can extract the 
document type, the objective, or the detailed 
procedure, etc., into specific tickets.  

Next, a text summarization task can be used to 
extract a short description. Once each document is 
arranged in articles based on a template, a 
classification task can be performed on every article 
to group similar tickets into knowledge base articles.  

2.1 Applied Data 

We use in this project real data, that are extracted 
from Service now3 and GLPI4 tools. They presented 
textual descriptions related to incident tickets. The 
applied data contain also documents with different 
format. These documents contain procedures that 
guide administrators and agents through the 
resolution process.  

2.2 Architecture 

The project architecture, presented in Figure 1, 
contains two parts the frontend part and the back-end 
part: the main frontend holds the Streamlit tool and 
calls the functions from the backend that aggregates 
all the processors. All the developed files contain only 

3 https://www.servicenow.com/fr/ 
4 https://glpi-project.org/fr/ 
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functions. The config.yaml file holds the project 
configuration, such as the models and paths used. 
 

 
Figure 1: Proposed method architecture. 

2.3 Method Steps Description 

The following steps are used to read PDF documents 
that contains resolution notes and procedures used to 
resolve problems or tickets. Once the PDF processing 
is approved, other document types can follow the 
same steps:  
1. Read PDF documents, and split them into text 

chunks, and store these document text chunks, 
indexes, embeddings, and metadata. Since free 
and downloadable models like the ones available 
on the site of Hugginface 5 are limited to 512 
tokens, we cannot process all the text from one 
document at the same time. For example, an 
average document contains about 16,000 
characters, which averages 2,000-3,000 tokens. 
So, the text must be split into chunks. The 
splitting of the text must be done by preserving 
full sentences, and for that, an NLP (Natural 
Language Processing) toolkit like SpaCy, pysbd, 
NLTK and other packages, specialized for 
French language, is necessary such as:  
- Mistral-7B can handle 8k tokens but needs 

a powerful GPU like A100 with 40 GB of 
VRAM (Siino, M, 2024);  

- Mixtral can handle 32k tokens, but it is not 
downloadable and not free (Lermen, S, 
2023);  

2. Using Transformers: 
Use a Sentence Transformer model to index each 
PDF document. The choice of a sentence transformer 
and not a usual transformer is crucial since we are 
interested in the meaning of each sentence in context 
and not a word or group of words. Some sentence 

 
5 https://huggingface.co/ 

transformers for French extracted from Hugging Face 
include:  

a) Lajavaness sentence-flaubert-base ,  
b) Lajavaness/sentence-camembert-large ,  
c) paraphrase-multilingual-mpnet-base-v2 ,  
d) paraphrase-multilingual-MiniLM-L12-v2   
e) all-MiniLM-L6-v2  

For the Question Answering task, we use:  FAISS 
index search to search sentences that correspond to a 
question. We use also cosine similarity to find the text 
chunk indexes that correspond to a question, we 
extract the top k sentences, and perform a re-ranking 
of these sentences using a transformer specialized in 
QA to extract the response. We use the cloud model 
openai to perform indexing and question-answering.  

3. Based on the tasks described above, we move to 
the process the generated PDF document and 
retrieve data according to a specific template.  

4. Find a description for one document by 
performing successive summarization tasks 
using a specialized transformer model.  

5. Perform classification on each description to find 
similar topics. For example: (a) Softmax and 
feedforward from Torch; or (b) FlauBERT.  

6. Use the same process for QA as above, but this 
time store the position of each image relative to 
the text from each PDF document. When 
constructing the KB based on the template, insert 
the images at the same positions relative to the 
text. 

7. Develop a streamlit tools that contain three tabs: 
(a) Indexing documents; (b) Testing different 
models and techniques; and (c) Batch for batch 
processing a complete folder;  

2.3.1 Text Splitting Task 

The purpose of this phase is to read the text from a 
PDF file, clean it by removing extra whitespaces, 
recurrent dots, etc., and then split it into full sentences 
using an NLP toolkit like SpaCy (Kumar, M.,2023), 
pysbd, NLTK (Yao, J. (2019)). Then the sentences can 
be grouped into chunks based on the total number of 
characters or total number of words. The latter 
requires some extra processing using NLPs for 
splitting the text into words and counting them.  The 
result of this operation is a list of text chunks.  

2.3.2 Indexing Task 

The purpose of this task is to retrieve the embeddings 
for each chunk and save them as FAISS indexes, 
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NumPy embeddings, and each chunk list. This step is 
basically retrieving the embeddings, but since some 
of the operations involved take time, saving them is 
necessary to avoid redundancy.   

Some metadata is also saved, such as the file 
name, the models, and the options used. The next time 
the same file is selected, if it is found in the metadata 
with the same parameters, the operation is avoided 
since its embeddings are already saved. However, if 
even one parameter is different, a new operation will 
start with the new parameters.   

It is very important to save the embeddings and 
the sentences chunks in the same order. At the 
ranking phase, we will retrieve the lost relevant 
indices from the chunks list so the embeddings and 
the chunks list must be aligned. 

2.3.3 Question Answering Task  

For this task, the first step is to retrieve the top-K most 
relevant sentences from FAISS vectors or using 
cosine similarity between the question and the chunk 
embeddings. This step is an optimization to avoid 
performing Question Answering on the whole text. 
Now that we have a reduced set of top-K sentences, 
we’ll use the QA model to score these sentences 
based on how well they answer the question.  

2.3.4 Text Classification 

For this task use text classification techniques to 
group the sentences to groups based on the same label 
like for ex: ["description", "procÃ©dure", 
"rÃ©sultat", "sans rapport"]. Use a fine-tuned 
transformer for text classification or zero shot 
classification6.  

The problem here is defined as a lot of noise 
between the sentences due to date, names, page 
numbers and other metadata. A solution is needed 
here to eliminate noise and group sentences together.  

2.3.5 Group Sentences Dynamically Based 
on the Similarity Factor 

This phase aims to group extracted sentences based 
on similarity factor: 
1. Consider a group of K_max consecutive 

sentences, K_max < N (under 40). Calculate the 
pairwise cosine similarity matrix for k_max 
sentences. Tip: Use sklearn 7from scipy for CPU, 
and pytorch if a GPU is available.  

 
6 https://huggingface.co/tasks/zero-shot-classification 
7  https://scikitlearn.org/stable/modules/generated/sklearn. 
metrics.pairwise.cosine_similarity.html  

2. Take a subgroup of minimum K_min and 
maximum K_max sentences using a dynamic 
size sliding window and do some operation on 
the corresponding minor from the similarity 
matrix to calculate a similarity score.  

3. Extract the sentence group with maximum score, 
preserving the sentence order. 

4. Repeat the process until all sentences are 
grouped. 

2.3.6 Observation 

The similarity matrix is a symmetrical matrix having 
the same scores in the upper left and the lower right 
and 1 on the diagonals since every sentence is 
perfectly similar to itself.  

Calculating similarity score: Use the similarity 
matrix EIGENVALUES. Calculating the 
eigenvectors of the similarity matrix gives insight into 
the dominant semantic direction and the dominant 
eigenvalue will define the dominant direction 
(similarity). 

2.4 Results: UI Description 

The indexing page aggregates all the text 
preprocessing, embeddings generation and data 
saving like faiss vectors, numpy embeddings, text 
chunks and metadata. We can choose a model for 
computing embeddings, for text preprocessing using 
NLP, the level between words and characters and the 
chunk size is expressed in units of words or characters 
depending on the level chosen.  

2.4.1 Developed Tools 

 
Figure 2: Document indexing interface. 

The tests page is used to perform tests using the last 
embeddings calculated in the indexing page. We can 
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choose between a JSON template or simply putting a 
question related to the currently embedded 
document.  
 

 
Figure 3: Testing a document interface. 

The batch page will be used to batch process a folder 
of documents based on the options, models and tools 
from the previous pages.  

 
Figure 4: Batch process floder interface. 

3 CONCLUSIONS 

We present in this paper the use case that discusses the 
subject of how to generate a knowledge base by using 
AI models. The purpose of this paper is to use these 
methods especially Large Language Models (LLMs) to 
generate knowledge databases in the context of 
Information Technology Service Management 
(ITSM). The proposed method starts by extracting 
information and procedures from documents and try to 
perform analysis on these documents using several AI 
techniques. In our future work, we will continue to test 
on other databases, and we will move to automatise the 
process of ticket resolution.  
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