
Beyond Parameter Counts: Benchmarking Similar-Sized Large
Language Models for Next-Item Recommendation

Kavach Dheer, Peter Corcoran and Josephine Griffith
University of Galway, Ireland

fi

Keywords: Large Language Models, Recommender Systems, Next-Item Prediction, Model Benchmarking, Data Leakage
Analysis.

Abstract: Large language models (LLMs) are rapidly being integrated into recommender systems. New LLMs are re-
leased frequently, offering numerous architectures that share identical parameter sizes within their class, giving
practitioners many options to choose from. While existing benchmarks evaluate LLM-powered recommender
systems on various tasks, none have examined how same-sized LLMs perform under identical experimental
conditions as a recommender system. Additionally, these benchmarks do not verify whether the evaluation
datasets were part of the LLMs pre-training data. This research evaluates five open-source 7–8B parameter
models (Gemma, Deepseek, Qwen, Llama-3.1, and Mistral) using a fixed A-LLMRec architecture for next-
item prediction using the Amazon Luxury-Beauty Dataset. We measure top-1 accuracy (Hit@1) and evaluate
dataset leakage through reference-model membership-inference attacks to ensure no model gains advantages
from pre-training exposure. Although all models show negligible dataset leakage rates (< 0.2%), Hit@1
varies dramatically across 20 percentage points, from 44% for Gemma to 64% for Mistral, despite identical
parameter counts and evaluation conditions. These findings demonstrate that selecting among the most appro-
priate LLMs is a crucial design decision in LLM-based recommender systems.

1 INTRODUCTION

Recommender systems now power a wide range of
applications, from e-commerce search engines to
large-scale video-streaming platforms. State-of-the-
art LLMs have transformed artificial intelligence ca-
pabilities showing remarkable performance in natural
language processing, robotics, information retrieval,
and multi-modal computer vision tasks. Motivated by
these successes, a growing body of work has begun
to integrate LLMs with recommender system archi-
tectures. Empirical studies (Petrov and Macdonald,
2023; Bao et al., 2023; Geng et al., 2022) demonstrate
that LLM-augmented recommender systems can sub-
stantially outperform conventional baselines, spark-
ing considerable interest in this hybrid research direc-
tion.

LLMs are being released at an unprecedented
pace, with model sizes ranging from a few hundred
million to over one hundred billion parameters. Many
of these models are open-source and publicly avail-
able via platforms such as Hugging Face, while major
AI companies roll out closed-source LLMs through
their own APIs. The wide availability of LLMs offers

practitioners a rich set of choices while introducing
new challenges in model selection.

The research into integrating LLMs into recom-
mender systems has largely focused on surround-
ing innovations, for example, improving architec-
tural frameworks (Geng et al., 2022), refining data
pipelines (Borisov et al., 2022), or developing ad-
vanced prompt engineering strategies (Diao et al.,
2023) and fine-tuning approaches (Bao et al., 2023).
Far less attention has been paid to the fundamental
question of how the choice of the LLM itself influ-
ences recommendation quality. In other words, prior
work rarely examines LLM selection as an isolated
variable, leaving a gap in understanding how differ-
ent LLMs of the same parameter size might affect
recommendation results and quality. Existing recom-
mender system benchmarks (Wu et al., 2024; Geng
et al., 2022) compare unequally sized models and do
not test for data leakage, leaving the question of how
model choice alone impacts recommendation accu-
racy unanswered. With numerous LLMs now avail-
able at similar parameter size, it is increasingly dif-
ficult for practitioners to determine which model to
adopt for a given task. It is often assumed that all

364
Dheer, K., Corcoran, P. and Griffith, J.
Beyond Parameter Counts: Benchmarking Similar-Sized Large Language Models for Next-Item Recommendation.
DOI: 10.5220/0013736800004000
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2025) - Volume 1: KDIR, pages 364-371
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

models of the same scale will perform comparably,
yet this assumption lacks empirical validation and
may not hold true in practice. In fact, a suboptimal
LLM choice can degrade a recommender system’s ac-
curacy, whereas selecting the right model, even within
the same parameter size, can significantly improve
overall performance. This underscores an urgent need
for a systematic examination of model choice as a
factor in recommender system accuracy. A second,
frequently overlooked issue is data leakage. If the
evaluation corpus forms part of an LLM’s pre-training
data, the model may appear to excel simply because
it has already been trained on the dataset. Without
validating if this potential leakage has occurred, stud-
ies may mistake memorization for genuine modeling
capability. Therefore, to fairly evaluate model per-
formance, we must first determine whether each can-
didate LLM’s training data includes the evaluation
dataset, i.e., whether data leakage is present.

Accordingly, we pose two research questions:
• RQ1: Does the choice of 7-8B parameter LLMs

significantly affect recommendation performance
?

• RQ2: How can we assess and quantitatively
measure the extent to which overlap between an
LLM’s pre-training data and the evaluation corpus
inflates its observed recommendation accuracy?

Our main contributions are summarized as follows:
• Model-Isolation: Holding the pipeline fixed,

we benchmark five open-source 7–8B parameter
LLMs (Mistral, Gemma, Deepseek, Qwen, and
Llama-3.1) on the Amazon Luxury Beauty dataset
(Ni et al., 2019), reporting Hit@1 for the next-
item-prediction task.

• Data-Leakage Analysis: For every data instance
we run a reference-based membership-inference
attack to estimate whether the data instance ap-
peared in the model’s pre-training corpus, allow-
ing us to quantify and contextualize the impact of
memorization on the observed model accuracy.

By holding architecture conditions constant while
verifying pre-training leakage, we find that switch-
ing between 7–8B parameter LLM models can change
top-1 recommendation accuracy by 20 percentage
points, from 44% for Gemma to 64% for Mistral.
These differences persist even after accounting for the
memorized items (data leakage). This demonstrates
that model choice alone affects recommendation ac-
curacy.

The remainder of this paper is organized as fol-
lows: Section-2 reviews related work; Section-3 de-
tails our methodology; Section-4 presents results and
discussions; Section-5 concludes.

2 RELATED WORK

The progression of LLM-based recommender sys-
tems can be divided into three distinct stages.

1. Utilizing LLMs for Zero-Shot and Few-Shot
Recommendations: Several studies have ex-
plored whether off-the-shelf LLMs can rank can-
didates or make next-item suggestions without
task-specific training. Hou et al. (2024) demon-
strates that LLMs can function as zero-shot
rankers with careful prompting, while Wang and
Lim (2023) develops a prompting strategy for
zero-shot next-item recommendation. LLMs are
also valuable for providing explanations for their
recommendations and serving as conversational
recommender systems. For instance, Gao et al.
(2023) employs ChatGPT to offer reasoning be-
hind its recommendations.

2. Fine-Tuning LLMs for Recommendations: To
enhance performance, researchers began fine-
tuning LLMs for specific tasks. Friedman et al.
(2023) fine-tuned Llama for YouTube recommen-
dations, while Liao et al. (2024) and Chen et al.
(2024) adapted LLMs for sequential recommen-
dation tasks to better interpret user behavior pat-
terns. Meanwhile, Geng et al. (2022), proposed
a model(P5) that casts recommendation as a text-
to-text problem and unifying tasks (e.g., next-item
prediction, rating, explanation, review summa-
rization) in a single T5-based model via person-
alized prompts.

3. Benchmarking LLMs for Recommendation
Tasks: As efficient fine-tuning techniques like
LoRA emerged and new LLMs proliferated, re-
search moved towards benchmarking these var-
ious models across recommendation tasks. Liu
et al. (2025) creates a benchmark that evaluates
conventional recommender systems against LLM-
integrated recommender systems and assesses two
tasks, click-through rate prediction (CTR) and se-
quential recommendation, evaluating 17 LLMs
(of different sizes) across 5 datasets. Addition-
ally, Liu et al. (2023) evaluates LLMs (of differ-
ent sizes) on 5 different recommendation tasks:
rating prediction, sequential recommendation, di-
rect recommendation, explanation generation, and
review summarization, focusing on LLM perfor-
mance across different tasks. Xu et al. (2024)
builds upon Geng et al. (2022)’s method to evalu-
ate sequential recommendation, though they only
utilize two LLMs: T5 and Llama-2. Additionally,
Wu et al. (2024) focuses on cold-start scenarios,
evaluating and comparing LLMs and traditional

Beyond Parameter Counts: Benchmarking Similar-Sized Large Language Models for Next-Item Recommendation

365

deep learning recommender systems solely us-
ing semantic text for zero-shot recommendation.
However, the LLMs they utilize range from 355M
to 7B parameters, without isolating and compar-
ing LLMs of the same size. Liu et al. (2024) fo-
cused on optimizing a single LLM for conversa-
tional recommendation scenarios, though this nar-
row focus limited broader comparative insights,
whereas Jiang et al. (2025) uses various evalu-
ation dimensions (including history length, can-
didate position bias, user profile generation, and
hallucinations) while also fine-tuning the LLMs.
Despite impressive progress, no prior study iso-
lates the effect of the LLMs themselves when all
other variables are held constant. We compare five
open 7-8B parameter LLMs under identical con-
ditions. This controlled approach reveals true per-
formance differences between LLMs.

3 METHODOLOGY

3.1 Baseline Architecture

We build on A-LLMRec (Kim et al., 2024) which
is an LLM-based recommender system that aligns
a frozen pre-trained collaborative filtering recom-
mender system with an LLM. It adds a lightweight
alignment network which is the only part that is
trained: this network transforms the user and item em-
beddings produced by the collaborative filtering back-
bone into the token space of the LLM, so neither the
collaborative filtering model nor the LLM itself needs
fine-tuning.

We chose A-LLMRec because it excels in both
cold and warm scenarios. Since we want to test
LLM performance, we select this architecture to as-
sess the capabilities of conventional recommender
systems and LLMs together, ensuring both com-
ponents enhance rather than degrade performance
due to their respective limitations. Additionally, A-
LLMRec freezes both the collaborative filtering rec-
ommender system and the language model, learn-
ing only a lightweight alignment network; this de-
sign isolates the LLM so that any language model can
be swapped in without re-training the whole recom-
mender itself. Meanwhile, A-LLMRec reports faster
training/inference and state-of-the-art accuracy across
several benchmarks. These traits make A-LLMRec an
efficient, reproducible starting point for investigating
LLM variations.

Our implementation uses Self-Attention Sequen-
tial Recommendation (SASRec) (Kang and McAuley,
2018) as the collaborative filtering backbone. We re-

place the original LLM (OPT-6.7B) with five alterna-
tive LLMs, all other components follow the original
setup.

A-LLMRec involves two pre-training stages:

1. Stage-1 Alignment between Collaborative and
Textual Knowledge: As shown in Figure 1,
Stage-1, aligns the item embeddings from a frozen
SASRec with their associated text information to
capture both collaborative and textual knowledge
to obtain the joint collaborative-text embedding.
To extract text embeddings from textual informa-
tion associated with items, a pre-trained SBERT
(Reimers and Gurevych, 2019) is utilised. Two
single-layer MLP encoders, one for items and one
for text, create alignment between the item em-
beddings (from the frozen SASRec) and the text
embeddings (from SBERT). Then the model per-
forms latent space matching between item em-
beddings and text embeddings. Finally, two de-
coders are added to prevent the encoders from
producing over-smoothed representations (where
encoders produce similar outputs).

2. Stage-2 Alignment between Joint
Collaborative-Text Embedding and LLM:
As shown in Figure 2, Stage-2, aligns the joint
collaborative-text embeddings obtained from
Stage-1 with the LLM’s token space by project-
ing 2-layer MLPs to the user representation and
the joint collaborative-text embeddings to the
token space of the LLM. This alignment enables
the LLM to make recommendations by utilizing
the collaborative knowledge through prompts.

3.2 LLM Models and Prompt Design

Within the A-LLMRec pipeline, we evaluate five 7-
8B parameter LLMs, which are decoder-only trans-
formers. This choice:

i) Controls for parameter scale.

ii) Matches recent high performing releases.

iii) Incorporates diverse companies to avoid bias to-
ward a single training approach.

The architectural specifications for each model are
detailed in Table 1, with all models used in frozen,
inference-only mode.

We adopt the original A-LLMRec prompt design
without modification. A projected user-embedding
token is placed at the start of the input, followed
by a natural-language instruction that lists the user’s
past interactions and the candidate items, each aug-
mented with its projected joint embedding. The iden-
tical template is supplied to every LLM evaluated in

KDIR 2025 - 17th International Conference on Knowledge Discovery and Information Retrieval

366

Figure 1: Stage-1: Alignment between Collaborative and Textual Knowledge.

Figure 2: Stage-2: Alignment between Joint Collaborative-Text Embedding and LLM.

this study; consequently, any performance difference
arises solely from the choice of model.

3.3 Dataset

We conduct all experiments on the Amazon Luxury
Beauty dataset (Ni et al., 2019), which comprises
a large corpus of product data including reviews,
timestamps, descriptions, images, price metadata, and
other attributes. The dataset originates from Amazon
and covers activity from May 1996 through October
2018. We focus on Luxury Beauty, a top-level cate-
gory notable for its high sparsity and variability. Fol-
lowing existing studies (He and McAuley, 2016; He
et al., 2017), we select 9930 users and 6141 items,
discarding those with fewer than 4 interactions which
results in 63,953 interactions. For our setup, we uti-
lize the title and description fields from the dataset.

3.4 Evaluation Pipeline

3.4.1 Data Split

We evaluate the models on a next-item prediction task
using a temporal split by user history. For each user,
we partition their interaction sequence into training,
validation, and test portions in chronological order.
The last item the user interacted with is held out as
the test item, the second-last item is used for valida-
tion (e.g., for early stopping), and all earlier interac-
tions form the training sequence for that user. This
ensures that each test instance asks the model to rec-
ommend an item that truly comes after the training

history, avoiding any future data leakage. We apply
this splitting strategy to every user, so the data sets
are disjoint in terms of interaction events .

3.4.2 Ranking and Metrics

We formulate the recommendation evaluation as a
ranking problem. For each test case (a user and their
held-out next item), we construct a candidate set con-
sisting of the one true positive item and 19 negative
items. Negatives are randomly sampled items that
the user has not interacted with, drawn from the same
item corpus. The task for the model is to rank these 20
candidates and retrieve the correct item at the top. We
feed the user’s history and the list of 20 candidate item
titles (with embeddings) into the prompt as described,
and allow the model to generate its single-item rec-
ommendation. The output is then matched against the
candidate list. The metric we used is Hit@1 which
is scored if the model’s top (and only) recommenda-
tion matches the ground-truth item exactly, essentially
measuring accuracy in picking the correct item out of
20.

3.5 Data Leakage & Analysis

3.5.1 Problem Definition and Review Corpus

To determine whether the Amazon Luxury Beauty
dataset was included in the target model’s pre-training
corpus, we employ a membership-inference approach
(Xie et al., 2024) on the individual product reviews
from the dataset. We compare how confidently

Beyond Parameter Counts: Benchmarking Similar-Sized Large Language Models for Next-Item Recommendation

367

Table 1: Core architectural specifications of the evaluated models. Params: total parameters (B=billions); L: Transformer lay-
ers; d: hidden dimension; H: attention heads; Ctx: maximum context window in thousands (k) of tokens; Tokens: approximate
pre-training corpus size (T=trillions). — denotes not publicly disclosed.

Model version name Params L d H Ctx Tokens
(B) (k) (T)

Mistral-7B-v0.3 7.25 32 4096 32 8 —
Qwen2.5-7B 7.62 28 3584 28 128 18
deepseek-llm-7b-base 7.00 30 4096 32 4 2
gemma-7b 8.54 28 3072 16 8 6
Llama-3.1-8B 8.03 32 4096 32 128 15

the target language model and a reference language
model evaluate the log-probabilities of the same texts.
When a model has seen a review during training, it
typically assigns that review text a much higher prob-
ability (i.e., it is less surprising) than a model that has
never encountered it. This two-model likelihood com-
parison is consistent with established membership-
inference techniques, which use model loss (negative
log-likelihood) as a signal of training-set membership
(Xie et al., 2024). To refine this comparison, we next
compute a Normalised Log-Likelihood Metric, mak-
ing the two model scores invariant to sequence length
and redundancy. We then set a decision threshold
on the resulting likelihood gap via five-fold cross-
validation, which bounds the nominal false-positive
rate when flagging potential leakage.

3.5.2 Reference Model Selection

The reference model is a critical component of our
method. This model must not include the dataset in
its pre-training corpus since it serves as a baseline
for comparison with the target model. We selected
EleutherAI’s Pythia-6.9B-deduped (Biderman et al.,
2023) as our reference model. This 6.9B parameter
language model was trained solely on the Pile dataset
(Gao et al., 2020) an 825 GiB curated text corpus con-
taining 22 diverse sources. Crucially, the Pile dataset
excludes the Amazon Dataset, ensuring Pythia-6.9B
has never been exposed to this data. These character-
istics, combined with its parameter size matching our
target LLMs, make it an ideal reference model.

3.5.3 Normalised Log-Likelihood Metric

Let x = ⟨x1, . . . ,xT ⟩ be a product review comprising
of T tokens. We evaluate x using two language mod-
els:

• Target Model:

Ltarget(x) =
T

∑
t=1

log ptarget
(
xt | x<t

)
(1)

whose pre-training may have included the review;

• Reference Model: Lref(x), computed identically
to reference model.

Length-Normalised Score: Raw token log-
likelihoods increase (in magnitude) with sequence
length and with repeated n-grams, so a straight
average LM(x)/T is still confounded by redundancy.
Following the zlib-entropy baseline introduced by
Carlini et al. (2021), we divide by the byte length of
the sequence after maximum (level 9) zlib compres-
sion, because lossless compression removes exactly
the redundant statistics that language models try to
capture. Thus, the compressed size |zlib(x)| serves
as a data-driven proxy for the intrinsic information
content of x. The resulting score:

SM(x) =
LM(x)

|zlib(x)|
[nats per byte] (2)

is length- and redundancy-invariant: higher (less-
negative) values indicate that model M assigns greater
probability mass to each informative byte.
Sign Interpretation:

• Short Compressed Length: high redundancy ⇒
smaller denominator ⇒ SM(x) moves toward
zero (less-negative), i.e. better.

• Long Compressed Length: high entropy ⇒
larger denominator ⇒ SM(x) moves away from
zero (more-negative), i.e. worse.

Thus, when the target model’s per-byte log-likelihood
is numerically larger (i.e., less negative) than the ref-
erence model’s per-byte log-likelihood, it assigns a
higher probability to the text. We capture this with:

∆(x) = Starget(x)−Sref(x) (3)

such that ∆(x) > 0 flags potential training-set expo-
sure. A fixed decision threshold on ∆(x) converts
the continuous score into the binary seen/unseen label
used in our leak statistics. To determine the decision
threshold on ∆, we apply five-fold cross-validation on
the review corpus: within each fold, 80 % of reviews
form a training set and the remaining 20% form the
test set.

KDIR 2025 - 17th International Conference on Knowledge Discovery and Information Retrieval

368

Threshold Calibration (Five-Fold Cross-
Validation): For each of five random 80/20
splits, we first compute on the 80% calibration
split C:

µ = median
x∈C

∆(x)

σ = 1.4826 MAD
x∈C

∣∣∆(x)−µ
∣∣ (4)

where µ is the center of the calibration ∆ scores and
σ their robust scale (MAD = median absolute devia-
tion). With these statistics fixed, we set a one-sided
k-sigma control limit:

τ = µ+2.33σ (5)

choosing k = 2.33 to bound the nominal false-positive
rate at ≈ 1%. We chose 1% to prioritize precision
(avoiding false “leak” flags) given that leaks are rare
and false positives are costly. The frozen threshold τ

is then applied to that fold’s 20% hold-out slice; leak
proportions from the five folds are averaged to give
an unbiased prevalence estimate, and their standard
deviation provides a reliability band.

4 RESULTS & DISCUSSION

4.1 Does the Choice of Same-Sized 7–8B
Parameter LLMs Affect
Recommendation Performance?

We find that the choice of LLM leads to signifi-
cant differences in recommendation success (Table 3
summarises the Accuracy (Hit@1) and data-leakage
results). Mistral achieves the highest top-1 accu-
racy, with a Hit@1 of 64%. The next-best model,
Llama-3.1, reaches 58%. Other models trail behind;
Deepseek and Qwen offer moderate Hit@1 (around
53–52 %), and Gemma performs worst at only 44%.
Notably, these performance gaps arise even though
all models are of similar size (7–8B parameters), un-
derscoring that LLM choice alone can drive diver-
gent outcomes. Each test instance used a single fixed
draw of 19 randomly sampled negatives; the reported
Hit@1 values are point estimates under this protocol.

4.2 Does Pre-Training Exposure Inflate
Observed Accuracy?

Data-leakage analysis reveals that none of the models
significantly had seen the dataset in their pre-training
corpus, the highest flag rate is merely 0.2%, with three
of the five models at or below 0.06%. Since these
values fall well below the 1% nominal false-positive

threshold, we can confidently attribute the observed
Hit@1 differences to the LLMs inherent capabilities
rather than any unfair advantage from pre-training ex-
posure to the dataset.

Table 2: Recommendation performance with dataset leak-
age.

Model Hit@1 (%) Dataset Leakage (%)
Mistral 64.0 0.06
Llama-3.1 58.0 0.20
DeepSeek 53.0 0.04
Qwen 52.0 0.05
Gemma 44.0 0.00

4.3 Model Comparison

Deepseek has the lowest pre-training data (2 trillion
tokens) yet performs better than Qwen, which has the
largest pre-training data (18 trillion tokens). This sug-
gests that simply adding more pre-training data does
not necessarily improve accuracy.

We examined the architecture of each LLM to un-
derstand their performance differences. Unlike other
models, Gemma employs multi-head self-attention
with independent key/value projections and the Gau-
sian Error Linear Unit (GeGLU) activation function,
while Mistral, Deepseek, Qwen, and Llama-3.1 use
GQA and Swish Gated Linear Unit (SwiGLU) activa-
tion function.

We hypothesize that Gemma’s relatively lower
performance may stem from its architectural design.
In grouped-query attention, the attention heads are
partitioned into groups sharing key/value projections.
This design trades off a small loss in representa-
tional richness for greatly reduced computational and
memory cost. GQA achieves accuracy very close to
full multi-head attention while substantially speeding
up inference. Thus, the difference between Gemma
full multi-head attention and grouped-query approach
could affect model performance and efficiency. An-
other architectural difference lies in the feed-forward
activation function. Gemma uses the GeGLU gating
variant (a GELU-based GLU), whereas other models
typically use SwiGLU (a Swish-based GLU). Shazeer
(2020) reported that GeGLU and SwiGLU achieved
nearly identical perplexities (1.942 vs. 1.944) when
matched for computational cost, i.e., parameter count
and FLOPs are held constant. Therefore, we would
not expect a large performance gap solely from the
choice of GeGLU vs. SwiGLU, though minor dif-
ferences in training dynamics or convergence might
exist.

Mistral combines grouped-query attention with
sliding window attention, enabling better handling of

Beyond Parameter Counts: Benchmarking Similar-Sized Large Language Models for Next-Item Recommendation

369

longer sequences. This enhanced capability for pro-
cessing large prompts may explain why Mistral out-
performs the other models.

However, we emphasize that this reasoning is
speculative, we have not performed targeted ablations
to isolate these effects. Our interpretation represents
a plausible hypothesis grounded in known architec-
tural trade-offs, not a confirmed explanation. Further
controlled experiments are needed to validate whether
these specific design choices cause the observed per-
formance gap.

Our results demonstrate that LLM selection plays
a crucial role in recommender system performance.
This factor has been largely overlooked, as the pre-
vailing assumption suggests that any LLM of simi-
lar parameter size would perform equivalently. While
much attention has focused on architecture, prompt-
ing strategies, and fine-tuning approaches, the impor-
tance of LLM selection within the same parameter
class has been underestimated. With numerous op-
tions now available at each parameter size, choosing
the right model can significantly impact accuracy.

5 CONCLUSION

In our comparative study, we tested five 7-8B param-
eter LLMs on an identical task with the same archi-
tecture and dataset to examine accuracy variations,
an aspect often overlooked in benchmarks and re-
search when selecting LLMs of similar size. Our rec-
ommender system testing revealed Hit@1 accuracy
variations of nearly twenty percentage points, with
Mistral outperforming other models. Despite shar-
ing the same parameter count, these models demon-
strated that model selection alone can meaningfully
influence accuracy. Through membership inference
attacks, we verified that no model benefited from hav-
ing the dataset in their pre-training corpus, confirm-
ing that the observed accuracy gaps represent genuine
differences in model capability. We speculated that
these variations stem from architectural differences.
Future work should isolate the causes by evaluating
across additional datasets, quantifying robustness via
repeated negative-sampling draws with 95% confi-
dence intervals, and examining the effects of fine-
tuning and scaling to larger, reasoning-focused mod-
els.

ACKNOWLEDGEMENTS

This work was conducted with the financial support of
the Research Ireland Centre for Research Training in

Digitally-Enhanced Reality (d-real) under Grant No.
18/CRT/6224. For the purpose of Open Access, the
author has applied a CC BY public copyright licence
to any Author Accepted Manuscript version arising
from this submission

REFERENCES

Bao, K., Zhang, J., Zhang, Y., Wang, W., Feng, F., and He,
X. (2023). Tallrec: An effective and efficient tuning
framework to align large language model with recom-
mendation. In Proceedings of the 17th ACM Confer-
ence on Recommender Systems, pages 1007–1014.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley, H.,
O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., and Raff, E. (2023). Pythia: A suite
for analyzing large language models across training
and scaling. In International Conference on Machine
Learning, pages 2397–2430.

Borisov, V., Seßler, K., Leemann, T., Pawelczyk, M.,
and Kasneci, G. (2022). Language models are
realistic tabular data generators. arXiv preprint
arXiv:2210.06280.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
and Erlingsson (2021). Extracting training data from
large language models. In 30th USENIX security sym-
posium (USENIX Security 21), pages 2633–2650.

Chen, L., Gao, C., Du, X., Luo, H., Jin, D., Li, Y., and
Wang, M. (2024). Enhancing id-based recommen-
dation with large language models. arXiv preprint
arXiv:2411.02041.

Diao, S., Wang, P., Lin, Y., Pan, R., Liu, X., and
Zhang, T. (2023). Active prompting with chain-of-
thought for large language models. arXiv preprint
arXiv:2302.12246.

Friedman, L., Ahuja, S., Allen, D., Tan, Z., Sidahmed,
H., Long, C., Xie, J., Schubiner, G., Patel, A., and
Lara, H. (2023). Leveraging large language models in
conversational recommender systems. arXiv preprint
arXiv:2305.07961.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., and Nabeshima
(2020). The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027.

Gao, Y., Sheng, T., Xiang, Y., Xiong, Y., Wang, H., and
Zhang, J. (2023). Chat-rec: Towards interactive
and explainable llms-augmented recommender sys-
tem. arXiv preprint arXiv:2303.14524.

Geng, S., Liu, S., Fu, Z., Ge, Y., and Zhang, Y. (2022).
Recommendation as language processing (rlp): A uni-
fied pretrain, personalized prompt & predict paradigm
(p5). In Proceedings of the 16th ACM conference on
recommender systems, pages 299–315.

He, R., Kang, W.-C., and McAuley, J. (2017). Translation-
based recommendation. In Proceedings of the
eleventh ACM conference on recommender systems,
pages 161–169.

KDIR 2025 - 17th International Conference on Knowledge Discovery and Information Retrieval

370

He, R. and McAuley, J. (2016). Fusing similarity models
with markov chains for sparse sequential recommen-
dation. In 2016 IEEE 16th International Conference
on Data Mining (ICDM), pages 191–200.

Hou, Y., Zhang, J., Lin, Z., Lu, H., Xie, R., McAuley, J., and
Zhao, W. X. (2024). Large language models are zero-
shot rankers for recommender systems. In European
Conference on Information Retrieval, pages 364–381.
Springer.

Jiang, C., Wang, J., Ma, W., Clarke, C. L., Wang, S., Wu,
C., and Zhang, M. (2025). Beyond utility: Evaluating
llm as recommender. In Proceedings of the ACM on
Web Conference 2025, pages 3850–3862.

Kang, W.-C. and McAuley, J. (2018). Self-attentive se-
quential recommendation. In 2018 IEEE international
conference on data mining (ICDM), pages 197–206.
IEEE.

Kim, S., Kang, H., Choi, S., Kim, D., Yang, M., and Park,
C. (2024). Large language models meet collabora-
tive filtering: An efficient all-round llm-based rec-
ommender system. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 1395–1406.

Liao, J., Li, S., Yang, Z., Wu, J., Yuan, Y., Wang,
X., and He, X. (2024). Llara: Large language-
recommendation assistant. In Proceedings of the
47th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 1785–1795.

Liu, J., Liu, C., Zhou, P., Ye, Q., Chong, D., Zhou, K.,
Xie, Y., Cao, Y., Wang, S., and You (2023). Llmrec:
Benchmarking large language models on recommen-
dation task. arXiv preprint arXiv:2308.12241.

Liu, J., Sun, Z., Feng, S., Chen, C., and Ong, Y.-S. (2024).
Language model evolutionary algorithms for recom-
mender systems: Benchmarks and algorithm compar-
isons. arXiv preprint arXiv:2411.10697.

Liu, Q., Zhu, J., Fan, L., Wang, K., Hu, H., Guo, W.,
Liu, Y., and Wu, X.-M. (2025). Benchmarking llms
in recommendation tasks: A comparative evaluation
with conventional recommenders. arXiv preprint
arXiv:2503.05493.

Ni, J., Li, J., and McAuley, J. (2019). Justifying recom-
mendations using distantly-labeled reviews and fine-
grained aspects. In Proceedings of the 2019 con-
ference on empirical methods in natural language
processing and the 9th international joint conference
on natural language processing (EMNLP-IJCNLP),
pages 188–197.

Petrov, A. V. and Macdonald, C. (2023). Generative se-
quential recommendation with gptrec. arXiv preprint
arXiv:2306.11114.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084.

Shazeer, N. (2020). Glu variants improve transformer. arXiv
preprint arXiv:2002.05202.

Wang, L. and Lim, E.-P. (2023). Zero-shot next-item rec-
ommendation using large pretrained language models.
arXiv preprint arXiv:2304.03153.

Wu, X., Zhou, H., Shi, Y., Yao, W., Huang, X., and Liu, N.
(2024). Could small language models serve as recom-
menders? towards data-centric cold-start recommen-
dation. In Proceedings of the ACM Web Conference
2024, pages 3566–3575.

Xie, R., Wang, J., Huang, R., Zhang, M., Ge, R., Pei,
J., Gong, N. Z., and Dhingra, B. (2024). Recall:
Membership inference via relative conditional log-
likelihoods. arXiv preprint arXiv:2406.15968.

Xu, S., Hua, W., and Zhang, Y. (2024). Openp5: An open-
source platform for developing, training, and evaluat-
ing llm-based recommender systems. In Proceedings
of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 386–394.

Beyond Parameter Counts: Benchmarking Similar-Sized Large Language Models for Next-Item Recommendation

371

