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Abstract: The increasing use of real-time data streams in application areas such as the Internet of Things (IoT), financial 
analytics, and social media demands highly flexible and self-adaptive data pipelines. Modern AI techniques 
enable the automatic adjustment of these pipelines to dynamically changing data landscapes; however, their 
decision-making processes often remain opaque and difficult to interpret. This paper presents and evaluates 
novel approaches for integrating Explainable Artificial Intelligence (XAI) into self-adaptive real-time data 
pipelines. The goal is to ensure transparent and interpretable data processing while meeting the requirements 
of real-time capability and scalability. The proposed methods aim to strengthen trust in automated systems 
and simultaneously address regulatory demands. Initial experimental results demonstrate promising 
improvements in both explainability and adaptivity without significant performance degradation.

1 INTRODUCTION 

The rapid increase in data—especially in the form of 
real-time data streams—is increasingly shaping a 
wide range of industries and applications. With the 
emergence of technologies such as the Internet of 
Things (IoT), social media platforms, and high-
frequency financial trading, vast volumes of data are 
being continuously and rapidly generated (Cacciarelli 
& Kulahci, 2024). The analysis and processing of this 
data in real time is essential for enabling swift 
decision-making and automation across various 
domains, from industrial manufacturing to 
cybersecurity (Zaharia et al., 2016). In this context, 
self-adaptive data pipelines are gaining growing 
importance, as they are capable of dynamically 
responding to changing conditions and adjusting the 
data flow accordingly (Sresth et al., 2023).  

However, while many systems are able to 
autonomously adapt to changing data streams, they 
often lack the ability to make these adaptations 
transparent and understandable. This raises the 
central research question of this work: How can 
explainability be integrated into self-adaptive data 
pipelines without compromising real-time 
capabilities?  
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Self-adaptive data pipelines are systems that not 
only continuously ingest and process data but also 
autonomously adjust their internal structure, 
parameters, and algorithms in response to changing 
data conditions or environmental factors (Zaharia et 
al., 2016). This is particularly relevant when dealing 
with so-called concept drift effects, where the 
underlying data distribution changes over time (Gama 
et al., 2014). Such changes can significantly impair 
model performance if not detected and addressed 
promptly. Traditional, static pipelines that operate 
without adaptive mechanisms are at a disadvantage in 
such scenarios and may quickly produce outdated or 
incorrect results (Krawczyk, 2016). 

The integration of artificial intelligence (AI)—
and especially machine learning methods—into these 
adaptive systems makes it possible to manage the 
complexity and dynamics of streaming data. AI 
models can detect patterns, make predictions, and 
automatically implement adjustments to optimize 
data processing (Gomes et al., 2023). This automation 
enhances not only the efficiency and accuracy but 
also the scalability of data pipelines in real-time 
environments. In addition, self-learning algorithms 
allow systems to proactively respond to new data 
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characteristics without requiring human intervention 
(Gama et al., 2014). 

Despite the obvious advantages of AI-powered 
adaptive pipelines, significant challenges remain—
particularly regarding the transparency and 
interpretability of their automatic adjustments 
(Azeroual, 2024). Modern AI models are often 
perceived as black-box systems, with internal 
decision-making processes that are difficult to 
understand and explain (Adadi & Berrada, 2018). 
This lack of transparency hampers error diagnosis, 
debugging, and user acceptance by both end-users 
and decision-makers (Doshi-Velez & Kim, 2017). 
Moreover, regulatory requirements—such as those 
mandated by the General Data Protection Regulation 
(GDPR)—are becoming increasingly stringent, 
making explainable and traceable data processing 
essential (Rudin, 2019). 

Against this backdrop, the research field of 
Explainable Artificial Intelligence (XAI) has 
emerged, aiming to design models whose decisions 
and adjustments are understandable and interpretable 
by humans (Arrieta et al., 2020). However, many 
existing XAI methods focus on static, batch-based 
models and fail to consider the specific requirements 
of real-time streaming and adaptive systems (Guidotti 
et al., 2018). In real-time environments, explanations 
must be delivered quickly, dynamically, and 
contextually, supporting users in interpreting model 
behavior without compromising system latency or 
efficiency (Abbas & Eldred, 2025). 

The integration of XAI into self-adaptive real-
time data pipelines thus represents a timely and 
critical research challenge. The objective is to 
develop approaches that not only maintain the 
adaptability of pipelines but also provide transparent 
and comprehensible explanations for their dynamic 
adjustments. Key challenges include minimizing 
latency, ensuring scalability, and handling 
continuously changing data contexts (Ribeiro et al., 
2016). Addressing these aspects is crucial for 
building user trust and enabling the deployment of 
AI-based systems in safety-critical and regulated 
application domains. 

This paper presents a novel system architecture 
that integrates XAI into self-adaptive real-time data 
pipelines. The goal is to combine adaptivity and 
explainability to enable transparent, interpretable, 
and high-performing data processing. The modular 
pipeline handles concept drift and is evaluated 
through empirical experiments and user feedback, 
aiming to strengthen trust in AI while meeting 
practical and regulatory requirements. 

2 THEORETICAL 
BACKGROUND/ 
FOUNDATIONS 

2.1 Data Pipelines: Structure, Function, 
and Challenges in Real-Time 
Streaming 

Data pipelines are structured sequences of processing 
steps that guide data from acquisition through 
transformation to analysis (Hashem et al., 2015). In 
modern applications, these pipelines often need to 
handle large volumes of data streams in real time, 
which imposes specific requirements on latency, 
scalability, and fault tolerance (Zaharia et al., 2016). 
Real-time streaming pipelines enable the continuous 
processing of data in motion, for example through 
frameworks such as Apache Kafka, Apache Flink, or 
Apache Spark Streaming (Kreps et al., 2011; Carbone 
et al., 2015). A central challenge lies in ensuring data 
consistency and quality despite high data rates and 
potential failures (Liu et al., 2021). 

2.2 Self-Adaptivity: Concepts and 
Mechanisms 

Self-adaptivity refers to a system's ability to 
autonomously adjust its behavior to changing 
environmental conditions without human 
intervention (Salehie & Tahvildari, 2009). In data-
driven pipelines, this is especially relevant when data 
distributions change—a phenomenon known as 
concept drift (Gama et al., 2014). Concept drift 
describes the temporal shift in the underlying data 
distribution, which can lead to performance 
degradation of static models (Widmer & Kubat, 
1996). Adaptive mechanisms such as online learning 
or model retraining are used to detect and compensate 
for such changes (Krawczyk, 2016). Automated 
machine learning (AutoML) supports these processes 
by autonomously optimizing model parameters and 
generating new models (He et al., 2021). 

2.3 Artificial Intelligence (AI) and 
Machine Learning (ML) in Adaptive 
Systems 

AI, particularly ML, enables adaptive systems to 
learn from data and dynamically improve decision-
making (Russell & Norvig, 2016). In real-time 
streaming scenarios, online learning methods are 
frequently applied to incrementally update models 
and reflect current data (Bifet et al., 2018). Concept 
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drift detection techniques are essential to maintain 
model accuracy over time (Lu et al., 2018). 
Combinations of supervised, unsupervised, and 
reinforcement learning methods are employed to 
address various challenges in self-adaptive systems 
(Mohammadi et al., 2018).  

However, the integration of ML into adaptive 
systems also increases complexity, making it harder 
for users to understand why specific adaptations 
occur—especially in real-time environments. This 
highlights the need for mechanisms that make such 
dynamic decisions transparent, which is where XAI 
becomes crucial. 

2.4 Explainable AI (XAI): Definitions, 
Methods, Limitations 

XAI refers to methods and techniques that make the 
decisions of AI systems understandable and 
transparent to humans (Doshi-Velez & Kim, 2017). 
The goal is to enhance trust in AI, especially in safety-
critical applications (Arrieta et al., 2020). XAI 
methods can be categorized into intrinsic models 
(e.g., decision trees) and post-hoc explanations (e.g., 
LIME, SHAP) (Ribeiro et al., 2016; Lundberg & Lee, 
2017). Despite recent advances, limitations remain 
regarding scalability, interpretability, and 
applicability to complex, dynamic systems (Adadi & 
Berrada, 2018). Furthermore, ensuring explanation 
stability over time and mitigating the risk of 
misleading or inconsistent explanations in self-
adaptive models remain open research questions. 

2.5 Specific Challenges of XAI in  
Real-Time and Streaming Contexts 

The application of XAI in real-time streaming and 
self-adaptive systems imposes additional 
requirements: explanations must be provided with 
low latency, continuously updated, and adapted to 
changing data contexts (Abbas & Eldred, 2025). This 
places high demands on the efficiency of explanation 
methods and their ability to interpret dynamic models 
(Guidotti et al., 2018). Research shows that many 
established XAI techniques cannot be directly applied 
to real-time data streams, as they are often batch-
oriented and computationally intensive (Molnar, 
2020). New approaches aim to develop adaptive, 
lightweight, and context-sensitive explanations for 
streaming data (Lundberg et al., 2020). 

The need for lightweight, adaptive explanation 
mechanisms in streaming contexts underscores the 
research gap this work aims to address—namely, the 
lack of integrated solutions that combine real-time 

adaptivity with explainability in a coherent, scalable 
system.  

3 STATE OF RESEARCH 

The rapid development of data-driven systems and 
the increasing importance of real-time streaming data 
have led to intensified research on adaptive data 
pipelines in recent years. These pipelines are 
designed to autonomously adjust to changing data 
environments in order to continuously deliver 
accurate and reliable results (Gama et al., 2014; Kiran 
et al., 2021). In particular, the challenge of concept 
drift—i.e., the temporal change in the underlying data 
distribution—requires flexible and adaptive 
approaches capable of continuously updating models 
and responding to new conditions (Widmer & Kubat, 
1996; Krawczyk, 2017). The integration of AI and 
ML plays a central role in enabling automated 
decision-making within the pipeline and ensuring 
autonomous adaptation to shifting data streams (He et 
al., 2021; Bifet et al., 2018). 

Many existing adaptive systems rely on online 
learning techniques, which allow models to be 
incrementally trained with new data, thereby 
maintaining model performance during live operation 
(Lu et al., 2018). Additionally, AutoML techniques 
are integrated to automate the processes of model 
selection and optimization, reducing the need for 
human intervention (He et al., 2021). Despite these 
advances, most studies focus on individual aspects of 
the pipeline—such as model updating or data 
preprocessing—and tend to neglect a holistic 
perspective that includes the explainability and 
transparency of automatic decisions (Kiran et al., 
2021). 

XAI is a growing research field aimed at 
increasing trust in AI systems, particularly in safety-
critical and regulated application areas (Doshi-Velez 
& Kim, 2017; Arrieta et al., 2020). XAI encompasses 
methods that make the internal decision processes of 
often complex black-box models comprehensible 
(Molnar, 2020). Broadly speaking, XAI methods can 
be divided into intrinsically interpretable models and 
post-hoc explanation techniques (Ribeiro et al., 2016; 
Lundberg & Lee, 2017). While intrinsic models such 
as decision trees or linear regression are transparent 
by design, post-hoc approaches like LIME or SHAP 
provide explanations for arbitrary models without 
modifying the underlying architecture (Ribeiro et al., 
2016; Lundberg & Lee, 2017). 

However, most established XAI methods have 
been developed for static, batch-oriented data 
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environments. Real-time streaming contexts pose 
new challenges: data distributions may change 
dynamically, models need to be continuously 
adapted, and explanations must also be delivered 
rapidly and adaptively to ensure transparency in 
decision-making at all times. Providing explanations 
in real time further requires resource-efficient 
algorithms that are compatible with high data 
throughput and low-latency requirements (Guidotti et 
al., 2018). Current research efforts therefore focus on 
developing incremental and lightweight XAI 
methods specifically tailored for streaming data 
(Lundberg & Lee, 2017). However, these approaches 
are still in an early stage and often address only partial 
aspects—such as the explanation of individual 
predictions—without fully covering the complex 
adaptation mechanisms of entire pipelines. 

An analysis of current research clearly reveals a 
significant gap: there are very few integrated 
approaches that combine self-adaptive data pipelines 
with XAI methods to ensure continuous transparency 
and traceability in real-time streaming environments 
(Arrieta et al., 2020; Zhou et al., 2022). Most studies 
focus either on the adaptivity of the pipeline or the 
explainability of individual models, but not on the 
combination of both aspects in a dynamic, stream-
based context. What is missing is an end-to-end 
approach that simultaneously ensures (1) continuous 
model adaptation, (2) timely and relevant 
explanations, and (3) seamless integration into real-
time data pipelines. 

Table 1: Classification of Existing Approach. 

 
 

Table 1 provides an overview of selected relevant 
research works, classifying them according to their 
approaches to adaptive pipelines, AI integration, 
application of XAI methods, and real-time 
capabilities. 

This overview illustrates that while substantial 
work exists on adaptive pipelines and XAI models 
individually, the fusion of both domains in real-time 
environments remains largely unexplored. This 
research gap represents a critical barrier to the 
acceptance and broader deployment of automated, 

self-adaptive systems, as transparency and 
traceability are essential prerequisites for trust and 
compliance (Arrieta et al., 2020). 

The present paper addresses this intersection and 
aims to develop novel approaches that seamlessly 
integrate XAI methods into adaptive real-time data 
pipelines to ensure both high performance and 
transparency. 

4 METHODOLOGY / CONCEPT 
DEVELOPMENT 

This paper focuses on the development of an 
innovative approach for implementing explainable, 
self-adaptive real-time data pipelines, aiming to close 
existing research gaps at the intersection of adaptivity 
and explainability. The methodology is based on the 
design and implementation of a modular, 
dynamically adjustable system capable of 
continuously and autonomously responding to 
changes in incoming data streams, while 
simultaneously providing understandable 
explanations for its decisions and adaptations at any 
time. The concept is designed to enhance 
transparency and traceability of self-adaptive 
processes without compromising key real-time 
requirements such as latency and performance. 

The proposed approach relies on a tightly 
integrated combination of advanced ML techniques 
and explainable AI (XAI) technologies. At its core, 
the system uses online learning algorithms that 
continuously update model parameters based on new 
incoming data, maintaining model accuracy even as 
data distributions shift. These methods are 
particularly well-suited for reacting to concept drift—
i.e., changes in the statistical structure of the data—
that would otherwise significantly degrade model 
performance without automatic adaptation. In 
addition, AutoML techniques are integrated to 
automate the selection and optimization of model 
hyperparameters, enabling the pipeline to operate 
largely autonomously. This reduces the need for 
human intervention and allows for flexible and 
scalable model maintenance in productive real-time 
environments.  

LIME and SHAP were selected due to their wide 
acceptance, ability to generate local feature 
attributions, and extensibility. Despite their original 
design for batch scenarios, we extend them to operate 
in a streaming context by implementing window-
based updates and approximation strategies. 

Parallel to adaptive modeling, the integration of 
XAI methods is a central element of the design. 
Resource-efficient, incremental explanation 
approaches are developed, tailored to continuous data 
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streams, enabling timely generation of explanations. 
In contrast to traditional post-hoc explanation 
methods, which are often computationally intensive 
and designed for static datasets, this methodology 
supports ongoing explanation generation that reflects 
the dynamics of the data stream and transparently 
illustrates changes in decision-making logic. For 
instance, feature importance scores and local 
surrogate models are incrementally updated to 
provide fast yet precise and context-sensitive insights 
into the behavior of adaptive models. Explanations 
are hierarchically structured to offer different levels 
of detail suited to various stakeholders—from 
technical experts to domain users—thereby 
enhancing both comprehensibility and relevance. 

The technical realization of the approach is based 
on a modular system architecture that integrates 
components for data ingestion, preprocessing, model 
training and updating, explanation generation, and 
monitoring/control. For data ingestion and 
processing, established streaming frameworks such 
as Apache Kafka or Apache Flink are employed, 
ensuring high throughput and low latency as a robust 
foundation for real-time operations. The adaptive 
modeling module implements both online learning 
algorithms and AutoML components, which 
automatically determine suitable model 
configurations and seamlessly integrate them into 
operation. In parallel, a dedicated explanation module 
operates as a lightweight microservice, tightly 
coupled with the adaptive models to access relevant 
contextual information required for explanation 
generation. The monitoring component continuously 
evaluates data distribution, model quality, and 
explanation performance, controlling the adaptive 
pipeline by triggering model updates or issuing alerts 
in case of potential misadaptations. This establishes a 
closed feedback loop that ensures both the automation 
and transparency of data processing. 

The modular architecture of this system is 
illustrated in Figure 1. It highlights the close 
integration of individual components—from data 
ingestion and adaptive modeling to explanation 
generation and pipeline monitoring/control. The 
diagram particularly emphasizes the closed control 
loop that enables continuous self-adjustment of the 
models and the ongoing generation and provision of 
explanations in real time. This forms a critical 
foundation for ensuring high adaptability and 
comprehensive transparency in dynamic, data-
intensive environments, while also facilitating 
scalability, fault tolerance, and ease of 
maintenance—key requirements for deploying 
robust, trustworthy AI solutions in real-world 
streaming applications. 

 
Figure 1: Modular architecture of the proposed explainable, 
self-adaptive real-time data pipeline. 

As part of the development, specific criteria for 
explainability and real-time capability are also 
defined and systematically evaluated. The generated 
explanations must be comprehensible and traceable 
for various user groups and provide both local and 
global insights into model decisions and adaptations. 
At the same time, the pipeline must not delay data 
stream processing, requiring all components to be 
optimized for efficiency and resource usage. Through 
this integrative and iterative approach, a robust, 
scalable, and trustworthy real-time data processing 
system is created that addresses the demands of 
modern data-driven systems. 

Success of the system is defined along three core 
criteria: (1) accuracy and adaptability of the model 
under concept drift, (2) latency of both predictions 
and explanations, and (3) user-perceived clarity and 
usefulness of the explanations across different 
stakeholder groups. 

5 IMPLEMENTATION AND 
EXPERIMENTAL 
EVALUATION 

To validate the proposed concept of an explainable, 
self-adaptive real-time data pipeline, a prototype 
system was designed, implemented, and rigorously 
evaluated using realistic application scenarios that 
reflect practical challenges in dynamic environments. 
The implementation emphasized a modular and 
extensible architecture that incorporates dedicated 
components for data ingestion, real-time processing, 
adaptive modeling, explainability, as well as 
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continuous monitoring and control. This modular 
design allows for flexible integration and dynamic 
combination of various state-of-the-art AI and XAI 
methods, enabling comprehensive testing and 
optimization under stringent real-time conditions. 

The overall system architecture is depicted in 
Figure 2. Data ingestion is managed through an 
Apache Kafka cluster, which ensures reliable, 
scalable, and fault-tolerant distribution of incoming 
high-velocity data streams. For preprocessing, 
Apache Flink is employed to perform essential real-
time operations such as data cleansing, feature 
extraction, and feature scaling, thereby preparing the 
raw data for downstream modeling tasks without 
introducing significant latency. The adaptive 
modeling module incorporates incrementally learning 
algorithms—primarily Online Random Forests and 
Hoeffding Trees—combined with a lightweight 
AutoML mechanism that continuously optimizes 
hyperparameters to maintain model performance. 
This setup enables the system to dynamically adapt to 
evolving data distributions, with a particular focus on 
effectively detecting and reacting to concept drift. 

To address the critical aspect of explainability, a 
dedicated module was integrated that leverages 
streaming-capable variants of popular explanation 
methods like SHAP and LIME. Explanations are 
generated for every individual prediction in real-time 
and presented through an interactive web interface, 
offering users transparent insights into the model’s 
decision-making process. Complementing these 
components, the "Monitoring & Control" subsystem, 
built on Prometheus and a rule-based engine, 
continuously supervises system health, evaluates 
model quality, and triggers adaptive adjustments to 
modeling parameters as necessary to maintain 
optimal performance. 
 

 
Figure 2: System Overview with Data Flow. 

Figure 2 illustrates the data and control flow between 
system components: solid lines represent the 
continuous data flow (e.g., from Kafka → Flink → 
Modeling → Explanation), while dashed arrows 
depict feedback and control relationships—especially 
from the monitoring unit back to the modeling and 
explanation modules. This feedback enables demand-

driven adjustments without restarting the system, 
which is crucial for meeting real-time requirements. 

Two application scenarios were chosen for 
evaluation: an industrial IoT scenario with simulated 
machine data, and a financial scenario using modified 
real-time credit card transaction data. The industrial 
IoT case simulates predictive maintenance on 
streaming sensor data from manufacturing machines. 
This scenario reflects a typical real-time environment 
where early detection of equipment faults can prevent 
costly downtimes. The financial scenario uses 
anonymized credit card transaction streams to detect 
anomalies indicative of fraudulent activities. Both 
scenarios are characterized by stringent latency 
requirements and dynamic data distributions, making 
them ideal testbeds for evaluating adaptive modeling 
and explainability under realistic operational 
conditions. 

The impact of concept drift on model 
performance is illustrated in Figure 3. The figure 
shows the model’s accuracy over time. A significant 
drop in performance is observed immediately after 
the simulated drift point (marked by a red vertical 
line). However, due to the system’s automatic 
adaptability, accuracy quickly recovers. This pattern 
demonstrates that the system not only responds to 
drift events but is also capable of restoring model 
quality within short timeframes. 

 
Figure 3: Model Performance Before and After Concept 
Drift. 

Another focus was the evaluation of the model 
decision explainability. To this end, a real-time 
dashboard was developed that displays the top 
contributing features for each prediction as well as a 
locally approximated decision structure. Figure 4 
illustrates a typical output from this dashboard: on the 
left, feature importances are shown in a bar chart; on 
the right, a simple decision logic is visualized using a 
surrogate model to explain the specific model 
decision. These explanations were continuously 
generated and updated for each data point. 
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Figure 4: Example Real-Time Explanation Output. 

To qualitatively assess the explanations, a user study 
was conducted with twelve participants from data 
science and domain expert backgrounds. Participants 
rated the explanations on a five-point Likert scale in 
terms of clarity, usefulness, and trust. 

On average, the explanations were perceived as 
helpful (M = 4.3) and understandable (M = 4.5). 
Participants particularly appreciated the visual 
representation of feature importances and the ability 
to trace model behavior changes caused by concept 
drift. 

Overall, the study suggests that even lightweight, 
incremental explanation mechanisms can 
meaningfully support user understanding and trust in 
adaptive AI systems. Several participants expressed 
interest in being able to adjust the depth and detail of 
explanations to match their level of expertise. This 
indicates that configurable explanation interfaces 
could improve usability and acceptance across 
diverse user groups. 

In summary, the developed system is capable of 
adaptively responding to data changes while 
providing explainable decisions—without significant 
performance losses in terms of response time or 
model quality. Thus, the proposed pipeline 
contributes to trustworthy AI in the context of 
dynamic, high-frequency data streams. 

6 DISCUSSION 

The results presented in the previous section (Section 
5) offer well-founded insights into the behavior of 
explainable, self-adaptive real-time data pipelines 
under realistic conditions. The core objective of the 
evaluation was to assess the extent to which XAI 
methods can be meaningfully integrated into adaptive 
streaming systems without significantly 
compromising real-time capability or model 
performance. The findings suggest that such 
integration is not only technically feasible but also 
functionally beneficial. Notably, combining adaptive 

learning with dynamic explainability yields 
substantial improvements in trust, transparency, and 
system control. 

Performance analysis (cf. Figure 3) shows that 
the system was able to quickly stabilize its predictive 
performance following a detected concept drift. On 
average, the model regained acceptable accuracy 
within fewer than ten data windows—an efficiency 
considered suitable for real-time systems. These 
results support the assumption that AutoML-
supported online models are a powerful foundation 
for self-adaptive architectures in streaming 
environments. Moreover, the concurrent integration 
of explainability modules did not lead to a significant 
increase in inference latency (≤ 60 ms), 
demonstrating that real-time capability can be 
preserved despite the added interpretability. 

A particularly noteworthy aspect is the system’s 
ability to adapt not only its models but also the 
associated explanations continuously in response to 
changing data distributions. This capability 
represents a clear advantage over traditional XAI 
approaches, which are typically designed for static or 
batch-oriented settings. The user study confirmed that 
the real-time visualization of feature importances and 
local decision structures (cf. Figure 4) significantly 
enhanced model interpretability—for both technical 
and non-technical users. 

Despite these positive outcomes, the proposed 
approach also presents certain limitations. A key 
challenge lies in the temporal stability of 
explanations: since the models are constantly 
updated, the generated explanations may vary even 
for similar input data. This temporal inconsistency 
can lead to user uncertainty and highlights the need 
for further research in explanation-stable model 
adaptation. Another concern is the scalability of 
explainability in ultra-high-frequency data streams: at 
inference rates exceeding 10,000 events per second, 
even incremental XAI methods require substantial 
computational resources. Innovative strategies are 
needed here—such as selective or approximate 
explanation techniques that maintain interpretability 
without overwhelming system performance. 

In addition, the current evaluation does not yet 
cover all relevant dimensions of system robustness 
and generalizability. Specifically, the adversarial 
sensitivity of on-the-fly explanations remains 
unexplored: since local explanation methods like 
SHAP and LIME are known to be vulnerable to input 
perturbations, their reliability under adversarial 
conditions should be further investigated. Moreover, 
the impact of high-dimensional input data and 
complex model architectures on the fidelity and 
stability of explanations was not explicitly 
benchmarked. Addressing these open issues requires 
more comprehensive evaluations using standardized 
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datasets, adversarial scenarios, and controlled 
variation of model and data complexity. 

Furthermore, the absence of standardized 
evaluation metrics and publicly available benchmarks 
for explainability in streaming settings presents a 
methodological gap. Community-driven efforts 
toward shared testbeds and multidimensional 
performance indicators—including latency, stability, 
interpretability, and adversarial robustness—would 
significantly enhance comparability and 
reproducibility in this emerging field. 

In practical applications, the proposed approach 
opens up a range of possibilities, particularly in 
mission-critical domains such as predictive 
maintenance, real-time financial analytics, or medical 
telemetry. The ability to make adaptive decisions 
transparent not only supports regulatory compliance 
(e.g., in line with the EU AI Act) but also strengthens 
end-user trust in AI-driven systems. At the same time, 
the modular architecture allows for flexible 
adaptation to various data sources, model types, and 
deployment environments. 

This work also raises several important questions 
for future research. First, there is the question of how 
generalizable the approach is to more complex model 
architectures, such as deep learning in streaming 
contexts. Furthermore, combining the system with 
reinforcement learning strategies for policy 
adaptation presents a promising extension. Lastly, 
there is a clear need for standardized metrics to 
evaluate explainability in dynamic, non-deterministic 
settings—an open challenge that has yet to be fully 
addressed by either the XAI or the stream processing 
research communities. 

In conclusion, this study demonstrates that 
combining self-adaptivity with explainability in 
streaming environments is far more than a technical 
exercise. It represents a strategically significant step 
toward responsible, trustworthy AI systems for real-
time applications. 

7 CONCLUSIONS 

This paper addresses the design, implementation, and 
evaluation of an explainable, self-adaptive real-time 
data pipeline based on modern AI and XAI methods. 
The starting point was the observation that existing 
data processing systems in streaming contexts 
increasingly rely on ML for autonomous model 
adaptation, but often without adequate consideration 
of explainability and transparency of the decisions 
made. This represents a significant limitation, 
especially in sensitive application domains where 

both regulatory requirements and end-user trust play 
a central role. 

By integrating incrementally learning models 
with automated model selection (AutoML) and 
dynamically adaptable XAI techniques, an 
architectural approach was developed that operates 
both adaptively and interpretable—while 
simultaneously meeting real-time requirements. 
Experimental evaluation using realistic scenarios 
(IoT and financial data) demonstrated that the 
proposed pipeline can efficiently detect concept drift 
and adapt accordingly. At the same time, the system 
provided understandable and visually prepared 
explanations of model decisions without significantly 
impacting system latency or predictive quality. 

The contribution of this paper lies both 
conceptually and methodologically. On the one hand, 
an architectural framework was created that explicitly 
enables the coupling of self-adaptivity and 
explainability in streaming contexts. On the other 
hand, existing XAI methods were examined and 
adapted for their suitability in streaming 
environments. Moreover, the developed system 
offers a practical reference implementation realized 
with common open-source technologies such as 
Apache Kafka, Flink, Prometheus, and SHAP/LIME, 
making it applicable for industrial use as well. 

Nonetheless, essential challenges remain that 
should be addressed in future research. In particular, 
stable interpretability over time—i.e., consistency of 
explanations amid evolving models—remains an 
unresolved issue. There is also a need for 
standardizing metrics to systematically evaluate 
explainability in dynamic contexts. The use of deeper 
neural networks combined with XAI for real-time 
systems—for example, via distilled surrogate 
models—represents another promising direction for 
further investigation. 

To build on these findings, future research must 
also include comprehensive, multi-dimensional 
evaluations—covering adversarial robustness, 
explanation consistency, and scalability across 
different data rates and dimensionalities. 
Comparative studies with related architectural 
approaches are necessary to further validate 
effectiveness and identify best practices. 

Furthermore, future work could extend the system 
architecture with active learning mechanisms, self-
explaining user interfaces, or semantically grounded 
model feedback systems to enable even closer 
integration between users, the system, and 
explanations. Finally, a long-term user acceptance 
study under real-world conditions (e.g., in Industry 
4.0 environments) would be highly valuable to 
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capture the actual impact of dynamic explainability 
on trust and system control. 

The results presented here illustrate that 
explainable, self-adaptive AI systems in real-time 
data contexts are not just a theoretical vision but a 
practically implementable reality—provided that 
methodological robustness, system scalability, and 
human-centered perspectives are given equal 
consideration. 
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