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Abstract: The pandemic Covid 19 in the year 2019 highlighted the need for advanced diagnostic 
methodologies to address a spectrum of pulmonary diseases. Although the major method of 
COVID-19 detection is still conventional PCR testing, the combination of AI and X-ray imaging 
presents a promising path toward a thorough diagnosis of pulmonary illness. Here, we provide a 
new optimization framework based on the Xception neural network architecture and Genetic 
Algorithm (GA) for precise pulmonary disease detection from X-ray pictures, including 
coronavirus and pneumonis (viral, bacterial). By utilising deep learning and convolutional neural 
networks, the main aim of this paper to improve the accuracy and efficiency of diagnosis. Using 
GA, we explore the vast design space of deep CNN architectures, encompassing parameters such 
as network depth, layer count, and type. Utilising an extensive dataset of X-ray pictures, the 
suggested Xception-based neural network is rigorously assessed repeatedly through GA-driven 
optimization. The result highlight how well the improved model distinguishes lung disorders 
achieved with AI-driven approaches. 

1 INTRODUCTION 

The technology based on deep learning algorithms 
has transformed traditional medical image diagnosis 
and prognosis in recent years. X-ray imaging is of the 
most readily available and used method for 
diagnosing lung conditions like pneumonia, whether 
bacterial or viral, as well as emerging threats like 
COVID-19. The use of deep neural networks (DNNs) 
for automated classification and detection tasks has 
seen significant advancements, delivering remarkable 
accuracy across various benchmarks. Among the 
notable CNN architectures is Xception, introduced in 
2017 by François Chollet, known for its exceptional 
image recognition capabilities. Its innovative depth-
wise separable convolutions enhance effective 
feature learning and extraction, making it a strong 
candidate for medical image analysis where accuracy 
and computational efficiency are paramount. 
However, fine-tuning Xception's architecture and 
parameters to meet specific medical imaging 
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requirements remains a challenge. This study 
suggests a way to enhance the detection of pulmonary 
diseases, including COVID-19, viral, and bacterial 
pneumonia, in X-ray images. The approach involves 
a hybrid methodology that combines the optimization 
capabilities of genetic algorithms (GAs) with 
Xception's properties. Genetic algorithms, inspired 
by natural selection, serve as a powerful tool to 
identify and build optimal DNN configurations. This 
research seeks to determine whether using genetic 
algorithms to refine the Xception model's architecture 
and hyperparameters—specifically for lung disease 
detection from X-ray images—is effective. The 
objective is to improve the precision and robustness 
of disease diagnosis by iteratively adjusting neural 
network architectures using genetic algorithms, 
facilitating early identification and timely diagnosis 
or treatment. The optimized Xception-based DNN 
model will be evaluated on benchmark datasets 
through extensive experiments, including cases of 
COVID-19, viral pneumonia, bacterial pneumonia, 
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and healthy controls. The aim of this study is to 
advance the creation of reliable and efficient 
automated pulmonary disease diagnosis tools, 
supporting clinical decisions by healthcare 
professionals and ultimately improving patient 
outcomes. 

2 LITERATURE REVIEW  

Over the years, several techniques have been 
suggested for medical image analysis, shifting from 
traditional feature-based approaches to advanced 
machine learning techniques. Early investigations in 
medical image analysis focused on basic image 
processing techniques like thresholding, 
morphological operations, and edge detection. While 
these methods laid the groundwork for future 
research, they often fell short in meeting the accuracy 
and consistency required in clinical practice. 
Apostolopoulos and Mpesiana (Apostolopoulos, 
Mpesiana, et al.  2020) fine-tuned Convolutional 
Neural Networks (CNNs) for the automatic detection 
of COVID-19 from X-ray images, demonstrating that 
pre-trained models can enhance diagnostic accuracy. 
Similarly, Duran-Lopez et al. (Duran-Lopez, 
ominguez-Morales, et al.  2020) proposed COVID-
XNet, a deep learning model designed to diagnose 
and localize COVID-19 in chest X-rays, aiming to 
improve both detection accuracy and efficiency. 
Sethy and Behera (Sethy, Behera, et al.  2020) 
investigated deep learning potential in medical 
imaging, using neural networks to extract features for 
the identification of COVID-19 in X- rays images. 
This study highlighted how deep learning techniques 
can streamline the analysis of X-ray data, offering a 
reliable solution for disease diagnosis and reducing 
unnecessary examinations.Narin et al. (Narin, Kaya, 
et al.  2021) applied various deep learning models for 
classification of coronavirus and normal cases, with 
their ResNet50 model achieving 98.0% accuracy in 
the best-case scenario. Zhang et al. (Zhang, Xie, et al.  
2020) introduced another ResNet-based model that 
achieved an AUC of 0.952, effectively highlighting 
areas affected by pneumoniavari using Grad-CAM. 
Wang et al. (Wang, Lin, et al.  2020) proposed a deep 
CNN for classifying viral and bacterial infections and 
normal cases, achieving 83.5% accuracy.Image 
segmentation has also played a critical role in 
COVID-19 applications, including diagnostics 
(Chen,  et al.  2019), (Wang,  et al.  2021), (Jin,  et al.  
2020), (Song,  et al.  2021). For example, Li et al. (Li,  
et al.  2020) used a U-Net architecture to segmentin 
lung images to differentiate COVID-19 from 

pneumonia acquired from the community using CT 
scans of the chest region. Jin et al.  (Jin,  et al.  2020) 
developed an AI system for rapid COVID-19 
detection, where segmented CT slices serve as input 
for the classification model.Segmentation techniques 
also prove valuable in quantification tasks within 
medical applications (Jin,  et al.  2020), (Shan,  et al.  
2021). A new model, XcepCovidNet, was introduced 
to identify features in X-rays of the chest region, 
utilizing transfer learning combined with 
hyperparameter tuning to address limitations in the 
training dataset (Juneja, Kumar, et al.  2024). Beyond 
X-rays, recent studies have turned to CT scans for the 
same purpose. For instance, Khan et al. (Khan, Shah, 
et al.  2020) developed CoroNet, a classification 
system consisting of four classes for COVID-19, 
achieving accuracies of 89.6% and 95% for chest X-
ray (CXR) and CT scanned images, respectively. 
COVNet, designed by Li et al. (Li,  et al.  2020), was 
based on ResNet50 and trained on a dataset of 4,356 
images of CT scans of the chest region. Lastly, 
Joloudari et al. (Joloudariet,  et al.  2023) proposed a 
deep learning-based global feature extractor for 
COVID-19 detection, further contributing to the 
research on using deep learning in medical image 
analysis. 

3 PROPOSED METHOD 

The suggested model in this paper makes use of three 
fundamental algorithms. The deep convolutional 
neural network Xception model is used for the 
detection of respiratory disease in lung X-ray images. 
The Genetic algorithm is then used to tune the 
hyperparameters of the Xception model to achieve the 
best possible architecture. This section explains the 
Genetic Algorithm, CNN, Xception model and finally 
the model suggested.  

3.1 CNN 

CNNs are a class of deep learning models for 
processing structured grid data, notably images and 
videos. Convolutional, pooling, and fully connected 
layers are how CNNs work to extract hierarchical 
characteristics from input data.Components of a 
CNN: Convolutional Layers: These layers are made 
up of filters, sometimes known as kernels, that 
execute convolutions by sliding across the input data. 
Each filter specializes in detecting specific features, 
such as edges or textures, by capturing spatial 
correlations. Activation functions such as ReLU 
introduce non-linearity. Pooling Layers: 

Genetic Algorithm Based Optimization of Convolutional Neural Network for Respiratory Disease Detection

805



Convolutional layer feature maps are down sampled 
by pooling layers, which reduces spatial dimensions 
without losing important information. For example, 
max pooling selects the greatest value within local 
regions, effectively shrinking feature map sizes. 
Feature maps are converted into vectors and run 
through one or more fully connected layers following 
a number of convolutional and pooling layers.The 
layers here handle classification or regression tasks 
by learning intricate relationships between extracted 
features and target labels. CNN architectures may 
incorporate additional elements such as dropout 
layers for regularization, batch normalization layers 
for accelerated convergence, and skip connections for 
improved gradient flow during training. Training 
CNNs involves optimizing parameters (weights and 
biases) using gradient-based optimization algorithms 
like SGD or its variants. During training, the network 
minimizes a loss function, quantifying the disparity 
between predicted outputs and ground truth labels.  

3.2 Xception 

Xception is a CNN architecture innovated by 
François Chollet, renowned for his contribution to the 
Keras deep learning library. Termed as "Extreme 
Inception," Xception builds upon the foundational 
concepts of the Inception architecture while 
introducing notable advancements. Central to 
Xception's design is the utilization of depth wise 
separable convolutions, a variant of conventional 
convolutional operations. This methodology 
effectively segregates spatial and channel-wise 
convolutions into distinct processes, resulting in a 
significant reduction in both parameters and 
computational complexity compared to conventional 
convolutions. Consequently, Xception achieves 
enhanced efficiency and model lightweightness. The 
architecture of Xception heavily draws from the 
Inception modules featured in the Inception v3 
model. However, Xception distinguishes itself by 
replacing conventional convolutions within these 
modules with depth wise separable convolutions. 
This architectural refinement facilitates an improved 
utilization of computational resources, ensuring the 
modeling of intricate patterns and relationships across 
various scales. One notable advantage of Xception 
lies in its capability to capture both local and global 
dependencies within input data. The decomposition 
of the convolution operation into spatial and channel-
wise components allows Xception to effectively 
model complex structures and correlations present in 
the data. Furthermore, Xception's architecture boasts 
expedited training and inference times, surpassing 

preceding CNN architectures. This attribute renders 
Xception particularly suitable for applications 
characterized by resource-constrained environments, 
where computational efficiency is paramount.  

3.3  Genetic Algorithm 

Genetic Algorithms (GAs) are commonly applied 
to optimization problems, such as tuning 
hyperparameters in machine learning. A population 
of potential solutions, known as people or 
chromosomes, is used by a genetic algorithm to solve 
problems. Each chromosome is a potential solution. 
In the context of hyperparameter tuning, these 
solutions usually correspond to different sets of 
hyperparameters for a machine learning model. As 
the algorithm runs through a sequence of stages called 
generations, selection, crossover, and mutation are 
applied to create a fresh set of potential solutions. 

3.3.1 Initialization 

The algorithm begins by generating an initial 
population of chromosomes, typically done 
throughrandomness or certain heuristics. 

3.3.2 Evaluation 

Each chromosome is assessed according to its fitness, 
which measures how effectively the solution 
performs the given optimization task. In 
hyperparameter tuning, the fitness is determined by 
how well the machine learning model performs when 
trained with the hyperparameters encoded in the 
chromosome. 

3.3.3 Selection 

Greater fitness values in chromosomes are preferable 
for reproduction, similar to the concept of "survival 
of the fittest."  

3.3.4 Crossover 

Selected chromosomes are paired to produce 
offspring through crossover or recombination. This 
process involves mixing genetic information from 
parent chromosomes to create new solutions. In 
hyperparameter tuning, crossover allows for the 
exploration of different hyperparameter 
combinations. 

In hyperparameter tuning, where finding the ideal 
set of hyperparametersfor a machine learning model is 
the goal, GAs provide an effective way to navigate the 
large search space. Initially, a population of potential 
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solutions (chromosomes) is created either randomly or 
using heuristics. Each chromosome encodes some 
hyperparameters for the machine learning model, 
which might include factors like learning rates, 
regularization strengths, or network 
architectures.Next, the fitness of each chromosome is 
assessed by training and testing the machine learning 
model using the hyperparameters it contains. 
Performance metrics, such as accuracy or loss, are 
used to assess fitness. Selection methods like 
tournament or roulette wheel selection are then 
applied to choose chromosomes to be reproduced 
based on their fitness, favoring those with greater 
values.Crossover and mutation are triedon these 
selected chromosomes to generate new offspring. 
Crossover mixes genetic information from parent 
chromosomes, enabling the exploration of new 
hyperparameter combinations. Mutation introduces 
random changes, maintaining diversity in the 
population and preventing early convergence to 
suboptimal solutions. The offspring replace the 
previous generation, with fitter individuals more 
likely to survive.Until a termination requirement is 
satisfied, for example, by reaching a certain number of 
generations or attaining adequate performance, this 
iterative process keeps going. Through this cycle of 
selection, crossover, and mutation, genetic algorithms 
efficiently search the hyperparameter space, slowly 
converging toward optimal or near-optimal 
configurations that enhance the ML model's 
performance. 

 
Figure 1: Flowchart of proposed model 

This research employs Genetic Algorithm (GA) in 
conjunction with the Xception architecture, a 
sophisticated Convolutional Neural Network (CNN). 
First, a deep Xception network is constructed 
utilizing parameters computed from the Genetic  

Algorithm. Subsequently, these deep neural 
networks undergo training and evaluation using a 
dataset aimed at discerning COVID-19 presence in 
individuals. Each network's performance is assessed 
based on its error rate, with lower error rates 
indicative of more desirable solutions. These 
evaluated solutions undergo further refinement via 
iterations of the GA algorithm. With each iteration, 
novel networks are generated, leading to 
progressively improved outcomes. The rationale 
behind selecting the Xception model stems from its 
proven efficacy in prior research endeavours, 
consistently yielding commendable results. Its 
selection is particularly apt given its tailored focus on 
COVID-19 detection, aligning closely with the 
objectives of this study. Figure 1 explains the flowof 
the proposed model. 

4 IMPLEMENTATION 

4.1 Dataset for Respiratory Disease 
Detection Training 

The dataset for respiratory disease detection training 
encompasses four primary classes: COVID, normal 
lung conditions, bacterial pneumonia, and viral 
pneumonia. Initially split into training, testing, and 
validation sets, the dataset underwent meticulous 
cleaning due to the presence of noise, including 
random letters and unnecessary watermarks, ensuring 
data integrity and reliability. With close to 1400 
images solely for training purposes, augmentation 
techniques were employed to expand the dataset size, 
enhancing the model's ability to generalize and learn 
diverse patterns. This comprehensive dataset, 
meticulously curated and augmented, serves as a 
robust foundation for training and evaluating deep 
learning models aimed at accurate and effective 
respiratory disease detection and classification. 

4.2  Model Implementation 

For implementing the proposed model, after 
initializing the population, the evaluate_population 
function is called to train and evaluate each candidate 
solution (CNN) on the training and validation 
datasets. This step involves training the CNN model 
with the training data, then evaluating its execution 
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using the validation data. The fitness scores are 
computed based on the performance metrics obtained 
during evaluation. Within the loop that iterates 
through generations, the training of CNN models is 
implicitly done during the evaluation step, as part of 
the evaluate_population function. The CNN models 
are trained with the training data before their 
performance is evaluated on the validation data. The 
training process typically involves using the training 
data on the CNN model, computing the loss, and then 
modifying the model's parameters. Algorithms for 
optimization such as SGD is used. The performance 
of each CNN model on the validation dataset is then 
evaluated using metrics like accuracy, loss, or other 
relevant measures, and these evaluations are used to 
compute the fitness scores. The process continues 
until a termination condition is reached, such as 
reaching a set number of generations. 

5 RESULTS 

Accuracy and categorical cross entropy loss were 
theperformance metrics used to find thebest 
architecture discovered by Genetic algorithm. One 
frequent metric used to assess a classification model's 
performance is accuracy. Out of all the anticipated 
classifications, it calculates the percentage of accurate 
classifications. Accuracy is mathematically 
calculated as shown in Figure 2. 

The categorical cross-entropy loss function given 
in Equation 1serves as a pivotal evaluation metric in 
various machine learning tasks, particularly in 
classification problems where the output is 
represented in a categorical format. This metric 
quantifies the disparity between the true distribution 
of class labels and the predicted probabilities assigned 
by the model. By computing the logarithmic 
difference between the predicted probabilities and the 
actual class labels across all categories, the 
categorical cross-entropy loss penalises deviations 
from the true distribution, effectively guiding the 
model towards better classification performance. Its 
formulation makes it particularly suited for multi-
class classification tasks, providing a continuous, 
differentiable measure of the model's performance 
that can be optimised through gradient descent 
methods. 
 

Loss = െ∑ 𝑦௜௡௜ୀଵ ⋅ 𝑙𝑜𝑔 𝑦ො௜  (1)
 

where, loss is the categorical cross-entropy loss, n 
is the output size, y is the correct probability 

distribution of class labels (one-hot encoded) and y^ 
is the estimated probability distribution of class 
labels. 

The accuracy metric demonstrates a notable 
enhancement, with a consistent increase of 2-3%, 
indicating improved model performance in correctly 
classifying data points. 

 
Figure 2: Accuracy obtained over 80 Epochs 

The cross-entropy loss in Figure 3 exhibits a 
significant improvement, with a remarkable decrease 
of 30%, reflecting the model's enhanced ability to 
minimize discrepancies between predicted and true 
class probabilities. These advancements, coupled 
with the absence of significant spikes in loss, suggest 
the efficacy of hyperparameter tuning and the 
refinement of the dataset, contributing to a more 
stable and robust model performance with reduced 
noise interference. 

 
Figure 3: Categorical Cross Entropy Loss over 80 Epochs 

The model trained was then tested across various 
images of lungs from the dataset to evaluate its 
performance. The accuracy on the test dataset was 
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found out to be 0.79 and after optimization using GA, 
an accuracy of 0.85 was obtained. Categorical cross 
entropy loss of 0.79 was also reduced to 0.44 upon 
optimization by GA. 

 
Figure 4: Predictions obtained for various classes 

Figure 4 shows the results of classification along 
with their predicted conditions obtained from the 
trained model. The confusion matrices shown in 
Figure 5 and Figure 6 depict the accuracy of 
predictions of the model before and after 
optimizations using the Genetic Algorithm.  

 
Figure 5: Confusion Matrix on test dataset before GA 
optimization 

 
Figure 6 Confusion Matrix on test dataset after GA 
optimization 

6 CONCLUSIONS 

In conclusion, the enhancements made to the model 
have yielded significantly improved stability and 
robustness, as evidenced by the obtained results. 
Notably, there is a consistent enhancement in 
accuracy ranging between 2-3%, indicating the 
effectiveness of the implemented changes. Equally 
significant is the remarkable 30% decrease in 
Validation Loss, underscoring the model's improved 
generalisation capability. It's important to note that 
while training loss measures the performance of the 
model during the training phase, validation loss 
provides insight into how well the model generalises 
to unseen data, making it a crucial metric in assessing 
real-world performance. The fact that both training 
and validation accuracy and losses closely match 
underscores the absence of overfitting, signifying that 
the model has learned to generalise well to unseen 
data. This alignment between training and validation 
metrics further validates the reliability and efficacy of 
the model's performance. Overall, these results affirm 
the success of the enhancements implemented, paving 
the way for more reliable and accurate predictions in 
practical applications. 

7 FUTURE WORK 

For future work, a larger dataset should be assembled 
to encompass a more diverse set of lung diseases, 
potentially enhancing the model's ability to detect and 
classify a broader range of conditions. Additionally, 
fine-tuning the existing architecture with progressive 
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techniques such as transfer learning or ensemble 
methods could potentially elevate the model's 
performance to even greater heights. 
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