From Detection to Diagnosis: A Layered Hybrid Framework for Anomaly Characterization in Maritime Sensor Streams

Nadeem Iftikhar¹ ¹ ¹ Cosmin-Stefan Raita¹, Aziz Kadem¹, David Buncek¹, Matthew Haze Trinh², Yi-Chen Lin², Anders Vestergaard¹ and Gianna Belle¹ ¹

¹University College of Northern Denmark, Sofiendalsvej 60, 9000 Aalborg, Denmark ²Frugal Technologies ApS, C.A. Olesens Gade 4, 9000 Aalborg, Denmark

Keywords: Anomaly Detection, Anomaly Characterization, Maritime IoT, Hybrid Models, Time-Series Analysis.

Abstract:

Effective knowledge discovery from industrial sensor data depends on a deep understanding of data quality issues. In the maritime domain, sensor streams often suffer from a diverse set of problems, from simple signal freezes to complex, context-dependent behavioral shifts. Merely detecting these events as a monolithic "anomaly" class provides limited actionable insight. This paper argues for a shift from anomaly detection to anomaly characterization. We propose a novel, layered hybrid framework that systematically identifies and classifies data issues into distinct types. Our pipeline effectively combines the reliability of statistical methods with the advanced pattern-finding ability of machine/deep learning. Each layer acts as a specialized filter that identifies a specific type of anomaly and cleans the data for the next, more advanced analysis. We demonstrate on real-world vessel data that this layered characterization not only achieves high detection accuracy but, more importantly, transforms raw detection flags into actionable knowledge for operational decision-making.

1 INTRODUCTION

Modern ships rely on constant streams of data. This information is crucial, as it supports onboard safety systems, improves fuel efficiency, and informs maintenance planning. Challenging conditions at sea lead to diverse data quality issues that require distinct handling strategies. Examples of these issues include a sensor signal output that may remain fixed and does not update over time; a sudden spike in the signal; two sensors which are expected to be correlated, such as shaft power and fuel consumption, that no longer are aligned; multiple sensors that show unusual behavior at once. If we simply label all these issues as "anomalies", we lose crucial details, and it becomes impossible to diagnose the root causes correctly. This paper focuses on characterizing anomalies instead of just detecting them. The work introduces a layered system that automatically detects and classifies the data issues into distinct and well-defined types. The pipeline uses robust statistics to flag basic outliers and machine/deep learning to find the more complex faults. By assigning a specific category to

each issue, the framework delivers actionable knowledge. For example, a FROZEN_SIGNAL is when a sensor's output remains constant for a longer period of time. This type of issue tells IT teams to check data loggers and/or network connections. A CORRE-LATION_FAULT occurs when sensors that are correlated, i.e. their outputs consistently vary together, no longer exhibit this correlation. This type of issue suggests performing a maintenance check on a specific component. A STATISTICAL_OUTLIER is just a quick spike/dip in a sensor reading that does not match the recent data trend. This type of issue can be safely ignored in long-term performance reports. Finally, a COMPLEX_ANOMALY occurs when one or more sensors behave unusually. It can represent a valid but rare event, such as a ship's behavior in a sudden storm. This type of issue is typically forwarded to a domain expert for review. By linking each data issue to a corresponding action, the framework goes beyond simple detection and supports a deeper understanding of root causes, enabling more effective responses.

The paper is structured as follows. Section 2 reviews related work. Section 3 describes the proposed framework. Section 4 presents the experimental evaluation. Section 5 discusses the implications of the findings, and Section 6 concludes the paper.

^a https://orcid.org/0000-0003-4872-8546

b https://orcid.org/0000-0001-6503-6715

2 RELATED WORK

Finding anomalies in time-series data is a wellresearched topic; however, its application in the maritime domain presents unique challenges that continue to engage researchers. Early reviews by (Obradović et al., 2014; Riveiro et al., 2018) laid out the main issues: maritime data is often messy, highly context-dependent, and difficult to interpret. Our work builds on recent efforts to address these challenges by improving data quality, incorporating contextual awareness, and ensuring that outputs are interpretable to domain experts. Choosing the most suitable anomaly detection technique still remains a significant challenge. Studies by (Schmidl et al., 2022; Wenig et al., 2022; Iftikhar et al., 2022; Iftikhar and Nordbjerg, 2024) have shown that no single algorithm is the best for every situation. This is why researchers are now building more specialized and hybrid systems. Our work follows this path: we are not proposing a single new model, but rather a structured pipeline where each layer is specialized for a specific task. Machine/deep learning is a common choice for finding anomalies today. Models like Transformers are good at identifying long-term patterns in time-series data (Wen et al., 2023). Other kinds of deep learning networks, built for handling sensor data streams, have been used to find outliers in vessel tracking data (Maganaris et al., 2024). The main issue with these advanced models is that they need lots of labeled data for training, and that's usually not available. Some researchers address this limitation by creating fake "synthetic" outliers to train their models (Kim and Joe, 2024). These models may work, yet they often behave like "black boxes"—detecting anomalies without explaining their origin. Our framework is designed to fill this gap, instead of just a generic "anomaly" alert, our system clearly identifies and labels the type of anomaly present in the data. Moreover, some recent works confirm that it is a good approach to combine different techniques into hybrid models, especially when combining statistics with machine learning (Blázquez-García et al., 2021; Iftikhar et al., 2020). In the maritime world, for instance, one recent project used autoencoders and principle component analysis (PCA) to find outliers based on data correlations (Gupta et al., 2024), which is similar to some parts of our own framework. Another study found that for vessels, what is considered "normal" behavior can change entirely depending on factors like the weather (Rybicki et al., 2024). Our work builds on these ideas. Our system can also be context-aware by analyzing data based on the vessel's operating state (steadily, accelerating, decelerating).

Lately, the research field has started to move from just detecting anomalies to explaining them. As (Pang et al., 2021) noted in a survey, people want models that can interpret their own findings. Most systems try to explain the output of machine learning models using methods like SHapley Additive exPlanations (SHAP). The proposed framework is distinct in that it emphasizes characterization from the start. When the pipeline produces a label like FROZEN_SIGNAL or CORRELATION_FAULT, the label itself provides the explanation. This makes the output immediately useful for operators and addresses a major need for understandable AI in the maritime sector.

3 PROPOSED FRAMEWORK

3.1 Layered Hybrid Architecture

The proposed framework for detecting and characterizing anomalies consists of a layered hybrid pipeline. Its design is based on two core principles: efficiency and specificity.

- Efficiency: Computationally cheap methods are used first to filter out the most obvious data quality issues. This prevents "noise" from spreading to the more complex, resource-intensive ML models. As illustrated in Figure 1, the pipeline acts as an anomaly detection process, where each layer adds its own flag or tag to the data stream.
- Specificity: Each layer is a specialist designed to identify a distinct type of anomaly. After all layers have added their temporary flags, a final hierarchical logic (detailed in Algorithm 5) combines these flags into a single, clear finding. This is an important difference from using one large model, which would just flag any abnormality as an anomaly.

3.2 Frozen Data Detection

A common problem with sensor data is that it can get "stuck." A sensor might report the exact same value over and over, which is unlikely during active ship operations. We call this "frozen data". It is often a sign that something is wrong with the data logger, the network connection, or the sensor itself. A rule-based approach is used to find these stuck sensors. The method applies a "rolling window" across the data, looking at a few readings at a time. If it identifies a value that has not changed for *n* readings in a row, it flags that point. Take the shaft's RPM, for example. It should naturally vary during a voyage. If the system detects it is stuck at exactly 80 RPM for several minutes, it

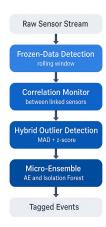


Figure 1: Layered pipeline: from raw data to detection of diverse anomaly types.

flags this as a frozen signal. Detecting this data issue early is crucial. It prevents the more advanced models from interpreting these constant values as normal behavior, which would mislead their analysis.

```
Input: Dataset D with N rows and M
          columns
Output: Dataset D' with is_frozen flag and
          list of frozen sensors per row
Initialize is_frozen ← False for all rows in
Initialize frozen_sensors ← None for all
  rows in D:
Define list of sensor columns S \subseteq \{1, ..., M\};
foreach sensor column c \in S do
    for i \leftarrow 6 to N do
        if d_{i,c} = d_{i-1,c} = \cdots = d_{i-5,c} then
            Mark is_frozen[i] as True;
            Append c to frozen_sensors[i];
        end
    end
end
return D' with added is_frozen flag and
  frozen_sensors columns;
Algorithm 1: Detection of Frozen Sensor Values.
```

Algorithm 1 describes the method for detecting frozen values by comparing $d_{i,c}$ with the five preceding entries $d_{i-1,c}, d_{i-2,c}, \ldots, d_{i-5,c}$. It starts from row index i=6 to ensure a full history window of size five is available for comparison. The process is repeated independently for each sensor $c \in S$. If the condition is satisfied, the row i is marked as frozen by setting is_frozen[i] to True, and the corresponding sensor index c is recorded in frozen_sensors[i]. This annotation improves traceability and simplifies diagnosis of frozen signal problems in the dataset.

3.3 Correlation-Based Fault Detection

On a vessel, some sensors are interdependent, leading to correlations in their readings. For example, shaft RPM and power often increase or decrease simultaneously. Not all sensor faults produce obvious outliers; sometimes, a fault just breaks the known relationship between correlated sensors.

```
Input: Sensor matrix X \in \mathbb{R}^{T \times D}, encoding
             dimension d \in \mathbb{N}, correlation
             threshold \tau \in (0,1), and error
             quantile q \in (0,1)
Output: Fault label vector f \in \{0, 1\}^T
             indicating correlation faults per row
Impute missing values in X using column
Standardize X column-wise to have zero
  mean and unit variance;
Train autoencoder \mathcal{A}: \mathbb{R}^D \to \mathbb{R}^D using
  encoding dimension d;
Obtain reconstruction \hat{X} \leftarrow \mathcal{A}(X);
Compute correlation matrix C \in [-1, 1]^{D \times D}
 from standardized X;
Define correlated pairs
 P \leftarrow \{(i, j) \mid |C_{ij}| \ge \tau, i < j\};
Initialize fault label vector f_t \leftarrow 0 for all
 t=1,\ldots,T;
foreach (i, j) \in P do
    Define X_t^{(i,j)} \leftarrow [X_{t,i}, X_{t,j}], and
       \hat{X}_t^{(i,j)} \leftarrow [\hat{X}_{t,i}, \hat{X}_{t,j}];
     Compute pairwise error e_t^{(i,j)} = \|X_t^{(i,j)} - \hat{X}_t^{(i,j)}\|_2^2, for t = 1, \dots, T;
     Define threshold
       \theta_{i,j} \leftarrow q-quantile of \{e_t^{(i,j)}\}_{t=1}^T;
     for t = 1 to T do
          if e_t^{(i,j)} > \theta_{i,j} then f_t \leftarrow 1;
          end
     end
end
```

Algorithm 2: Row-wise Correlation-Based Fault Labeling.

The correlation-aware approach targets these specific failures, including drift, bias, or other malfunctions. The method works by first training an autoencoder on the full sensor matrix, letting it learn the system's typical collective behavior. It then finds which sensor pairs are highly correlated in the data. For these pairs, it identifies if their reconstructed behav-

ior deviates from the learned norm. A large deviation, seen as a high pairwise reconstruction error, indicates a possible sensor fault. To implement this, Algorithm 2 first standardizes the input sensor matrix (X) and then trains an autoencoder (\mathcal{A}) on it. Once trained, the model produces reconstructions (\hat{X}) for the input data. From this, the algorithm computes a correlation matrix (C) to pinpoint sensor pairs ((i, j)) whose correlation magnitude exceeds a predefined threshold (τ) . These are the pairs the algorithm expects to act in concert during normal operation. For each of these correlated pairs, the algorithm compares the actual and reconstructed values at every time step to calculate the squared pairwise reconstruction error $(e_t^{(i,j)})$. A unique fault threshold $(\theta_{i,j})$ is determined for each pair using the q-quantile of these errors across the dataset. If the error for any pair at a given time t surpasses this threshold, the algorithm flags that data point as a correlation fault $(f_t = 1)$. The result is a fault vector that marks any data point where correlated pairs behaved unexpectedly. By looking at all these deviations together, the algorithm can reliably spot hidden problems like calibration drift, partial degradation, or even sensor failure. These are faults that often go unnoticed by standard single-sensor detectors or threshold-based rules.

Hybrid Outlier Detection

The hybrid outlier detection layer detects univariate statistical outliers. It uses a hybrid strategy that combines the Median Absolute Deviation (MAD), which is robust to non-Gaussian distributions, with a rolling z-score, which is sensitive to sudden local changes.

The proposed method is outlined in Algorithm 3. The method uses a two-step approach for each sensor stream. To find long-range outliers, particularly in skewed or non-Gaussian data, it computes a MAD zscore for each data point t. This score uses the overall median (μ_s) and MAD (MAD_s) for the entire sensor column:

$$z_{t,s} = 0.6745 \cdot \frac{X_{t,s} - \mu_s}{\text{MAD}_s}$$

 $z_{t,s} = 0.6745 \cdot \frac{X_{t,s} - \mu_s}{\text{MAD}_s}$ To identify sudden, local spikes, it also calculates a rolling z-score using the mean $(\mu_{t,s}^{(w)})$ and standard deviation $(\sigma_{t,s}^{(w)})$ from a recent window of size w:

$$r_{t,s} = rac{X_{t,s} - \mu_{t,s}^{(w)}}{\sigma_{t,s}^{(w)}}$$

A point is flagged as an outlier if its MAD z-score exceeds the threshold θ_{mad} or its rolling z-score exceeds θ_7 . Using both global and local scores enables reliable detection of both persistent outliers and brief, sudden anomalies across multiple sensors.

```
Input: Data matrix X \in \mathbb{R}^{T \times D} with T
               timestamps and D sensor columns;
               sensor-specific MAD thresholds \theta_{mad},
               rolling window size w, and rolling
               threshold \theta_7
Output: Outlier label vector Y \in \{0, 1\}^T
Initialize Y_t \leftarrow 0 for all t \in \{1, ..., T\}
foreach sensor s \in \{1, \dots, D\} do
       Compute median: \mu_s \leftarrow \text{median}(X_{:,s})
       Compute MAD:
          MAD_s \leftarrow median(|X_{:,s} - \mu_s|)
       if MAD_s = 0 then
               continue
       end
       for t \leftarrow 1 to T do
              Compute MAD z-score: z_{t,s} \leftarrow 0.6745 \cdot \frac{X_{t,s} - \mu_s}{\text{MAD}_s} Compute local mean:
              \mu_{t,s}^{(w)} \leftarrow \frac{1}{w} \sum_{j=t-w+1}^{t} X_{j,s}
Compute local std:
              Compute local std:
\sigma_{t,s}^{(w)} \leftarrow \sqrt{\frac{1}{w}} \sum_{j=t-w+1}^{t} (X_{j,s} - \mu_{t,s}^{(w)})^{2}
Compute Rolling z-score:
r_{t,s} \leftarrow \frac{X_{t,s} - \mu_{t,s}^{(w)}}{\sigma_{t,s}^{(w)}}
if |z_{t,s}| > \theta_{mad} or |r_{t,s}| > \theta_{z} then
| \text{Mark outlier: } Y_{t} \leftarrow 1
 end
end
return Y
```

Algorithm 3: Outlier Detection Using MAD Z-score and Rolling Z-score.

3.5 Micro-Ensemble Model

To capture complex, multivariate anomalies that earlier detection stages might miss, the final layer uses a micro-ensemble of two complementary models: an Autoencoder (AE) and an Isolation Forest (IF). The AE flags anomalies when the reconstruction error is high, meaning the input data significantly deviates from the patterns it has learned. In contrast, the IF detects anomalies by finding points that are easy to separate from the rest, which usually means they are in unusual areas of the data. An observation is flagged as anomalous if either AE or IF detects it, allowing the ensemble to remain sensitive to both residual and complex anomalies. As presented in Algorithm 4, the process begins by training both models on the training partition (X_{train}) of the feature matrix. For the autoencoder (\mathcal{A}), the binary indicator a_t^{AE} is set to 1 for any data point x_t whose reconstruction error (e_t^{AE}) exceeds the threshold θ_{AE} . In parallel, the Isolation Forest (\mathcal{F}) , configured with a contamination rate ρ to account for anomalies in the training data, assigns a score s_t^{IF} to each sample. Its indicator, a_t^{IF} , is set to 1 if the model classifies the point as an outlier. Finally, the micro-ensemble combines these results. A data point is labeled as an anomaly $(y_t = 1)$ if either AE or IF flags it $(a_t^{AE} = 1 \lor a_t^{IF} = 1)$. The output is a binary vector Y, where each entry assigns a label to a row, indicating whether it is anomalous (1) or not (0).

```
Input: Feature matrix X \in \mathbb{R}^{T \times D} with T
                 time steps and D features, AE
                 threshold \theta_{AE} \in \mathbb{R}^+, and IF
                 contamination rate \rho \in (0,1)
   Output: Anomaly indicator vector
                 Y \in \{0,1\}^T
   Partition X into training data X_{\text{train}} and test
     data X_{\text{test}} using known samples;
   Normalize X_{\text{train}} and X_{\text{test}} to [0,1] using
     Min-Max scaling;
   Train AE \mathcal{A}: \mathbb{R}^D \to \mathbb{R}^D on X_{\text{train}};
   for t = 1 to T do
        \hat{x}_t \leftarrow \mathcal{A}(x_t);
   end
Train IF model \mathcal{F} on X_{\text{train}} with
     contamination rate \rho;
   for t = 1 to T do
        s_t^{\text{IF}} \leftarrow \mathcal{F}(x_t) \ a_t^{\text{IF}} \leftarrow \mathbb{1}[s_t^{\text{IF}} = -1];
   end
  for t = 1 to T do

y_t \leftarrow \mathbb{1}[a_t^{AE} = 1 \lor a_t^{IF} = 1];
   return Y = \{y_1, y_2, ..., y_T\};
```

3.6 Anomaly Characterization

Algorithm 4: Micro-Ensemble Anomaly Detection.

The detection pipeline can flag a single data point with multiple anomalies. The characterization step solves this by assigning one final, meaningful label that points to the most relevant issue. It is done through a priority list that follows the pipeline's structure, as laid out in Algorithm 5. The priority system is setup in such a way that any major issue, like a frozen sensor, always overrides a less critical statistical pattern. If a sensor is flagged as both an outlier and frozen, for example, it just gets the FROZEN_SIGNAL label. This prevents any conflicting

diagnoses and keeps the final output clean. In Table 1, a FROZEN_SIGNAL for the fuel sensor override a statistical outlier at 11:13. Although, there is a default hierarchy, however users can reconfigure it, for example, by giving more weight to outliers. Each alert is traceable to its rule, making the system trustworthy.

```
Input: Flags for each timestamp t:
            f_{\text{frozen}}(t), f_{\text{fault}}(t), f_{\text{outlier}}(t),
            f_{\rm anomaly}(t)
Output: Final label L(t) for each timestamp
foreach timestamp t do
     if f_{frozen}(t) then
          L(t) \leftarrow \texttt{FROZEN\_SIGNAL};
     end
     else if f_{fault}(t) then
          L(t) \leftarrow \text{CORRELATION\_FAULT};
     end
     else if f_{outlier}(t) then
          L(t) \leftarrow \text{STATISTICAL\_OUTLIER};
     end
     else if f_{anomaly}(t) then
          L(t) \leftarrow \text{COMPLEX\_ANOMALY};
     end
     else
          L(t) \leftarrow \text{NORMAL};
     end
end
```

Algorithm 5: Hierarchical Anomaly Characterization.

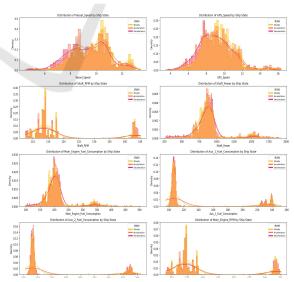


Figure 2: The orange-shaded histograms represent the overall distribution of sensor readings across all vessel states. The yellow, light reddish-orange, and magenta semi-transparent histograms with smooth curves representing estimated distributions correspond to the Steady, Acceleration, and Deceleration phases, respectively.

Timestamp	Fuel Cons.	is_frozen	has_corr_fault	is_outlier	is_anomaly	final_label
10:00	350.2	False	False	False	False	NORMAL
10:01	351.5	False	False	False	False	NORMAL
10:42	580.0	False	False	True	True	STATISTICAL_OUTLIER
11:13	546.0	True	False	True	False	FROZEN_SIGNAL

Table 1: Example of Progressive Tagging and Final Characterization for Selected Data Points.

4 EXPERIMENTAL EVALUATION

The framework is developed and evaluated using tens of millions of one-minute readings collected over several years from commercial vessels. Due to a non-disclosure agreement with the partner company, neither the exact source nor the original data can be disclosed. The visualizations used here come from a representative sample of that data to illustrate the pipeline's methodology and behavior. Like most large industrial datasets, a complete set of expert-annotated ground truth does not exist. Hence, the evaluation is mainly qualitative, assessing whether the framework can consistently identify and describe expected anomalies based on domain knowledge.

4.1 Data Distribution

A core requirement for any practical anomaly detection framework in this domain is the ability to handle complex, real-world data distributions. As shown in Figure 2, the initial analysis of the vessel's sensor data confirms that it rarely follows a simple Gaussian (normal) distribution, often exhibiting significant skew and multiple modes. This non-normality is expected and is a direct result of the multitude of operational factors influencing the vessel at any given time. As noted by domain experts, variables such as changing sea states (waves/wind), engine load variations, long-term hull fouling, and operational adjustments (e.g., speed or course adjustments) all contribute to creating a complex, multi-modal data landscape. Expecting a normal distribution would only be valid for a highly filtered dataset representing very specific, consistent sailing conditions. Since our framework is designed to operate on broad, real-world data streams, it cannot make such a restrictive assumption. Therefore, the modeling approach was specifically designed for robustness. Instead of relying on methods that require Gaussian assumptions, the framework utilizes non-parametric and distribution-agnostic techniques. This includes robust statistical measures for outlier detection and unsupervised machine learning models capable of learning complex data structures directly. This methodological choice ensures the framework is effective across both Gaussian and non-Gaussian patterns, making it well-suited for the variable and challenging nature of real-world maritime data.

4.2 Illustrative Examples

To show how the framework performs in practice, we examine its output for the main engine fuel consumption sensor.

4.2.1 Characterizing Statistical Outliers

Figure 3 illustrates the result of the hybrid outlier detection module. It clearly distinguishes between different kinds of outliers. The red dots are flagged by the global MAD method, meaning they are unusual compared to the overall data pattern. The rolling z-score flags the green dots, which are sharp, localized changes that may not be globally unusual but are statistically important in relation to their immediate temporal context. Brown points are data instances flagged as outliers by both methods. This strategy, which checks for both overall patterns and sudden spikes, makes the outlier detection robust.

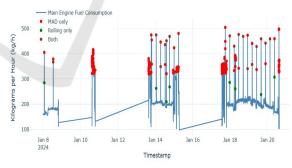


Figure 3: Outlier detection using a hybrid method on main engine fuel consumption.

Similarly, Figure 4 shows how the rolling z-score (green solid line) fluctuates with local signal behavior, enabling it to identify context-specific outliers. Both MAD z-score and rolling z-score apply static global thresholds too (red and green dashed lines), however their scoring methods differ. The combination allows for detection of both global and local outliers.

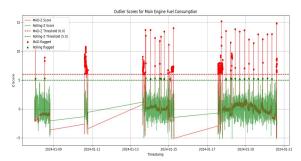


Figure 4: Outlier scores using MAD z-score and rolling z-score with thresholds.

4.3 Anomaly Characterization

The micro-ensemble layer finds complex system shifts, not just simple outliers. Figure 5 visualizes this for the main engine fuel consumption, demonstrating that each model captures different aspects of anomalous behavior.

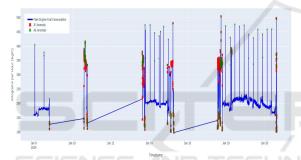


Figure 5: Detection of fuel consumption anomalies using AE and IF models.

The IF model is good at catching long stretches of abnormal operation (red crosses), like the high-consumption periods around Jan 11, 14, 15 and 18. The AE model, on the other hand, is more specific, zeroing in on the sharpest spikes/dips within those same events (green crosses). By combining them, it can be seen that how long the event lasts (from IF) and how unusual the values are during that time (from AE).

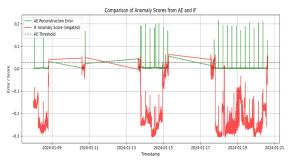


Figure 6: AE reconstruction error and IF score for anomaly detection.

The scores behind the micro-ensemble approach are shown in Figure 6. The figure plots the two core metrics. The AE's reconstruction error (green) flags points that deviate from learned patterns. The IF's negated anomaly score (red) identifies points that are easily isolated. For example, from January 18 to 20, multiple anomalies are detected over distinct time periods. The red IF score stays low over extended durations, indicating sustained abnormal behavior, while the green AE error spikes capture sudden changes within those periods.

5 DISCUSSION

Visual evaluations demonstrate the practical utility of the framework. The design choices are directly motivated by patterns observed in maritime data.

5.1 Interpretability vs. Coverage

The layered design strikes a careful balance between clarity and coverage at each step. The first layers (frozen data, correlation monitor, statistical outliers) are easy to understand. In contrast, the final microensemble layer offers the ability to detect a wider range of complex anomalies. However, the COMPLEX_ANOMALY label is more general and often requires expert interpretation to determine the root cause. This step-by-step structure lets operators handle the simple cases automatically while passing on only the truly difficult ones for further review.

5.2 Progressive Filtering and Trust

Filtering out simple issues early is essential for building trust in the system. Addressing obvious data quality problems upfront helps ensure that the more complex machine learning layers are not misled by noise. When an operator encounters a CORRELATION_FAULT or COMPLEX_ANOMALY, they can be more confident that it represents a genuine issue rather than a simple spike, enabling a more informed and effective response.

5.3 Resource Usage and Scalability

The framework is designed for practical, large-scale deployment. Its scalability is achieved by performing all computationally intensive model training offline. The live, online system only executes a sequence of fast inference steps for each new data point: it first performs efficient checks for frozen signals and statistical outliers, then uses a single forward pass through

the pre-trained models to detect correlation faults and complex anomalies. This high-throughput architecture, with no online training, enables the pipeline to handle massive data volumes, a key requirement for deploying it across an entire fleet.

6 CONCLUSION AND FUTURE WORK

This paper presented a layered hybrid framework that detects and characterizes anomalies in maritime sensor data. By systematically identifying events like frozen signals, faults, or complex anomalies, the pipeline transforms raw data into a rich source of operational knowledge. The qualitative review of an industrial dataset shows the design is well-suited for the complexities of real-world maritime data. This offers a practical and scalable path for improving data quality and gaining deeper operational insights.

For future work, our main goal is transfer learning across vessels. We want to develop methods for adapting a model trained on a data-rich vessel to a new one with minimal historical data. Solving this "cold start" problem is key to accelerating fleet-wide deployment and would be a major step towards a truly scalable knowledge discovery platform. We also aim to develop a method for quantifying anomaly severity. Rather than a simple binary flag, the system would generate a continuous severity score, which would help operators prioritize responses based on the magnitude and potential risk of a given anomaly.

Finally, a critical area for future investigation is the identification of sensor fault. The current framework, like many correlation-based methods, assumes that the sensor network is generally reliable. For the reason that if multiple correlated sensors begin to fail or drift simultaneously, it becomes difficult to pinpoint the single faulty sensor. Hence, techniques to address this IoT device limitation should be explored. Presumably by incorporating sensor redundancy models, physics-informed constraints, or methods for explicitly tracking the health and reliability of individual sensors over time.

ACKNOWLEDGEMENTS

The project was facilitated by DigitalLead (Denmark's national cluster for digital technologies) and supported by the Danish Board of Business Development and the Centre for Industrial Digital Transformation at University College of Northern Denmark.

REFERENCES

- Blázquez-García, A., Conde, A., Mori, U., and Lozano, J. A. (2021). A review on outlier/anomaly detection in time series data. *ACM Computing Surveys*, 54(3).
- Gupta, P., Rasheed, A., and Steen, S. (2024). Correlation-based outlier detection for ships' in-service datasets. *Journal of Big Data*, 11(1):85.
- Iftikhar, N., Baattrup-Andersen, T., Nordbjerg, F. E., and Jeppesen, K. (2020). Outlier detection in sensor data using ensemble learning. *Procedia Computer Science*, 176:1160–1169.
- Iftikhar, N., Lin, Y. C., and Nordbjerg, F. E. (2022). Machine learning based predictive maintenance in manufacturing industry. In *Proceedings of the 3rd International Conference on Innovative Intelligent Industrial Production and Logistics*, pages 85–93.
- Iftikhar, N. and Nordbjerg, F. E. (2024). Real-time equipment health monitoring using unsupervised learning technique. In *Proceedings of the 13th International Conference on Data Science, Technology and Applications*, pages 401–408.
- Kim, H. and Joe, I. (2024). Enhancing anomaly detection in maritime operational iot time series data with synthetic outliers. *Electronics*, 13(19):3912.
- Maganaris, C., Protopapadakis, E., and Doulamis, N. (2024). Outlier detection in maritime environments using ais data and deep recurrent architectures. In *Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments*, pages 420–427.
- Obradović, I., Miličević, M., and Žubrinić, K. (2014). Machine learning approaches to maritime anomaly detection. *Naše more: znanstveni časopis za more i pomorstvo*, 61(5-6):96–101.
- Pang, G., Shen, C., Cao, L., and Hengel, A. V. D. (2021). Deep learning for anomaly detection: A review. ACM Computing Surveys, 54(2).
- Riveiro, M., Pallotta, G., and Vespe, M. (2018). Maritime anomaly detection: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(5):e1266.
- Rybicki, T., Masek, M., and Lam, C. P. (2024). Maritime behaviour anomaly detection with seasonal context. In *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, volume 10, pages 295–301.
- Schmidl, S., Wenig, P., and Papenbrock, T. (2022). Anomaly detection in time series: a comprehensive evaluation. *Proceedings of the VLDB Endowment*, 15(9):1779–1797.
- Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., and Sun, L. (2023). Transformers in time series: a survey. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJ-CAI '23.
- Wenig, P., Schmidl, S., and Papenbrock, T. (2022). Timeeval: a benchmarking toolkit for time series anomaly detection algorithms. *Proc. VLDB Endow.*, 15(12):3678–3681.