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Abstract: This paper presents a representation for symbolically encoded musical works referred to as a Note Difference
Graph. This graph highlights the relative differences between related notes (pitch difference, onset difference,
and temporal gap). Our experiments show that when a Graph Neural Network (GNN) is trained to classify
classical composers using this note difference graph, it outperforms a network trained with the representa-
tion described by Szeto and Wong in which a graph is constructed by identifying related noted. Our approach
achieving a 21% increase in classification accuracy on an imbalanced classical music dataset (Szeto and Wong,
2006). The note difference graph employed in this work is derived from the Szeto and Wong representation.
Each node in the note difference graph corresponds to an edge in the Szeto and Wong representation (two con-
nected notes in a piece) and contains information relating to the differences between them. Nodes in the note
difference graph are joined by an edge if they share any notes in common. The described representation pro-
vides improved classification accuracy and reduced bias when using imbalanced datasets. Given the enhanced
classification accuracy achieved by the neural network with our representation, we believe that highlighting

relationships between notes provides the network with better opportunities to identify salient features.

1 INTRODUCTION

Classification is a core task in Music Information Re-
trieval. Some common goals are to classify genre,
composer, and tonality. Many authors have tackled
these tasks using a multitude of methods and a vari-
ety of representations. Music is most typically stored
as audio files, sheet music, or symbolically encoded
scores, e.g. MP3, MIDI and MusicXML. Each of
these representations allows for different approaches
to be used to classify it.

With the growing use of online repertoires such
as Musescore and Flat.io, the task of information
retrieval becomes increasingly important. As their
databases of compositions expand, there is a grow-
ing need for better discovery and retrieval techniques.
Similarly, digital composition tools such as Logic
Pro and Sibelius highlight the importance of working
effectively with symbolically encoded musical data.
Recommendation systems, compositional aid tools,
and copyright detection represent key practical ap-
plications of research in this domain. Consequently,
substantial research has been conducted to address
these challenges (Sturm, 2014; Corréa and Rodrigues,
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2016; Schedl et al., 2014).

Our contribution describes a graph representation
of symbolic music that helps improve classification
accuracy. This graph representation of a MIDI file is
based on the graph representation used by Szeto and
Wong for pattern matching in post-tonal music (Szeto
and Wong, 2006). Our note difference graph places
emphasis on the relative differences between notes
rather than on the notes themselves. As a result, each
node in our graph representation represents the rela-
tionship between two nodes that share an edge in the
respresentation of Szeto and Wong. We see that this
representation aids machine learning models in classi-
fying composers more accurately. This may indicate
the network captures more correctly features of the
composer’s works and future work may give deeper
insights into other features that captures a composer’s
approach to composition.

This paper is organised as follows: that the next
section will explore background information and re-
lated work. Section 3 details the methodology used.
Section 4 supplies the dataset used. Section 5 de-
scribes the experiments performed. Section 6 illus-
trates the results of the experiments. Section 7 con-
tains our final thoughts and conclusions.
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2 BACKGROUND

The way in which music is represented dictates the
features available to work with it. Many researchers
have chosen to represent music as a string and extract
features from those strings as the basis for classifi-
cation (Conklin and Witten, 1995; Pearce and Wig-
gins, 2004; Li et al., 2006; Pearce, 2018). These
approaches tend to stem from more fundamental In-
formation Retrieval (IR) techniques in which string
representations are common. The use of string rep-
resentations results in approaches that either do not
work with polyphonic music or need modifications to
do so.

An alternative to the features offered by string rep-
resentations are the features calculated from geomet-
rical representations. These approaches take inspira-
tion from the field of computational geometry to dis-
cover features of interest. Representations typically
involve transforming a work of music into a series of
horizontal lines or points on a Cartesian plane. It is
common among many researchers to represent a y-
coordinate as the pitch of a note in some capacity and
its x-coordinate as beats or time since the start of the
piece. If a line is used instead of a point, the length
of the line is determined by the number of beats the
note has. Meredith et al. introduces such a repre-
sentation (Meredith et al., 2002). The features in this
representation are typically seen as patterns within the
music. Concepts such as the Translational Equivalent
Class (TEC) and the Structural Inference Algorithm
(SIA) presented in this paper have been expanded
over many years (Wiggins et al., 2002; Forth and Wig-
gins, 2009; Collins et al., 2010; Collins et al., 2013;
Collins and Meredith, 2013; Meredith, 2013; Mered-
ith, 2016). Ukkonen et al. provides another geometri-
cal approach that has served as a basis for many that
followed (Ukkonen et al., 2003b). In their paper, three
algorithms are presented based on the sweepline ap-
proach from computational geometry. Each of these
provides different levels of specificity with respect to
the returned patterns. The authors in a later article
build upon this work and compare it with an approach
by Meredith et al. and Wiggins et al. based on the STA
algorithm (Ukkonen et al., 2003a). They show one of
their solutions provides a slight performance increase
although no real significant difference and another of
their algorithms is capable of handling a specificity
not handled by the comparison approaches.

To investigate the merits of using a geometric ap-
proach, Lemstrom and Pieniméki compared and con-
trasted the details of a geometric framework with an
edit distance string-based framework (Lemstrom and
Pieniméki, 2007). While the edit distance obtains

Composer Classification Using a Note Difference Graph

good results on monophonic music and respectable
results for polyphonic music, the authors suggest that
the alterations needed to transform polyphonic music
compromise its polyphonic nature. Conversely, geo-
metric methods provide a more information-rich rep-
resentation at the cost of an efficient algorithm.

Graph representations of music have become in-
creasingly popular. Early work by Szeto and Wong,
Pinto and Tagliolato, and Mokbel et al. provide differ-
ent methods on how to construct a graph representa-
tion of music(Szeto and Wong, 2006; Pinto and Tagli-
olato, 2008; Mokbel et al., 2009). The representation
by Szeto and Wong was devised to find patterns in
post-tonal music. The authors implemented a tech-
nique known as stream segregation to compute which
notes should be connected in the graph and the label
of that connection. In this approach, there are two
types of edges, a sequential edge and a simultaneous
edge. If two nodes overlap in terms of time, they are
joined by a simultaneous edge; otherwise, they are
joined by a sequential edge. Then the graph is pruned
such that each node is only connected to its next near-
est sequential node. Distance is determined in the
pitch/ time space where the pitch difference of the
nodes is determined by its frequency on the Mel-Scale
and the inter-event distance of the nodes is in seconds.
From this representation the authors use pitchclass set
theory to find patterns in the music.

This increased use of graph representations takes
advantage of recent developments with Graph Neu-
ral Networks (GNNs) (Zhou et al., 2022). Recent
work by Jeong et al. and Karystinaios and Widmer
takes the concepts of representing music as a graph
and uses the power of a GNN to accomplish their
goals (Jeong et al., 2019; Karystinaios and Widmer,
2023). These authors have incorporated GNN tech-
niques, such as synthetic minority over sampling in
the form of GraphSMOTE as proposed by Zhao et al.
and an approach to generate embeddings for unseen
nodes known as GraphSage by Hamilton et al. (Zhao
et al., 2021; Hamilton et al., 2017).

3 METHOD

Our research presents a novel approach to composer
classification using graph neural networks applied to
symbolic music data. The approach consists of two
main components: firstly, a specialized graph rep-
resentation that captures relationships between mu-
sical notes, and secondly, a GraphSAGE-based neu-
ral network architecture for classification. The graph
representation focuses on the relationship between
notes rather than individual notes, specifically cap-
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turing pitch changes, onset differences, and temporal
gaps between notes. This approach to representation,
combined with a four-layer graph neural network, is
used to identify characteristic compositional patterns
of different composers. We discuss the representa-
tion and neural network in more detail in the follow-
ing subsections.

3.1 Graph Representation Method

Our graph representation builds upon the method de-
scribed by Szeto and Wong (Szeto and Wong, 2006),
with Zhang et al. and Karystinaios and Widmer also
having adopted a similar representation to Szeto and
Wong (Zhang et al., 2023; Karystinaios and Widmer,
2022). However, our approach introduces a novel
transformation that emphasises the relationships be-
tween notes rather than the notes themselves.

3.1.1 Construction Process

Step 1: Geometric Representation We begin by
constructing a geometric representation that maps
each note in a MIDI file as a horizontal line on a
Cartesian plane:

* Y-Coordinate: MIDI pitch value.

* Initial X-Coordinate: the onset time of the note
(beats from piece beginning).

* Final X-Coordinate: Initial X-coordinate plus
note duration (in beats).

Step 2: Szeto-Wong Graph Adaptation Following
Szeto and Wong’s approach with modifications, we
create an initial graph representation. While the orig-
inal method transforms pitch values to Mel-Scale fre-
quency and classifies edges as melody or harmony
edges, our adaptation:

* Encodes each node with MIDI pitch number, on-
set, and duration.

* Eliminates edge type classification.

For illustration, Figures 1 and 2 show an extract
from Liszt’s Liebestraum and its corresponding
Szeto-Wong representation.

Step 3: Note Difference Graph Generation
From the Szeto-Wong graph, we generate our
novel “note difference graph” through the following
transformation process:

* Nodes: Each node represents an edge from the
original Szeto-Wong graph.

* Edges: Connect nodes in the note difference
graph that correspond to edges sharing a common
node in the original graph.
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This transformation is visualized in Figure 3, where
node names correspond to the connected nodes from
Figure 2.

Figure 1: Extract of Liebestraum by Liszt.
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Figure 2: Szeto and Wong Representation of Liebestraum
Extract.

Figure 3: Our Representation of Liebestraum Extract.

3.1.2 Node Encoding

Each node in our proposed graph is encoded with
three features:

1. Pitch Difference: Change in pitch values be-
tween connected notes.

2. Onset Difference: Difference in onset timing.
3. Temporal Gap: Time difference between the first



note’s end and the second note’s start.

Example Calculation: Consider nodes 0 and 1
from Figure 2:

¢ Node 0: Pitch = 51, Onset = 0, Duration = 1 beat.

* Node 1: Pitch =44, Onset = 1, Duration = 3 beats.
The resulting node “0_1” in Figure 3 would have:

 Pitch Difference: —7 (44 —51).

¢ Onset Difference: 1 (1 —0).

* Temporal Gap: 0 (end of node O to start of node
1).

3.2 Graph Neural Network
Architecture

Graph Neural Networks operate differently from tra-
ditional neural networks as they are designed to han-
dle graph-structured data, which traditional networks
cannot process effectively. In a Graph Neural Net-
work, each layer applies operations to individual
graph components (nodes in our case) to produce
node embeddings. These operations incorporate in-
formation from neighbouring nodes at each layer, up-
dating node embeddings according to the layer’s spe-
cific function. This design enables Graph Neural
Networks to handle graphs of varying sizes, as lay-
ers operate at the component level rather than requir-
ing fixed input dimensions like traditional neural net-
works.

Our classification model employs a four-layer
graph neural network architecture designed specifi-
cally for composer identification (see Table 4). The
architecture follows established practices in music in-
formation retrieval while incorporating adaptations
for our novel graph representation.

3.2.1 Network Structure

The model consists of four sequential components:

1. Input Layer: GraphSAGE convolutional layer
with 3 input dimensions corresponding to our
three node features (pitch difference, onset differ-
ence, and temporal gap)

2. Hidden Layers: Two additional GraphSAGE
convolutional layers, each with 75 hidden dimen-
sions following the configuration used by Zhang
et al. (Zhang et al., 2023)

3. Pooling Layer: Global mean pooling layer that
aggregates node-level representations into a single
graph-level representation
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4. Output Layer: Linear layer with 5 output dimen-
sions corresponding to the five composer classes
in our dataset, with each output representing the
probability of assignment to that composer

3.2.2 Architecture Details

The choice of GraphSAGE layers aligns with estab-
lished approaches in symbolic music classification,
leveraging the inductive representation learning ca-
pabilities demonstrated by Hamilton et al. (Zhang
et al., 2023; Hamilton et al., 2017). The network em-
ploys ReLU activation functions throughout and ap-
plies dropout regularization (rate = 0.2) to all Graph-
SAGE layers to prevent overfitting.

Input Layer Hidden Layer Pooling Layer Output
@)

{ GraphSage } [ GraphSage } { Global Mean Linear

Figure 4: Convolutional GNN Architecture.

4 DATASET

The dataset used in our research is a subset of the
GiantMIDI-Piano dataset provided by Kong et al.
(Kong et al., 2022). This dataset has transcribed live
recordings of classical piano music into MIDI repre-
sentations. Our subset contains all the works of Bach,
Chopin, Liszt, Schubert, and Scarlatti that the authors
recommend for training, testing, or validating. The
works of these composers are the five most numerous
in the dataset. This dataset was chosen as it is one of
the largest datasets available for MIDI files that also
contains composer labels. A summary of the number
of works can be seen in Table 1.

Table 1: Composers and their Works (Unbalannced).

Composer | Work Count
Chopin 102
Liszt 197
Schubert 127
Scarlatti 274
Bach 147

Due to the imbalanced nature of the dataset, a sec-
ond balanced subset was constructed. This subset up-
sampled works by Chopin, Liszt, Schubert, and Bach
while undersampling works by Scarlatti. The new
dataset consists of 204 works for each composer. This
target was chosen to double the representation of the
smallest class (Chopin with 102 works) whilst main-
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taining a substantial sample size for evaluation. For
composers requiring upsampling, works were dupli-
cated to reach the target of 204. For overrepresented
composers, works exceeding 204 were randomly dis-
carded.

S EXPERIMENTS

To evaluate the merits of our representation, we assess
how it performs in the task of composer classification.
The results of this are then compared against the re-
sults obtained in the same task using the representa-
tion presented by Szeto and Wong (Szeto and Wong,
2006). Each representation is used to train a GNN.
These GNNs are then used to classify the composers
of unseen works. The experiments are performed on
the unbalanced and balanced datasets to ensure there
is not a bias towards overrepresented composers. It
should be noted that Szeto and Wong’s representation
was intended to be used for analysing post-tonal mu-
sic. Although the underlying goal of their paper is
different, their representation serves as a good point
of comparison for our own.

5.1 Description

For each experiment, the ordering of the dataset is
randomised. The dataset is then split so that 70%
of the data is used for training and 30% of the
data is used for testing. The GNN then iterates for
100 epochs. Observationally, no improvements were
made beyond this point. These experiments were
performed 10 times on each representation and each
dataset.

5.2 Statistical Significance

To determine whether the improvements gained from
our proposed graph representation were statistically
significant, we conducted additional experiments
comparing the representations. We created five pre-
determined randomisations of the unbalanced dataset
with the same 70%/30% training/test split as above.
Two GNNs are trained on the same randomisations
using their respective representations, and the out-
put from each model was compared using McNemar’s
test. This test is specifically designed to compare the
performance of two classifiers on the same dataset and
evaluates whether the observed differences in classi-
fication accuracy between the two approaches are sta-
tistically significant or could be attributed to random
variation. The equation for this test can be seen in
Equation 1:
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* %2: The calculated chi-square test statistic.

¢ b: Number of instances where Classifier A is cor-
rect AND Classifier B is incorrect.

e ¢: Number of instances where Classifier A is in-
correct AND Classifier B is correct.

6 RESULTS

The results of our experiments show that when our
representation was used to train the GNN it outper-
formed a GNN trained on data using the represen-
tation of Szeto and Wong. The GNN using our
representation achieved a classification of 74% ac-
curacy using the unbalanced dataset and 74% ac-
curacy using the balanced dataset. These results
compare favourably with the representation of Szeto
and Wong, which achieved an average of 59% us-
ing the unbalanced dataset and a 53% on the bal-
anced dataset. In addition to the improved classifi-
cation accuracy, the results of McNemar’s test pro-
duced a P-value of p < 0.001. This indicates that the
improvement in performance from our representation
is statistically significant. The McNemar Test Table
from which the p value is derived can be seen in Ta-
ble 6. This improvement is exaggerated in the unbal-
anced dataset where the works of certain composers
are overrepresented and others are underrepresented.

6.1 Size Impact

While our approach has proven effective in increasing
composer classification rates, it is worth highlighting
the increased space requirements of the representa-
tion. In the example shown in Figures 2 and 3, the
graph representation transforms from a graph with 14
nodes and 25 edges to a graph with 25 nodes and 83
edges. This increased size is further exaggerated for
larger pieces. A randomly selected Bach work was
examined to demonstrate the scaling effect. In this
work, the Szeto and Wong representation comprises
3,492 nodes and 15,353 edges. Transforming their
representation into our approach results in a graph
with 15,353 nodes and 152,784 edges.

This increased graph size results in longer training
times. To account for this computational discrepancy,
we performed an additional experiment in which a
GNN was trained on the Szeto and Wong approach
for an additional 600 epochs (700 total) to provide a
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Table 2: Confusion Matrix of Our Representation.

Chopin | Liszt | Schubert | Scarlatti | Bach
Chopin 37.14 15.81 | 32.37 7.64 7.04
Liszt 5.9 78.16 | 13.24 1.18 1.52
Schubert | 14.43 12.18 | 58.98 9.84 4.56
Scarlatti | 1.09 0.11 2.81 86.39 9.6
Bach 1.75 2.21 1.75 10.26 84.03

Table 3: Confusion Matrix of Szeto and Wong Representation.

Chopin | Liszt | Schubert | Scarlatti | Bach
Chopin 2.08 63.14 | 15.55 13.8 5.43
Liszt 2.15 78.01 | 11.3 6.15 2.38
Schubert | 1.03 44.84 | 28.29 15.42 10.42
Scarlatti | 0.12 4.3 1.04 90.34 42
Bach 0.65 11.1 53 49.33 33.61

Table 4: Confusion Matrix of Our Representation on a Balanced Dataset.

Chopin | Liszt | Schubert | Scarlatti | Bach
Chopin 62.35 13.73 | 20.74 1.09 2.09
Liszt 11.55 73.69 | 12.64 0.82 1.3
Schubert | 17.44 7.92 71.28 2.89 0.46
Scarlatti | 2.02 0.17 3.96 86.81 7.04
Bach 4.53 1.1 3.85 15.88 74.65

Table 5: Confusion Matrix of Szeto and Wongs Representation on a Balanced Dataset.

Chopin | Liszt | Schubert | Scarlatti | Bach
Chopin 26.22 46.96 | 19.67 6.84 0.3
Liszt 16.73 66.52 | 12.03 4.72 0.0
Schubert | 21.11 27.66 | 36.89 13.38 0.96
Scarlatti | 3.53 2.65 6.52 87.29 0.0
Bach 9.47 9.25 21.94 23.86 35.48

Table 6: McNemar’s Test Table.

Note Diff. Graph Model

Correct Incorrect
Szeto & Wong Correct 505 179
Graph Model Incorrect 435 156

Table 7: Model Performance Comparison.

Approach | Epochs ;rsif:;znds) ?éc)uracy
gcz‘;;‘;ng 100 | 976341 | 0.57%
iz%‘:mg 700 | 65034.82 | 0.65%
(C)?Eliioﬂr Cﬁn 100 | 59948.63 | 0.75%

more comparable training duration. As shown in Ta-
ble 7, even with extended training time, the classifi-

cation accuracy using the Szeto and Wong represen-
tation remains lower than the accuracy achieved with
our representation.

7 OBSERVATIONS

Looking past the overall classification score we can
observe that both the GNNs had greater difficulty dif-
ferentiating between the works of Chopin, Liszt and
Schuber. This is similarly observed between Scarlatti
and Bach. This observation can be seen in Tables 2 -
5. The rows in these tables are the ground truth and
the columns are the predictions.

Although Szeto and Wong’s representation per-
formed better in the unbalanced dataset (Table 3)
compared to the balanced one (Table 5), this appears
to be a result of an over-representation of Scarlatti and
Liszt and an under-representation of Chopin. We can
observe in Table 3 that the representation was only
able to identify Scarlatti and Liszt correctly more than
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other composers. The rest were classified as another
composer rather than the correct composer. This re-
sulted in producing a higher average than with the
balanced dataset despite producing better results for
the other composers in the balanced dataset as seen
in Table 5. This shows that Szeto and Wong’s rep-
resentation was more prone to bias with imbalanced
datasets.

In contrast, our approach was much less prone to
bias, correctly identifying all the composers as them-
selves rather than another composer. This is seen
along the diagonal in Table 2 and Table 4 where the
diagonal should contain the highest value of that row.

8 DISCUSSION

A look into the time periods in which the composers
were most active might offer some insight into the
misclassification reported by the GNN. Both Chopin
and Liszt were most active in the Romantic era, Schu-
bert was active the late classical to early romantic era,
and Scarlatti and Bach were active in the Baroque
era. The era in which the composers were most ac-
tive tends to correlate to the misclassifications of the
GNN. That is to say, Chopin, Liszt and Schubert were
more likely to get confused with one another due to
their work being in the romantic era. Similarly for
Scarlatti and Bach in the Baroque era. This might
suggest that the GNN is identifying compositional
choices common to those eras, but further research
would be required to confirm this.

9 CONCLUSION

We have demonstrated a graph representation for
symbolic music that when used with a GNN outper-
forms other representations at the task of composer
classification. We believe that our representations fo-
cus on the relationships between notes provide the
GNN with a more intuitive understanding of what is
important within a composition.

An issue with our representation can be seen in the
way edges are formed for the initial graph representa-
tion. With sequential edges connecting a note to the
next nearest note, there is a bias towards the X-axis.
This is because the x and y axes are weighted equally
in terms of distance. A note that is one beat away at
the same pitch is seen to be nearer than a note that is
a quarter beat away that is an octave higher as seen
in Figure 2. Further work is required to address this
edge connection issue.
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