Composer Classification Using a Note Difference Graph

Raymond Conlin[®] and Colm O'Riordan[®] University of Galway, Galway, Ireland

Keywords: Music Information Retrieval, Graph Neural Network, Classification.

Abstract:

This paper presents a representation for symbolically encoded musical works referred to as a Note Difference Graph. This graph highlights the relative differences between related notes (pitch difference, onset difference, and temporal gap). Our experiments show that when a Graph Neural Network (GNN) is trained to classify classical composers using this note difference graph, it outperforms a network trained with the representation described by Szeto and Wong in which a graph is constructed by identifying related noted. Our approach achieving a 21% increase in classification accuracy on an imbalanced classical music dataset (Szeto and Wong, 2006). The note difference graph employed in this work is derived from the Szeto and Wong representation. Each node in the note difference graph corresponds to an edge in the Szeto and Wong representation (two connected notes in a piece) and contains information relating to the differences between them. Nodes in the note difference graph are joined by an edge if they share any notes in common. The described representation provides improved classification accuracy and reduced bias when using imbalanced datasets. Given the enhanced classification accuracy achieved by the neural network with our representation, we believe that highlighting relationships between notes provides the network with better opportunities to identify salient features.

1 INTRODUCTION

Classification is a core task in Music Information Retrieval. Some common goals are to classify genre, composer, and tonality. Many authors have tackled these tasks using a multitude of methods and a variety of representations. Music is most typically stored as audio files, sheet music, or symbolically encoded scores, e.g. MP3, MIDI and MusicXML. Each of these representations allows for different approaches to be used to classify it.

With the growing use of online repertoires such as Musescore and Flat.io, the task of information retrieval becomes increasingly important. As their databases of compositions expand, there is a growing need for better discovery and retrieval techniques. Similarly, digital composition tools such as Logic Pro and Sibelius highlight the importance of working effectively with symbolically encoded musical data. Recommendation systems, compositional aid tools, and copyright detection represent key practical applications of research in this domain. Consequently, substantial research has been conducted to address these challenges (Sturm, 2014; Corrêa and Rodrigues,

^a https://orcid.org/0009-0005-5337-2400

b https://orcid.org/0000-0003-0449-8224

2016; Schedl et al., 2014).

Our contribution describes a graph representation of symbolic music that helps improve classification accuracy. This graph representation of a MIDI file is based on the graph representation used by Szeto and Wong for pattern matching in post-tonal music (Szeto and Wong, 2006). Our note difference graph places emphasis on the relative differences between notes rather than on the notes themselves. As a result, each node in our graph representation represents the relationship between two nodes that share an edge in the respresentation of Szeto and Wong. We see that this representation aids machine learning models in classifying composers more accurately. This may indicate the network captures more correctly features of the composer's works and future work may give deeper insights into other features that captures a composer's approach to composition.

This paper is organised as follows: that the next section will explore background information and related work. Section 3 details the methodology used. Section 4 supplies the dataset used. Section 5 describes the experiments performed. Section 6 illustrates the results of the experiments. Section 7 contains our final thoughts and conclusions.

2 BACKGROUND

The way in which music is represented dictates the features available to work with it. Many researchers have chosen to represent music as a string and extract features from those strings as the basis for classification (Conklin and Witten, 1995; Pearce and Wiggins, 2004; Li et al., 2006; Pearce, 2018). These approaches tend to stem from more fundamental Information Retrieval (IR) techniques in which string representations are common. The use of string representations results in approaches that either do not work with polyphonic music or need modifications to do so.

An alternative to the features offered by string representations are the features calculated from geometrical representations. These approaches take inspiration from the field of computational geometry to discover features of interest. Representations typically involve transforming a work of music into a series of horizontal lines or points on a Cartesian plane. It is common among many researchers to represent a ycoordinate as the pitch of a note in some capacity and its x-coordinate as beats or time since the start of the piece. If a line is used instead of a point, the length of the line is determined by the number of beats the note has. Meredith et al. introduces such a representation (Meredith et al., 2002). The features in this representation are typically seen as patterns within the music. Concepts such as the Translational Equivalent Class (TEC) and the Structural Inference Algorithm (SIA) presented in this paper have been expanded over many years (Wiggins et al., 2002; Forth and Wiggins, 2009; Collins et al., 2010; Collins et al., 2013; Collins and Meredith, 2013; Meredith, 2013; Meredith, 2016). Ukkonen et al. provides another geometrical approach that has served as a basis for many that followed (Ukkonen et al., 2003b). In their paper, three algorithms are presented based on the sweepline approach from computational geometry. Each of these provides different levels of specificity with respect to the returned patterns. The authors in a later article build upon this work and compare it with an approach by Meredith et al. and Wiggins et al. based on the SIA algorithm (Ukkonen et al., 2003a). They show one of their solutions provides a slight performance increase although no real significant difference and another of their algorithms is capable of handling a specificity not handled by the comparison approaches.

To investigate the merits of using a geometric approach, Lemström and Pienimäki compared and contrasted the details of a geometric framework with an edit distance string-based framework (Lemström and Pienimäki, 2007). While the edit distance obtains

good results on monophonic music and respectable results for polyphonic music, the authors suggest that the alterations needed to transform polyphonic music compromise its polyphonic nature. Conversely, geometric methods provide a more information-rich representation at the cost of an efficient algorithm.

Graph representations of music have become increasingly popular. Early work by Szeto and Wong, Pinto and Tagliolato, and Mokbel et al. provide different methods on how to construct a graph representation of music(Szeto and Wong, 2006; Pinto and Tagliolato, 2008; Mokbel et al., 2009). The representation by Szeto and Wong was devised to find patterns in post-tonal music. The authors implemented a technique known as stream segregation to compute which notes should be connected in the graph and the label of that connection. In this approach, there are two types of edges, a sequential edge and a simultaneous edge. If two nodes overlap in terms of time, they are joined by a simultaneous edge; otherwise, they are joined by a sequential edge. Then the graph is pruned such that each node is only connected to its next nearest sequential node. Distance is determined in the pitch/ time space where the pitch difference of the nodes is determined by its frequency on the Mel-Scale and the inter-event distance of the nodes is in seconds. From this representation the authors use pitchclass set theory to find patterns in the music.

This increased use of graph representations takes advantage of recent developments with Graph Neural Networks (GNNs) (Zhou et al., 2022). Recent work by Jeong et al. and Karystinaios and Widmer takes the concepts of representing music as a graph and uses the power of a GNN to accomplish their goals (Jeong et al., 2019; Karystinaios and Widmer, 2023). These authors have incorporated GNN techniques, such as synthetic minority over sampling in the form of GraphSMOTE as proposed by Zhao et al. and an approach to generate embeddings for unseen nodes known as GraphSage by Hamilton et al. (Zhao et al., 2021; Hamilton et al., 2017).

3 METHOD

Our research presents a novel approach to composer classification using graph neural networks applied to symbolic music data. The approach consists of two main components: firstly, a specialized graph representation that captures relationships between musical notes, and secondly, a GraphSAGE-based neural network architecture for classification. The graph representation focuses on the relationship between notes rather than individual notes, specifically cap-

turing pitch changes, onset differences, and temporal gaps between notes. This approach to representation, combined with a four-layer graph neural network, is used to identify characteristic compositional patterns of different composers. We discuss the representation and neural network in more detail in the following subsections.

3.1 Graph Representation Method

Our graph representation builds upon the method described by Szeto and Wong (Szeto and Wong, 2006), with Zhang et al. and Karystinaios and Widmer also having adopted a similar representation to Szeto and Wong (Zhang et al., 2023; Karystinaios and Widmer, 2022). However, our approach introduces a novel transformation that emphasises the relationships between notes rather than the notes themselves.

3.1.1 Construction Process

Step 1: Geometric Representation We begin by constructing a geometric representation that maps each note in a MIDI file as a horizontal line on a Cartesian plane:

- Y-Coordinate: MIDI pitch value.
- **Initial X-Coordinate:** the onset time of the note (beats from piece beginning).
- **Final X-Coordinate:** Initial X-coordinate plus note duration (in beats).

Step 2: Szeto-Wong Graph Adaptation Following Szeto and Wong's approach with modifications, we create an initial graph representation. While the original method transforms pitch values to Mel-Scale frequency and classifies edges as melody or harmony edges, our adaptation:

- Encodes each node with MIDI pitch number, onset, and duration.
- Eliminates edge type classification.

For illustration, Figures 1 and 2 show an extract from Liszt's Liebestraum and its corresponding Szeto-Wong representation.

Step 3: Note Difference Graph Generation From the Szeto-Wong graph, we generate our novel "note difference graph" through the following transformation process:

- **Nodes:** Each node represents an edge from the original Szeto-Wong graph.
- Edges: Connect nodes in the note difference graph that correspond to edges sharing a common node in the original graph.

This transformation is visualized in Figure 3, where node names correspond to the connected nodes from Figure 2.

Figure 1: Extract of Liebestraum by Liszt.

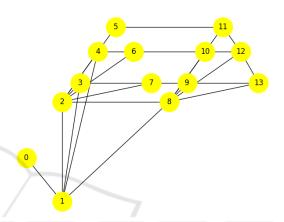


Figure 2: Szeto and Wong Representation of Liebestraum Extract.

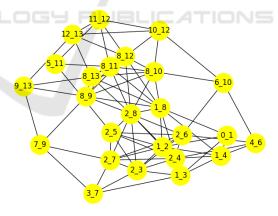


Figure 3: Our Representation of Liebestraum Extract.

3.1.2 Node Encoding

Each node in our proposed graph is encoded with three features:

- Pitch Difference: Change in pitch values between connected notes.
- 2. **Onset Difference:** Difference in onset timing.
- 3. **Temporal Gap:** Time difference between the first

note's end and the second note's start.

Example Calculation: Consider nodes 0 and 1 from Figure 2:

- **Node 0**: Pitch = 51, Onset = 0, Duration = 1 beat.
- **Node 1**: Pitch = 44, Onset = 1, Duration = 3 beats. The resulting node "0_1" in Figure 3 would have:
- Pitch Difference: -7 (44 51).
- Onset Difference: 1(1-0).
- **Temporal Gap:** 0 (end of node 0 to start of node 1).

3.2 Graph Neural Network Architecture

Graph Neural Networks operate differently from traditional neural networks as they are designed to handle graph-structured data, which traditional networks cannot process effectively. In a Graph Neural Network, each layer applies operations to individual graph components (nodes in our case) to produce node embeddings. These operations incorporate information from neighbouring nodes at each layer, updating node embeddings according to the layer's specific function. This design enables Graph Neural Networks to handle graphs of varying sizes, as layers operate at the component level rather than requiring fixed input dimensions like traditional neural networks.

Our classification model employs a four-layer graph neural network architecture designed specifically for composer identification (see Table 4). The architecture follows established practices in music information retrieval while incorporating adaptations for our novel graph representation.

3.2.1 Network Structure

The model consists of four sequential components:

- 1. **Input Layer:** GraphSAGE convolutional layer with 3 input dimensions corresponding to our three node features (pitch difference, onset difference, and temporal gap)
- 2. **Hidden Layers:** Two additional GraphSAGE convolutional layers, each with 75 hidden dimensions following the configuration used by Zhang et al. (Zhang et al., 2023)
- 3. **Pooling Layer:** Global mean pooling layer that aggregates node-level representations into a single graph-level representation

4. **Output Layer:** Linear layer with 5 output dimensions corresponding to the five composer classes in our dataset, with each output representing the probability of assignment to that composer

3.2.2 Architecture Details

The choice of GraphSAGE layers aligns with established approaches in symbolic music classification, leveraging the inductive representation learning capabilities demonstrated by Hamilton et al. (Zhang et al., 2023; Hamilton et al., 2017). The network employs ReLU activation functions throughout and applies dropout regularization (rate = 0.2) to all Graph-SAGE layers to prevent overfitting.

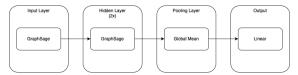


Figure 4: Convolutional GNN Architecture.

4 DATASET

The dataset used in our research is a subset of the GiantMIDI-Piano dataset provided by Kong et al. (Kong et al., 2022). This dataset has transcribed live recordings of classical piano music into MIDI representations. Our subset contains all the works of Bach, Chopin, Liszt, Schubert, and Scarlatti that the authors recommend for training, testing, or validating. The works of these composers are the five most numerous in the dataset. This dataset was chosen as it is one of the largest datasets available for MIDI files that also contains composer labels. A summary of the number of works can be seen in Table 1.

Table 1: Composers and their Works (Unbalanneed).

Composer	Work Count
Chopin	102
Liszt	197
Schubert	127
Scarlatti	274
Bach	147

Due to the imbalanced nature of the dataset, a second balanced subset was constructed. This subset upsampled works by Chopin, Liszt, Schubert, and Bach while undersampling works by Scarlatti. The new dataset consists of 204 works for each composer. This target was chosen to double the representation of the smallest class (Chopin with 102 works) whilst main-

taining a substantial sample size for evaluation. For composers requiring upsampling, works were duplicated to reach the target of 204. For overrepresented composers, works exceeding 204 were randomly discarded.

5 EXPERIMENTS

To evaluate the merits of our representation, we assess how it performs in the task of composer classification. The results of this are then compared against the results obtained in the same task using the representation presented by Szeto and Wong (Szeto and Wong, 2006). Each representation is used to train a GNN. These GNNs are then used to classify the composers of unseen works. The experiments are performed on the unbalanced and balanced datasets to ensure there is not a bias towards overrepresented composers. It should be noted that Szeto and Wong's representation was intended to be used for analysing post-tonal music. Although the underlying goal of their paper is different, their representation serves as a good point of comparison for our own.

5.1 Description

For each experiment, the ordering of the dataset is randomised. The dataset is then split so that 70% of the data is used for training and 30% of the data is used for testing. The GNN then iterates for 100 epochs. Observationally, no improvements were made beyond this point. These experiments were performed 10 times on each representation and each dataset.

5.2 Statistical Significance

To determine whether the improvements gained from our proposed graph representation were statistically significant, we conducted additional experiments comparing the representations. We created five predetermined randomisations of the unbalanced dataset with the same 70%/30% training/test split as above. Two GNNs are trained on the same randomisations using their respective representations, and the output from each model was compared using McNemar's test. This test is specifically designed to compare the performance of two classifiers on the same dataset and evaluates whether the observed differences in classification accuracy between the two approaches are statistically significant or could be attributed to random variation. The equation for this test can be seen in Equation 1:

$$\chi^2 = \frac{(|a-b|-1)^2}{a+b} \tag{1}$$

- χ^2 : The calculated chi-square test statistic.
- b: Number of instances where Classifier A is correct AND Classifier B is incorrect.
- c: Number of instances where Classifier A is incorrect AND Classifier B is correct.

6 RESULTS

The results of our experiments show that when our representation was used to train the GNN it outperformed a GNN trained on data using the representation of Szeto and Wong. The GNN using our representation achieved a classification of 74% accuracy using the unbalanced dataset and 74% accuracy using the balanced dataset. These results compare favourably with the representation of Szeto and Wong, which achieved an average of 59% using the unbalanced dataset and a 53% on the balanced dataset. In addition to the improved classification accuracy, the results of McNemar's test produced a P-value of p < 0.001. This indicates that the improvement in performance from our representation is statistically significant. The McNemar Test Table from which the p value is derived can be seen in Table 6. This improvement is exaggerated in the unbalanced dataset where the works of certain composers are overrepresented and others are underrepresented.

6.1 Size Impact

While our approach has proven effective in increasing composer classification rates, it is worth highlighting the increased space requirements of the representation. In the example shown in Figures 2 and 3, the graph representation transforms from a graph with 14 nodes and 25 edges to a graph with 25 nodes and 83 edges. This increased size is further exaggerated for larger pieces. A randomly selected Bach work was examined to demonstrate the scaling effect. In this work, the Szeto and Wong representation comprises 3,492 nodes and 15,353 edges. Transforming their representation into our approach results in a graph with 15,353 nodes and 152,784 edges.

This increased graph size results in longer training times. To account for this computational discrepancy, we performed an additional experiment in which a GNN was trained on the Szeto and Wong approach for an additional 600 epochs (700 total) to provide a

Table 2: Confusion Matrix of Our Representation.

	Chopin	Liszt	Schubert	Scarlatti	Bach
Chopin	37.14	15.81	32.37	7.64	7.04
Liszt	5.9	78.16	13.24	1.18	1.52
Schubert	14.43	12.18	58.98	9.84	4.56
Scarlatti	1.09	0.11	2.81	86.39	9.6
Bach	1.75	2.21	1.75	10.26	84.03

Table 3: Confusion Matrix of Szeto and Wong Representation.

	Chopin	Liszt	Schubert	Scarlatti	Bach
Chopin	2.08	63.14	15.55	13.8	5.43
Liszt	2.15	78.01	11.3	6.15	2.38
Schubert	1.03	44.84	28.29	15.42	10.42
Scarlatti	0.12	4.3	1.04	90.34	4.2
Bach	0.65	11.1	5.3	49.33	33.61

Table 4: Confusion Matrix of Our Representation on a Balanced Dataset.

	Chopin	Liszt	Schubert	Scarlatti	Bach
Chopin	62.35	13.73	20.74	1.09	2.09
Liszt	11.55	73.69	12.64	0.82	1.3
Schubert	17.44	7.92	71.28	2.89	0.46
Scarlatti	2.02	0.17	3.96	86.81	7.04
Bach	4.53	1.1	3.85	15.88	74.65

Table 5: Confusion Matrix of Szeto and Wongs Representation on a Balanced Dataset.

	Chopin	Liszt	Schubert	Scarlatti	Bach
Chopin	26.22	46.96	19.67	6.84	0.3
Liszt	16.73	66.52	12.03	4.72	0.0
Schubert	21.11	27.66	36.89	13.38	0.96
Scarlatti	3.53	2.65	6.52	87.29	0.0
Bach	9.47	9.25	21.94	23.86	35.48

Table 6: McNemar's Test Table.

		Note Diff. Graph Model		
		Correct	Incorrect	
Szeto & Wong	Correct	505	179	
Graph Model	Incorrect	435	156	

Table 7: Model Performance Comparison.

Approach	Epochs	Time (Seconds)	Accuracy (%)
Szeto & Wong	100	9763.41	0.57%
Szeto & Wong	700	65034.82	0.65%
Conlin & O'Riordan	100	59948.63	0.75%

more comparable training duration. As shown in Table 7, even with extended training time, the classifi-

cation accuracy using the Szeto and Wong representation remains lower than the accuracy achieved with our representation.

7 OBSERVATIONS

Looking past the overall classification score we can observe that both the GNNs had greater difficulty differentiating between the works of Chopin, Liszt and Schuber. This is similarly observed between Scarlatti and Bach. This observation can be seen in Tables 2 - 5. The rows in these tables are the ground truth and the columns are the predictions.

Although Szeto and Wong's representation performed better in the unbalanced dataset (Table 3) compared to the balanced one (Table 5), this appears to be a result of an over-representation of Scarlatti and Liszt and an under-representation of Chopin. We can observe in Table 3 that the representation was only able to identify Scarlatti and Liszt correctly more than

other composers. The rest were classified as another composer rather than the correct composer. This resulted in producing a higher average than with the balanced dataset despite producing better results for the other composers in the balanced dataset as seen in Table 5. This shows that Szeto and Wong's representation was more prone to bias with imbalanced datasets.

In contrast, our approach was much less prone to bias, correctly identifying all the composers as themselves rather than another composer. This is seen along the diagonal in Table 2 and Table 4 where the diagonal should contain the highest value of that row.

8 DISCUSSION

A look into the time periods in which the composers were most active might offer some insight into the misclassification reported by the GNN. Both Chopin and Liszt were most active in the Romantic era, Schubert was active the late classical to early romantic era, and Scarlatti and Bach were active in the Baroque era. The era in which the composers were most active tends to correlate to the misclassifications of the GNN. That is to say, Chopin, Liszt and Schubert were more likely to get confused with one another due to their work being in the romantic era. Similarly for Scarlatti and Bach in the Baroque era. This might suggest that the GNN is identifying compositional choices common to those eras, but further research would be required to confirm this.

9 CONCLUSION

We have demonstrated a graph representation for symbolic music that when used with a GNN outperforms other representations at the task of composer classification. We believe that our representations focus on the relationships between notes provide the GNN with a more intuitive understanding of what is important within a composition.

An issue with our representation can be seen in the way edges are formed for the initial graph representation. With sequential edges connecting a note to the next nearest note, there is a bias towards the X-axis. This is because the x and y axes are weighted equally in terms of distance. A note that is one beat away at the same pitch is seen to be nearer than a note that is a quarter beat away that is an octave higher as seen in Figure 2. Further work is required to address this edge connection issue.

REFERENCES

- Collins, T., Arzt, A., Flossmann, S., and Widmer, G. (2013). Siarct-cfp: Improving precision and the discovery of inexact musical patterns in point-set representations. In *ISMIR*, pages 549–554.
- Collins, T. and Meredith, D. (2013). Maximal translational equivalence classes of musical patterns in point-set representations. In *Mathematics and Computation in Music: 4th International Conference, MCM 2013, Montreal, QC, Canada, June 12-14, 2013. Proceedings 4*, pages 88–99. Springer.
- Collins, T., Thurlow, J., Laney, R., Willis, A., and Garthwaite, P. (2010). A comparative evaluation of algorithms for discovering translational patterns in baroque keyboard works. *Proceedings of the 11th International Society for Music Information Retrieval Conference, ISMIR 2010*.
- Conklin, D. and Witten, I. H. (1995). Multiple viewpoint systems for music prediction. *Journal of New Music Research*, 24(1):51–73.
- Corrêa, D. C. and Rodrigues, F. A. (2016). A survey on symbolic data-based music genre classification. *Expert Systems with Applications*, 60:190–210.
- Forth, J. and Wiggins, G. A. (2009). An approach for identifying salient repetition in multidimensional representations of polyphonic music. *London Algorithmics* 2008.
- Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Inductive representation learning on large graphs. *CoRR*, abs/1706.02216.
- Jeong, D., Kwon, T., Kim, Y., and Nam, J. (2019). Graph neural network for music score data and modeling expressive piano performance. In *International conference on machine learning*, pages 3060–3070. PMLR.
- Karystinaios, E. and Widmer, G. (2022). Cadence detection in symbolic classical music using graph neural networks. *arXiv preprint arXiv:2208.14819*.
- Karystinaios, E. and Widmer, G. (2023). Roman numeral analysis with graph neural networks: Onset-wise predictions from note-wise features. *arXiv preprint arXiv:2307.03544*.
- Kong, Q., Li, B., Chen, J., and Wang, Y. (2022). Giantmidipiano: A large-scale midi dataset for classical piano music.
- Lemström, K. and Pienimäki, A. (2007). On comparing edit distance and geometric frameworks in content-based retrieval of symbolically encoded polyphonic music. *Musicae Scientiae*, 11(1_suppl):135–152.
- Li, X., Ji, G., and Bilmes, J. A. (2006). A factored language model of quantized pitch and duration. In *ICMC*. Citeseer.
- Meredith, D. (2013). Cosiatec and siateccompress: Pattern discovery by geometric compression. In *International society for music information retrieval conference*. International Society for Music Information Retrieval.
- Meredith, D. (2016). Using siateccompress to discover repeated themes and sections in polyphonic music. In *Music Information Retrieval Evaluation Exchange*.

- Meredith, D., Wiggins, G., Lemström, K., and Music, P. (2002). A geometric approach to repetition discovery and pattern matching in polyphonic music. *Computer Science Colloquium*.
- Mokbel, B., Hasenfuss, A., and Hammer, B. (2009). Graph-based representation of symbolic musical data. In *Graph-Based Representations in Pattern Recognition:* 7th IAPR-TC-15 International Workshop, GbRPR 2009, Venice, Italy, May 26-28, 2009. Proceedings 7, pages 42–51. Springer.
- Pearce, M. and Wiggins, G. (2004). Improved methods for statistical modelling of monophonic music. *Journal of New Music Research*, 33.
- Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic enculturation. Annals of the New York Academy of Sciences, 1423(1):378–395.
- Pinto, A. and Tagliolato, P. (2008). A generalized graphspectral approach to melodic modeling and retrieval. In Proceedings of the 1st ACM international conference on Multimedia information retrieval, pages 89– 96.
- Schedl, M., Gómez, E., Urbano, J., et al. (2014). Music information retrieval: Recent developments and applications. *Foundations and Trends® in Information Retrieval*, 8(2-3):127–261.
- Sturm, B. L. (2014). The state of the art ten years after a state of the art: Future research in music information retrieval. *Journal of new music research*, 43(2):147–172.
- Szeto, W. M. and Wong, M. H. (2006). A graph-theoretical approach for pattern matching in post-tonal music analysis. *Journal of New Music Research*, 35.
- Ukkonen, E., Lemström, K., and Mäkinen, V. (2003a). Geometric algorithms for transposition invariant content-based music retrieval. *ISMIR*.
- Ukkonen, E., Lemström, K., and Mäkinen, V. (2003b). Sweepline the music. *Computer Science in Perspective: Essays Dedicated to Thomas Ottmann*, pages 330–342.
- Wiggins, G. A., Lemström, K., and Meredith, D. (2002). Sia (m) ese: An algorithm for transposition invariant, polyphonic content-based music retrieval. In ISMIR.
- Zhang, H., Karystinaios, E., Dixon, S., Widmer, G., and Cancino-Chacón, C. E. (2023). Symbolic music representations for classification tasks: A systematic evaluation. *arXiv preprint arXiv:2309.02567*.
- Zhao, T., Zhang, X., and Wang, S. (2021). Graphsmote: Imbalanced node classification on graphs with graph neural networks. *CoRR*, abs/2103.08826.
- Zhou, Y., Zheng, H., Huang, X., Hao, S., Li, D., and Zhao, J. (2022). Graph neural networks: Taxonomy, advances, and trends. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 13(1):1–54.