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Single Image Super Resolution (SISR) is a vital task in computer vision that reconstructs High-Resolution

(HR) images from Low-Resolution (LR) inputs. It is widely used in fields like diagnostic imaging, geospatial
imaging, and video streaming. In this study, we introduce a Residual Network (ResNet) approach for super-
resolution, which addresses challenges like vanishing gradients and captures finer details through deeper ar-
chitectures. Our ResNet model effectively reduces computational overhead while preserving critical features,
ensuring scalability across various image datasets. We evaluated its performance on the DIV2K dataset using
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), achieving a PSNR of 30.25 dB
and SSIM of 0.77. These results demonstrate that our model outperforms traditional methods and competing
architectures, making it a robust solution for applications requiring high precision, such as video enhancement

and real-time imaging.

1 INTRODUCTION

Single-Image Super-Resolution (SISR)(Yang et al.,
2014) is a crucial task in computer vision that aims
to reconstruct High-Resolution (HR) images from
their Low-Resolution (LR) counterparts. It is uti-
lized across different fields, including healthcare di-
agnostics, space-based observation, and video stream-
ing.The demand for high-quality super-resolution
methods has grown significantly. Traditional tech-
niques based on interpolation, such as bicubic inter-
polation, often fail to preserve fine details and realis-
tic textures, leading to visually unsatisfactory results.

The advent of deep learning, particularly Con-
volutional Neural Networks (CNNs)(Aloysius and
Geetha, 2017), has revolutionized the field of
SISR(Ye et al., 2023). Among these, Residual Net-
works (ResNets)(Zhang et al., 2017) has emerged as
a promising architecture due to their ability to effec-
tively mitigate issues such as vanishing gradients in
deep networks while preserving critical feature in-
formation through skip connections. However, while
ResNets have shown success in advanced visual tasks
such as classifying image and detecting object, their
direct application to low-level tasks such as SISR has
been suboptimal.

In this study, we proposed a ResNet-based ap-
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Figure 1: Difference of Low-resolution image and High-
resolution image(Solutions, 2024)

proach that is specifically optimized for SISR tasks.
We are concerned with designing an advanced ResNet
architecture tailored to the restrictions imposed by ex-
isting conventional ResNet structures while dealing
with SISR-related applications. Meanwhile, we de-
velop a scalable training framework for a multi-scale
mode, which may efficiently handle several upscal-
ing factors in a single model. Therefore, it remains
adaptive and efficient under various conditions. In ad-
dition, the new approach is seriously compared with
existing techniques to demonstrate that it achieves su-
perior performance for improving image quality mea-
sures in terms of the PSNR and the SSIM.

The rest of this paper is structured in the fol-
lowing manner: Section 2 reviews related work,
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including traditional and deep learning-based SISR
approaches.  Section 3 describes the proposed
ResNet-based methodologies, including network de-
sign, training strategies, and multi-scale framework.
Section 4 presents experimental results and compar-
isons with benchmark methods. Section 5 discusses
the conclusions made after result, and concludes with
future research directions.

2 BACKGROUND AND RELATED
WORKS

Over the years, SISR has grown significantly, and
most of the earlier methods were interpolation-based,
such as bicubic(Khaledyan et al., 2020) and Lanc-
zos(Bituin and Antonio, 2024). These methods may
be computationally efficient but fall short of pro-
ducing fine details and realistic texture in the re-
construction of images consequently leading to poor
image aesthetics. Learning-based methods, for ex-
ample, neighbor embedding(Wang et al., 2018) and
sparse(Yang et al., 2010) coding techniques, have
been used to overcome such limitations by relating
LR and HR image patches. These methods were suc-
cessful to a degree but were hindered by their depen-
dence on custom features and simple architectures.

The introduction of deep learning revolutionized
SISR, with CNNs(Tian et al., 2021) demonstrat-
ing outstanding performance in various tasks
like picture Correction and enhancement. Early
CNN-based approaches, such as Super-Resolution
CNN(SRCNN)(Kumar, 2020) and Fast Super-
Resolution CNN(FSRCNN) (Luo et al.,, 2019),
showed significant improvements over conventional
techniques focus on understanding complete path-
ways from start to finish from LR to HR images.
However, these networks could not model com-
plex image textures due to their limited depth and
architectural simplicity.

Layer (A)

sidual Block

Figure 2: ResNet Architecture(Y1ldirim and Dandil, 2021)

The advent of deeper architectures like Very Deep
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Super-Resolution (VDSR)(Kim et al,, 2016)and
Super-Resolution  Residual Network (SRRes-
Net)(Ullah and Song, 2023) introduced residual
learning and skip connections, enabling higher
reconstruction quality while addressing issues like
vanishing gradients. However, challenges continue,
including scale-specific training, which causes
redundancy and inefficiency, and sensitivity to
hyperparameters, limiting robustness and scalability.

While residual networks (ResNets) show promise
in SISR tasks, their direct application from high-level
vision tasks is suboptimal. Many models include
unnecessary modules like batch normalization, con-
suming computational resources without benefiting
SISR. Furthermore, the focus on scale-specific mod-
els increases training time and memory usage, even
in multi-scale approaches like VDSR(Hitawala et al.,
2018).

To address these issues, we propose an opti-
mized ResNet-based framework tailored for SISR.
Our architecture improves computational efficiency
and training stability by removing unnecessary com-
ponents like batch normalization and incorporating
residual scaling. Additionally, a multi-scale train-
ing framework with shared parameters reduces model
size while maintaining performance, enhancing scal-
ability and suitability for practical applications.

3 PROPOSED METHODOLOGY

This section provides a detailed explanation of the
proposed methods, algorithms, and techniques that
are used to develop the proposed ResNet-based SISR
framework. It includes the architectural design, train-
ing strategies, mathematical models, implementation
steps, and challenges faced during development.

3.1 Network Design

The proposed super-resolution model employs resid-
ual learning, where residual blocks learn the differ-
ence between LR and HR images. Each block has two
convolutional layers with ReLU activations, with skip
connections adding input to output. Omitting batch
normalization improves efficiency, and scaling block
outputs (a0 = 0.1) stabilizes training. Stacked residual
blocks enhance feature refinement, preserving essen-
tial image details for high-quality outputs.

3.1.1 Architectural Optimizations

The core feature of our architecture is residual learn-
ing, where residual blocks are used to understand the
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difference between LR and HR features. Each block
contains two convolutional layers followed by ReLU
activations and uses skip connections to add the input
directly to the output, as described in (1). To improve
efficiency, batch normalization is removed, as it limits
the network’s ability to handle the dynamic range of
image features, especially in SISR tasks. This reduc-
tion in memory usage (around 40%) allows for better
reconstruction quality.

To stabilize the training of deeper networks, each
residual block’s output is scaled by a constant factor
o = 0.1, as formulated in (2). This scaling helps pre-
vent large gradients during back propagation and en-
sures better training stability.

y:X+f(X,{Wk}), (D

y=x+0- f(x,{Wi}). (2)
3.1.2 Final Architecture

The architecture begins with an initial convolution
layer that extracts details from the low-resolution in-
put image Irg. These details are then refined through
N residual blocks, where each block adjusts the fea-
tures as expressed in (3). After processing through
the residual blocks, upsampling is performed through
pixel shuffle layers, followed by the reconstruction of
the high-resolution image Isz through a final convo-
lutional layer. This approach ensures that the low-
resolution input is transformed into a high-quality
super-resolved image.

Fi=Fo+o-f(Fy). (3)

After processing through the residual blocks, up-
sampling is performed through pixel shuffle layers,
followed by the .0of the high-resolution image Isg
through a final convolutional layer. This approach en-
sures that the low-resolution input is transformed into
a high-quality super-resolved image.

3.2 Training Strategies
3.2.1 Knowledge Transfer Across Scales

To handle multiple scaling factors effectively, such as
x2, x3, and x4, a progressive transfer learning strat-
egy is used. Initially, the model is trained using a low
scaling factor, specifically x2, which allows the net-
work to learn the fundamental mappings required for
picture super-resolution. Following the training of the
model for the lower scaling factor, the learned weights
are then used to initialize models for higher scaling
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factors, such as x3 and x4. This approach helps ac-
celerate convergence when training for larger scaling
factors the model can use knowledge acquired during
previous stages of training.

3.2.2 Loss Function Analysis

The training process involves minimizing the pixel-
wise reconstruction loss. Two primary loss func-
tions are considered: L2 loss and L1 loss. The L2
Loss (Mean Squared Error), as defined in (4),en-
deavors to reduce the squared discrepancies between
the forecasted and actual images, maximizing the
PSNR. However, Although L2 loss helps to produce
smoother results, it often tends to smooth out impor-
tant details in the image.

L2 = %Zi =1V (Isr (i) — Iur (D)), (@)

In contrast, the L1 Loss (Mean Absolute Error),
given in (5), determines the overall discrepancy be-
tween the estimated and real pixel values. This loss
function is preferred for image super-resolution tasks,
as it preserves edges and textures, producing sharper
and more detailed reconstructions compared to L2
loss.

1
LL1 = Nzi = 1V Isr (i) — g (i)] )
3.3 Multi-Scale Super-Resolution

Preprocessing and Evaluation Low-resolution
(LR) images are generated by bicubic downsampling
of high-resolution (HR) images at scaling factors
x2, x3, and x4. During training, random patches
of size 48 x 48 are extracted from both LR and HR
images, with data augmentation applied through
random rotations (90°, 180°, 270°) and horizontal or
vertical flipping. The performance of the network is
assessed on the DIV2K validation and test sets using
PSNR and SSIM, which assess image quality and
structural resemblance between the recovered and
actual images.

Unified Framework and Training Process To
handle different scaling factors, a unified framework
with shared parameters across scales is employed.
Each scaling factor has its own preprocessing module
with residual blocks for normalization, while a shared
main network extracts common features. Scale-
specific modules perform the upsampling to generate
high-resolution (HR) images. The bicubic downsam-
pling for the low-resolution (LR) to HR mapping is
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Figure 3: Multi-scale preprocessing working model(Hui
et al., 2016)

mathematically expressed in (6). The network learns
an inverse mapping to reconstruct /g from Iy .

I = Downsample(Iyg), (6)

During training, a scaling factor is randomly
selected (s € {2,3,4}) for each mini-batch. The
LR input is processed using scale-specific modules,
passed through the shared network, and upsampled
with scale-specific layers. L1 loss is computed, and
weights are updated accordingly.

3.4 Implementation Approach

The model is built using PyTorch for its modular ar-
chitecture and efficient GPU acceleration. It employs
the L1 loss function for regression tasks and the Adam
optimizer, configured with a learning rate of 10~*
for effective convergence. Data augmentation tech-
niques, including random rotations and flips, increase
dataset diversity, enhancing the model’s adaptability
to unfamiliar data and improving performance in real-
world applications.

4 RESULTS AND DISCUSSION

In this section, we present and analyze the results
of our proposed residual network-based framework
for SISR. Performance is evaluated in terms of stan-
dard metrics such as PSNR and SSIM across multiple
scales. Additionally, we compare it against leading
approaches, including FSRCNN(Dong et al., 2016),
Bicubic interpolation(Yuan et al., 2018), VDSR, En-
hanced Deep SR(EDSR)(Lim et al., 2017), SR Gen-
erative Adversarial Network (SRGAN)(Ledig et al.,
2017), and Cycle in Cycle GAN (CinCGAN)(Yuan
et al., 2018).

4.1 Dataset: DIV2K

The DIV2K dataset, a standard for evaluating im-
age super-resolution tasks, consists of higher qual-
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ity 2K resolution images. For this study, the dataset
is processed with a bicubic x4 degradation, generat-
ing low-resolution images at one-sixteenth the origi-
nal size. The collection consists of 800 images des-
ignated for training, along with 100 images allocated
for validation and an additional 100 images meant for
testing, with the LR images serving as inputs and HR
images as targets.

Figure 4: Sample images in the dataset.

4.2 Presentation of Results

The results for the x4 scaling evaluated on the
DIV2K dataset are summarized in the table below.
Two key metrics are used for evaluation: PSNR and
SSIM.

The table presents a quantitative assessment of
our scaling algorithm’s performance on various high-
resolution images from the DIV2K dataset. These re-
sults will help us understand the effectiveness of our
approach and identify areas for improvement.

Table 1: Performance Comparison on DIV2K Validation
Set for x4 Scaling (PSNR (dB) / SSIM)

Method x4 (PSNR) | x4 (SSIM)
FSRCNN (CNN-Based)(Dong et al., 2016) 22.79 0.61
Bicubic(Yuan et al., 2018) 22.85 0.65
VDSR (Deep CNN) 28.17 0.65
EDSR (Deep CNN)(Lim et al., 2017) 22.67 0.62
SRGAN (GAN-Based)(Ledig et al., 2017) 24.33 0.67
CinCGAN (GAN-Based)(Yuan et al., 2018) 24.33 0.69
Proposed Model 30.25 0.77

4.3 Detailed Analysis of Results

Performance Highlights The proposed model
demonstrates significant performance improvements
over existing methods. It achieves the highest PSNR
of 30.25 dB and SSIM of 0.77 for x4 scaling, out-
performing both EDSR and SRGAN. Specifically,
when compared to EDSR, the model improves PSNR
by 7.57 dB and SSIM by 0.15, showcasing the ef-
fectiveness of the architectural optimizations imple-
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PSNR Value

FSRCNN Bicubic VDSR EDSR SRGAN CinCGAN  ProposedWork

Methods

Figure 5: Result demonstrates proposed work is best con-
cerning PSNR value

1

SSIM Values

FSRCNN Bicubic VDSR EDSR SRGAN

CinCGAN  ProposedWork

Methods

Figure 6: Result shows the proposed model is best concern-
ing SSIM value

mented. While GAN-based methods such as SRGAN
and CinCGAN provide competitive perceptual qual-
ity, they tend to introduce artifacts, leading to lower
PSNR and SSIM values compared to the proposed
model.

Comparison Observations In terms of comparison
with other super-resolution techniques, FSRCNN and
Bicubic interpolation, although lightweight and com-
putationally efficient, struggle with recovering fine
details due to their relatively simple architectures.
VDSR, despite being a deeper model, achieves mod-
erate improvements in PSNR and SSIM. SRGAN pro-
duces visually appealing results, but can occasionally
introduce artifacts, negatively impacting the PSNR
and SSIM scores. Similarly, CinCGAN performs well
under specific degradation conditions, but lacks con-
sistency when applied to general datasets, making it
less reliable than the proposed method in a wider
range of scenarios.

4.4 Qualitative Comparison

The proposed model shows notable improvements in
image quality, offering sharper edges and better tex-
ture preservation compared to previous models such
as FSRCNN and VDSR. It also exhibits fewer arti-
facts and superior perceptual quality relative to GAN-
based approaches such as SRGAN. Furthermore, the
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Figure 7: Super-resolution results of the proposed model for
x4 scaling factors

model achieves significantly enhanced detail recon-
struction over EDSR, indicating its effectiveness in
fine-diameter refining while maintaining structural in-
tegrity.

4.5 Interpretation of Results and
Implications

The experimental outcomes demonstrate the valid-
ity of the proposed residual network-based super-
resolution model delivers superior reconstruction fi-
delity and structural quality for x4 scaling. These
findings validate the original objective of achieving
high-quality image reconstructions with an efficient
and optimized network design. The practical implica-
tions of this work extend to various domains, includ-
ing satellite images, medical imaging, and real-time
video enhancement. Moreover, the model’s scalabil-
ity and adaptability to varying scaling factors ensure
its usability across diverse applications without the
need for separate models for each scale.

4.6 Limitations of the Current
Approach

In spite of its cutting-edge capabilities, the sug-
gested model has certain limitations. Firstly, the
deep architecture necessitates significant computa-
tional resources, including GPU memory and pro-
cessing power, which may pose challenges for de-
ployment in resource-constrained environments. Sec-
ondly, the model’s performance on real-world degra-



dation models, such as non-bicubic downsampling,
may vary and require further adaptation. Finally,
while the model achieves a balance between fidelity
and perceptual quality, it may not fully replicate the
aesthetic realism achieved by GAN-based approaches
like SRGAN(Ledig et al., 2017) and CinCGAN(Yuan
et al., 2018), which could be critical for applications
prioritizing perceptual aesthetics.

S CONCLUSION AND FUTURE
WORK

Super-resolution using residual networks has greatly
im proved high-resolution image reconstruction from
low resolution inputs through residual learning and
skip connec tions. This approach tackles issues like
vanishing gradients and enables deeper architectures
to capture fine details effectively. Achieving metrics
such as a PSNR of 30.25 dB and SSIM of 0.77, the
model outperforms traditional methods on the DIV2K
dataset, making it suitable for precision-demanding
applications like video enhancement. However, it still
faces challenges, including high computational de-
mands and adapt ing to real-world degradation, which
need to be addressed for broader use in fields like
medical imaging and consumer devices. Enhancing
the balance between realism and struc tural fidelity
could also improve its performance in aesthetic sensi-
tive applications.

Integrating advanced techniques like self-
attention, channel attention, and combining residual
networks with vision trans formers can enhance
performance. Innovations in lightweight designs,
model pruning, and efficient training will aid deploy
ment in resource-limited environments. Expanding
datasets for diverse applications will strengthen the
role of next-generation super-resolution technology.
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