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Abstract: This study explored the concept of ‘readiness to perform’ by monitoring twelve youth triathletes (under 23 
(U23) and 19 (U19) years old) over three months using the Oura Ring. Physiological data from the wearable 
were analyzed for all participants; subjective assessments of training intensity (Rating of Perceived Exertion 
(RPE)) and recovery (Total Quality Recovery (TQR) questionnaire) were conducted only in the U23 subgroup. 
Stepwise linear regression was used to describe five (Balance) Scores contributing to the Readiness Score 
(RS). Subsequently, given the limited transparency of Oura’s algorithm, the RS was modeled using three 
approaches: through (1) its real contributors (RMSE = 3.18, R² = 0.71), (2) approximated contributors via 
regression and three additional contributors (RMSE = 4.09, R² = 0.52), and (3) directly measured variables 
with RPE and TQR scores (RMSE = 4.88, R² = 0.29). Individual-level analysis was prioritized, though a 
general model for describing the RS was also developed (RMSE = 3.48, R² = 0.60). Sleep emerged as the 
primary contributor to readiness, followed by physical activity and resting heart rate. 

1 INTRODUCTION 

Technology has become integral to modern sports, 
driving advancements in real-time monitoring of 
athletes’ physiological data and performance 
analysis. However, trust in the reliability and validity 
of data provided by innovative technology remains a 
key concern among coaches and practitioners, 
highlighting the need for critical evaluation and 
informed use of technological tools (Aerts et al., 
2025). 

Training load quantifies the overall demand and 
impact of a training session, both physical and 
psychological, on an individual's body (Impellizzeri 
et al., 2023). Readiness and recovery are 
conceptualized in this study as the readiness to train 
well and potentially perform well, and the adaptation 
to the (previous) training load, respectively. These 
processes are influenced and determined by various 
factors, with training load and intensity being key 
factors, as reflected by the fundamental concept of 
training theory. This concept revolves around the 
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structured and systematic planning of exercise 
sessions to improve athletic performance.  

Furthermore, rest, sleep, nutrition, and various 
physiological markers are critical determinants of 
readiness and recovery. Adequate rest and sleep is 
essential for comprehensive recovery, as also proper 
nutrition, balanced in macro- and micronutrients and 
hydration, is fundamental for optimal performance 
(Walsh et al., 2021; Watson, 2017; Beck et al., 2015). 
Equally relevant are physiological markers, such as 
heart rate (variability) (HR(V)) and resting heart rate 
(RHR), which reflect the state of the autonomic 
nervous system (Schneider et al., 2018). Lastly, also 
immunological, biochemical and hormonal markers 
can be assessed in monitoring an athlete’s recovery 
status. However, no single marker serves as a gold 
standard in monitoring readiness and recovery. 

Effective recovery monitoring of an athlete 
requires a multidimensional approach, incorporating 
subjective feedback and social factors to account for 
non-training related factors, with objective 
(physiological) data. Context is crucial, as 
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physiological measures like HRV are sensitive to 
non-training related stressors (Flatt et al., 2018).  

This study investigates recovery and readiness of 
young triathletes, hypothesizing that data collected by 
wearable technology (i.e., Oura Ring), combined with 
reference training load and recovery measures, will 
demonstrate associations with the overall readiness 
level of the athletes. Four main objectives are 
formulated, focusing on the individual athlete.  

The first objective is to map the athletes' current 
sleep, training load, recovery and readiness patterns, 
and accordingly investigate associations between the 
corresponding collected variables. The second 
objective involves modeling and approximating five 
different (Balance) Scores that contribute to Oura’s 
Readiness Score (RS), using (linear) regression 
analyses. The third objective is to identify and 
characterize the most significant contributors to the 
athlete’s readiness, more specifically Oura’s RS, by 
(linear) regression analyses. By this interpretable 
method, insights into the compilation of the RS and 
the importance of the most significant contributors 
are identified. The fourth objective parallels the third, 
but focuses on approximating the RS by including 
physiologically measured variables and subjective 
training load and recovery data in (linear) regression 
models, rather than Oura's stated contributors. 

2 MATERIALS AND METHODS 

2.1 Participants and Study Design 

Twelve young triathletes participated in this study. 
Six U23 triathletes (3 female, 3 male, aged 19-21 
years), with a weekly average amount of training 
hours between 13 and 19 hours, of which on average 
20% of the time is spent on running, 33% on 
swimming, 40% on cycling and the remainder on 
strength training. In addition, six U19 triathletes (2 
female, 4 male, aged 17-18 years) participated in this 
study (13 to 17 weekly training hours). 

Over the course of three months, the participants 
wore a personal Oura Ring (Gen3, firmware 2.9.32-
2.9.33) throughout both day and night, to monitor key 
biometrics (i.e., Activity Scores; High/Low Activity; 
Steps; Total Burn; Sleep Scores; Deep Sleep, Light 
Sleep, REM Sleep, and Total Sleep Time; Respiratory 
Rate; Sleep Efficiency; Sleep Latency; Sleep Timing; 
RHR; Average HRV; Body Temperature; Recovery 
Index; RS). Oura was selected because of its reported 
technical quality, wearing comfort, data reporting and 
data availability, and its functionalities within 
monitoring readiness. This smart ring provides daily 

scores (0-100), with the RS being a key metric in this 
study. It is a composite measure, derived from, inter 
alia, HRV, and recent sleep and activity levels, 
providing an indication of the user's readiness to face 
more challenges, or the need for rest and recovery. 

Furthermore, participants were instructed to 
report an individual rating of perceived exertion 
(RPE) score per training session, on a 10-point scale, 
ranging from ‘rest’ to ‘maximal exertion’. The 
session RPE (sRPE) method, as proposed by Foster et 
al. (2001), was used to calculate the total load index 
of a session. Additionally, both subjective and 
objective data regarding recovery were collected via 
the Total Quality Recovery (TQR) questionnaire 
(Kenttä & Hassmén, 1998). To maximize compliance 
of the athletes and to avoid questionnaire fatigue 
(Halson, 2014), the TQR questionnaire was preferred 
above longer questionnaires, and no strict daily 
completion was adopted; instead, participants were 
instructed to complete the questionnaire at least twice 
a week, enabling retrospective reporting for multiple 
past days. The TQR scale consists of two parts: TQR 
perceived (TQRper) – perceived recovery on a 6-20 
scale, ranging from ‘no recovery at all’ to ‘maximal 
recovery’ – and TQR action (TQRact) – a more 
objective score based on an athlete's engagement in 
recovery actions across four domains: nutrition, sleep 
and rest, relaxation and emotional support, and 
stretching and cooling-down. Research has confirmed 
the effectiveness of TQR in monitoring training load 
effects and individual responses, for both daily and 
less frequent (e.g., microcycle) implementation 
(Nässi et al., 2017; Debien et al., 2020). No explicit 
additional interventions were performed that deviated 
from their daily routines and training schedules.  

RPE and TQR data were not collected for U19 
participants due to their late inclusion and the non-
routine recording of subjective data. In total, Oura 
data were recorded over an average of 77.83 (± 6.70) 
days, with ~8% missing data due to, inter alia, device 
non wear. For the U23 population, an average number 
of 76.67 (± 19.55) TQRper, 70.00 (± 14.30) TQRact, 
and 168.83 (± 50.23) RPE datapoints were obtained. 
The study was approved by the Social and Societal 
Ethics Committee of KU Leuven (G-2023-7108-R2). 

2.2 Data Processing and Analysis  

Data processing comprised three main phases (Figure 
1), focusing on (linear) regression analysis. While the 
true relationships may be non-linear, linear models – 
which additionally allow the inclusion of interaction 
terms – were chosen for their interpretability and 
alignment with the study’s exploratory objectives. 
 

Recovery and Readiness Monitoring Using Wearable Technology in Young Triathlon Athletes

209



 
Figure 1: Overview of the implemented three-phase data processing flow for analyzing Oura’s Readiness Score. 
RPE = Rating of Perceived Exertion; TQR = Total Quality Recovery. 

Model performance for fitting and predicting the 
investigated scores per individual athlete was 
assessed using the (adjusted) coefficient of 
determination (R(a)²) and root mean squared error 
(RMSE). Overall model significance was assessed 
through a global F-test, as were individual estimated 
regression coefficients evaluated for significance 
(with 𝛼 = 0.05). Model validation for each athlete's 
scores was performed using 10-fold cross-validation. 
Prior to regression analysis, the assumption of 
independence among predictor variables was 
assessed by investigating for multicollinearity, with a 
condition index tolerance level of 30 and a variance-
decomposition proportion tolerance of 0.5 

Phase 1 (Figure 1) analyzed five scores provided 
by Oura, each contributing to the RS. For these 
scores, individual regression models were 
constructed, using non-collinear, actual measured 
variables from the Oura dataset (i.e., no composite 
measures) that best represent the respective score, as 
predictor data. Oura's Recovery Index was not 
approached as no measured variables allowed 
approaching this score. Following data-fitting, 
athlete-specific predictor variable sets were defined. 
Subsequently, in a cross-validation loop, a regression 
model was reconstructed for each individual score 
and athlete, based on the aforementioned selection of 
predictor variables. Through iterative variable 
subsetting, an average performance of R² > 0.75 and 
RMSE < 4.00 for each of the five investigated scores 

was pursued. The resulting predictions from this 
phase served as inputs for Phase 2. 

In Phase 2 (Figure 1), Oura’s RS was analyzed in 
more detail, adopting a structure analogous to Phase 
1. Regression models were developed distinguishing 
between two predictor sets: (1) Oura's real 
contributors, and (2) approximations of these 
contributing scores derived from Phase 1 combined 
with three additional factors (i.e., RHR, Temperature 
Deviation, and Recovery Index). These eight 
variables collectively represent Oura's official RS 
contributors. After the final cross-validation step and 
obtaining a model with a proper accuracy, a second 
model fitting on the corresponding, this time 
normalized, predictor data was performed. This 
process was performed for the models based on the 
real contributors only, where variable importance was 
derived from the fraction of its estimated model 
coefficient to the total absolute sum of the different 
coefficients, excluding the intercept. Moreover, an 
attempt was made to obtain a general model that 
might approximate the RS for each of the athletes. 

In Phase 3 (Figure 1), again an analogous 
structure was adopted. Unlike previous phases, this 
phase expanded the potential predictor variables 
beyond Oura's stated contributors by including all 
measured, non-collinear Oura variables, alongside 
RPE and TQR scores. This allowed the construction 
and evaluation of regression models representing the 
RS by using an alternative subset of variables. 
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3 RESULTS AND DISCUSSION 

3.1 Population Characteristics and 
Variable Interrelationships 

3.1.1 Sleep Features 

Adequate sleep is vital for comprehensive recovery, 
encompassing physical, psychological, immune, and 
endocrine functions, whereby insufficient sleep can 
impair performance and hinder recovery (Walsh et 
al., 2021; Watson, 2017). On average, the U23 
athletes slept 7.94 (± 0.58) hours, and the U19 athletes 
7.86 (± 0.33) hours, including daytime naps. Our 
observations align with previous research suggesting 
that athletes often report sleep durations below 
recommended levels, which may be associated with 
poorer sleep efficiency and quality compared to non-
athletes. Contributing factors include demanding 
training and competition schedules, travel, and 
increased stress levels (Roberts et al., 2019). 

The U23 population averaged a Sleep Score of 
80.45 (± 5.72), while the U19 athletes averaged 79.79 
(± 3.91). The lowest average Sleep Score (i.e., 71.39 
± 8.68) was associated with the least sleep hours, 
while the highest average Sleep Score (i.e., 86.53 ± 
4.01) was associated with the most sleep hours. This 
strong association between sleep duration and Sleep 
Score was confirmed by significant positive 
correlations in all U23 athletes (p < 0.05), yielding 
daily and seven-day average 𝑟 values of 0.74 and 
0.65, respectively. Furthermore, Sleep Scores were 
significantly correlated with RS for two U23 athletes 
(p < 0.05), with daily 𝑟 values of 0.70 and 0.75 
(seven-day average 𝑟 values of 0.68 and 0.87). 

Due to collinearity among several sleep features, 
total sleep duration was selected at the beginning of 
the regression analyses without prioritizing collinear 
variables with this variable. 

3.1.2 Cardiac Features 

Two overnight RHR variables – lowest and average – 
were analyzed. As anticipated, these variables 
showed an average daily and seven-day average 
correlation of 𝑟 = 0.85, and 𝑟 = 0.90, respectively. The 
average RHR was on average 49.96 (± 4.68) bpm for 
the U23 athletes, and 51.35 (± 2.80) bpm for the U19 
athletes. These lower values reflect exercise-induced 
cardiac adaptations that enhance blood-pumping 
efficiency, commonly observed in athletes compared 
to non-athletes (Nystoriak and Bhatnagar, 2018). 

The average HRV, as measured overnight and 
provided as the rMSSD, ranged between 57.45 (± 

9.51) ms and 170.73 (± 26.95) ms. Due to significant 
inter-individual variability in HRV, focusing on 
individual trends is a more meaningful approach than 
comparison to others. Furthermore, since inconsistent 
findings have been observed in scientific literature 
when based on daily measurements, it has been 
suggested that weekly or seven-day moving averages 
offer a more valid approach (Plews et al., 2013). 

The average RHR exhibited a significant 
correlation (p < 0.05) with the average HRV for two 
U23 athletes (i.e., 𝑟 = −0.71 and 𝑟 = −0.94 for daily 
measurements, respectively, 𝑟 = −0.89 and 𝑟 = −0.95 
for seven-day averages). One U19 athlete showed a 
significant seven-day average correlation of 𝑟 = −0.70 
between the average RHR and HRV. Hence, average 
RHR and HRV appear to be inversely related. 
Moreover, with consistently negative (significant) 
correlation results, it was observed that the RS and 
average RHR are likewise inversely correlated (i.e., 
daily and seven-day average correlation values up to 𝑟 = −0.68 and 𝑟 = −0.87, respectively). 

Due to collinearity between average and lowest 
RHR, the average RHR was preferred for further 
analysis due to its greater robustness and reliability. 

3.1.3 Readiness Score 

An average RS of 79.31 (± 2.19) was observed. The 
RS exhibited no significant high correlations with 
other variables, besides these previously mentioned. 

Given the extremely low and mostly non-
significant individual correlations, and daily average 
values of 𝑟 = 0.01, 𝑟 = 0.07 and 𝑟 = 0.16 between the 
RS and sRPE, TQRact and TQRper, respectively, in 
the U23 group, the RS did not correlate with these 
variables. This suggests that the RS was not reflected 
in the athletes’ training load or recovery ratings. Since 
training schedules were pre-determined, without 
considering Oura data on the actual training day, the 
lack of correlation likely stems from the absence of 
RS data integration into the decision-making process. 
Notably, it may be assumed that a recovery score is 
linked to a readiness score for the athlete. However, 
the results indicated no significant link between the 
RS and TQR scores. Due to the lack of data, no 
conclusions could be drawn for the U19 group. 

3.1.4 Recovery Measures 

The U23 athletes had an average TQRper score of 
14.14 (± 1.42), indicating a ‘reasonable’ to ‘good’ 
recovery, and an TQRact score of 14.62 (± 1.42). 

The two-part TQR questionnaire provides 
comprehensive insight into training responses, as a 
discrepancy between perceived recovery and 
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recovery actions can indicate maladaptation to 
training load. Moreover, a practical guideline 
suggests aligning TQRact and TQRper scores with 
RPE ratings (reported on or converted to a 0-20 scale) 
for adequate recovery (Kenttä & Hassmén, 1998). 
However, in this study, consistently low and non-
significant correlations were observed between TQR 
scores and the (s)RPE scores on the one hand, and the 
two TQR scores among themselves on the other hand. 

3.2 Investigation of Oura's (Balance) 
Scores Contributing to the 
Readiness Score  

3.2.1 Sleep Score and Sleep Balance Score 

Oura’s Sleep Score claims to reflect how well the 
athlete slept each night, and is determined by the total 
sleep duration, sleep efficiency, restless sleep, REM 
sleep duration, deep sleep duration, sleep latency and 
sleep timing. For the U23 population, the cross-
validation of the established models yielded an 
RMSE between 2.07 and 3.85, with the exception of 
one athlete (RMSE = 8.62). Hence, the model made 
an overall error of 2 to 4 units out of 100. Equally, a 
large fraction of the variance in the Sleep Score was 
explained by all models, represented by an R² of 0.69-
0.86, with the exception of one athlete’s model that 
performs worse than a simple mean-based prediction. 
For the U19 population, an average RMSE of 2.86 
and R² of 0.77 were obtained from cross-validation. 

Total and deep sleep duration consistently 
emerged as the key determinants of the Sleep Score 
across all models, whether or not with an additional 
interaction effect. Sleep efficiency was also a crucial 
predictor, excluded from the model for only one 
athlete. The primarily positive regression coefficients 
for these three predictor variables indicate their 
positive impact on the Sleep Score. Conversely, sleep 
latency and timing were the least incorporated into 
the models. Sleep latency consistently exhibited 
negative regression coefficients, suggesting that 
longer nocturnal wakefulness negatively impacts the 
Sleep Score. The effect of sleep timing was 
inconsistent. These findings underscore the critical 
importance of sleep quantity and the deep sleep stage 
for Sleep Score determination, aligning with their 
recognized roles in physical recovery. 

The Sleep Balance Score was approximated by a 
combination of total sleep duration with sleep 
efficiency. Given it is a Balance Score, time-shifted 
data from the last 14 days, were presented as predictor 
data. The validated models for the U23 population 
exhibited an average RMSE of 3.98 and an R² of 0.75. 

The U19 models demonstrated a considerable lower 
performance (i.e., average RMSE of 5.30 and R² of 
0.56, excluding one athlete). It is reasonable that the 
excluded athlete's model exhibited substantial 
overfitting, as indicated by an RMSE > 20 and an R² 
< 0. The inclusion of 17 predictor variables in this 
athlete’s model likely introduced model complexity 
beyond the data's explanatory capacity. 

The significantly explanatory variables included 
in the descriptive models mainly corresponded to the 
athlete's sleep duration from one up to ten days prior, 
aligning with Oura's assignment of greater weight to 
recent sleep patterns in computing the score. 
Regression coefficients for recent sleep duration (1-5 
days) were consistently positive, indicating their 
positive effect. Furthermore, sleep efficiency was 
only included in one U23 athlete’s model, indicating 
that the sleep efficiency of the last day, as well as nine 
to thirteen days prior were determinant. In contrast, 
all U19 models incorporated at least one sleep 
efficiency variable, ranging from the athlete’s sleep 
efficiency from one to thirteen days before the score.  

3.2.2 Previous Day Activity Score and 
Activity Balance Score 

The Previous Day Activity Score quantifies an 
athlete’s (in)activity relative to their long-term 
average. Initial model fitting identified burned 
calories, inactive, low (HR < 60% of maximum), and 
high active time (HR 80-100% of maximum) as the 
consistently selected explanatory variables for this 
score. The validation results exhibited an average 
RMSE of 5.59 and 6.40 for the U23 and U19 
population, respectively, indicating deviations of 5 to 
6 units from true values. However, an overall average 
R² of 0.80 was obtained from the validation process. 
Almost all estimated regression coefficients were 
negative, but a true interpretation is challenging as the 
(regression coefficient of the) intercept for the 
majority of athletes started with a value above 100. 

Oura’s Activity Balance Score was analyzed 
using burned calories, steps and high activity time, 
from the preceding 14 days, shifted in time, as 
predictor data. The cross-validation process yielded 
an average RMSE of 6.56 (R² = 0.68) for the U23 
population and 8.41 (R² = 0.49) for the U19 
population. Ultimately, no adequate desired 
performance was achieved for this score. 

3.2.3 HRV Balance Score 

The HRV Balance Score compares the athlete’s 
average HRV from the past 14 days relative to their 
long-term average, thereby giving greater emphasis 
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on recent data. Due to limited long-term data, the 
athlete’s average RHR over the past 14 days was also 
included as predictor data alongside 14-day HRV 
data, significantly improving model representation. 

Cross-validation of the descriptive models for the 
U23 group yielded RMSE values between 1.51 and 
4.15 and R² values between 0.46 and 0.95, with the 
largest prediction error coinciding with the greatest 
explained variation in the score. For the U19 group, 
cross-validation yielded an average RMSE of 2.76 
and an R² of 0.84. Model analysis revealed that all but 
one athlete's model included at least one RHR 
variable. Proportionally, more HRV variables were 
included, generally exhibiting positive coefficients, 
indicating higher HRV correlated with an increased 
HRV Balance Score. In contrast, RHR coefficients 
exhibited both positive and negative values, 
precluding unambiguous interpretation. 

3.3 Investigation of the Readiness 
Score 

3.3.1 RS Approximated by Its Real 
Contributors 

A first approximation of the RS by regression 
analysis was conducted based on its real reported 
contributors (i.e., Sleep Score, Sleep Balance Score, 
Previous Day Activity Score, Activity Balance Score, 
average RHR, HRV Balance Score, Temperature 
Deviation and Recovery Index). Validation of the 
fitted regression models yielded an RMSE between 
2.05 and 4.67, and an R² between 0.28 and 0.90. The 
lowest explained variation by the validated regression 
models (R² = 0.28) was obtained for the athlete with 
the second highest estimated error (RMSE = 4.38).  

Stepwise regression consistently selected the 
Sleep Score across all athletes. Four U23 athletes 
showed a significant positive regression coefficient 
for this variable. Among the U19 athletes, five times 
a positive regression coefficient, and one non-
significant negative one was observed. Hence, an 
overall positive association with the RS was found. 
The second contributor assessed was the Sleep 
Balance Score. Likewise, this variable exhibited a 
positively estimated regression coefficient for the 
same four U23 athletes. For the U19 population, this 
score was three times included with a positively 
estimated coefficient, once with a negative 
coefficient. Likewise, an overall positive association 
with the RS was assumed. Using subsequently 
normalized predictor data, it was shown that the Sleep 
Score determined 15-35% of the RS among the U23 
population, and 20-30% for the U19 population, with 

one exception (<15%). For both populations, the 
Sleep Score was one of the strongest contributors to 
the RS. For the Sleep Balance Score, a contribution 
to the RS of 5-15% for the U23, and 5-20% for the 
U19 athletes, respectively, was found. 

A third variable examined, and the second 
variable included in the descriptive model for all 
athletes, was the Previous Day Activity Score, 
consistently showing a positive regression 
coefficient, except for one athlete, indicating a 
positive association with the RS. This may reflect a 
confounding effect, where increased activity 
correlates with higher readiness. However, Oura 
posits that maintaining 5-8 hours of inactivity daily 
would have a positive impact on the athlete’s activity 
score, and subsequently RS, while both excessive 
inactivity and overexertion will reduce the score. The 
recurrent positive regression coefficient for the 
Previous Day Activity Score in the descriptive 
models of the RS is thus a rational finding. The 
Activity Balance Score was included in ten athletes’ 
models, with nine showing a positive and one a non-
significant negative regression coefficient, likewise 
suggesting a positive association with the RS. Across 
the entire population, these two activity scores 
contributed 7-15% (Previous Day Activity Score) and 
7-25% (Activity Balance Score) to the RS models. 

The athlete’s average RHR is the third variable 
included in all regression models, with a consistently 
negatively estimated regression coefficient, except 
one positive but non-significant one, indicating an 
inverse relation with the RS. An overall contribution 
to the RS of 8-35% was observed. Furthermore, the 
regression coefficient for the HRV Balance Score 
showed mixed results. With five positive and three 
times a negative regression coefficient, an overall 
positive effect predominated. A relative importance 
in describing the RS of 5-10%, up to 20%, for the U23 
and U19 population, respectively, was found. 

Temperature Deviation was the least frequently 
included predictor variable, and by this considered as 
the least contributing variable in describing the RS. 
The variable appeared in only two models, with 
positive coefficients, contributing from virtually 0 to 
15%. In contrast, the Recovery Index was included in 
all U23 models and three U19 models, consistently 
showing a positive coefficient, indicating a positive 
association with the RS. The relative importance in 
determining the RS was 5-15%. Finally, for all 
athletes, generally none to three interaction terms 
were included in their model, but these terms’ 
importance did not prevail over the main effects. 

In addition to the individual approach, a general 
model was constructed to investigate whether also 
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this model could adequately describe the RS of all 
athletes. For this general model, the following criteria 
were applied: once a variable's main effect was 
included for at least four out of the six U23 athletes, 
this variable was included in the general model. For 
interaction terms, a required occurrence for at least 
two out of the six athletes was applied. Accordingly, 
it was found that the Temperature Deviation variable 
was the only RS contributor variable that did not meet 
the selection criteria. However, this variable was still 
included in the general model as an interaction term 
associated with this variable was selected. 
 
This led to the general regression model ([Eq. (1)]): 

 
Readiness Score = Intercept + A*Sleep Score  
+ B*Sleep Balance Score + C*Previous Day 
Activity Score + D*Activity Balance Score  
+ E*Average RHR + F*HRV Balance Score  

+ G*Temperature Deviation + H*Recovery Index 
+ I* Sleep Score*Sleep Balance Score  

+ J*Sleep Score*Average RHR  
+ K*Sleep Score*Temperature Deviation

(1)

  
With the values of the RS contributors and the 

coefficients A to K being individual-specific. 
The U23 models were used for variable selection, 

whereupon the general model ([Eq. (1)]) was tested 
on both the U23 and U19 group for its descriptive 
capability. Because of the explicit requirement to 
include the aforementioned selected variables in the 
general model, not all variables had a significant 
regression coefficient for each athlete. Positive 
associations with the RS were found for sleep and 
activity scores, as well as for the HRV Balance Score 
and Recovery Index, while average RHR showed 
consistently negative effects. Temperature Deviation 
and interaction terms showed no clear pattern. 

Model validation yielded RMSE values between 
1.40 and 3.98, with the exception of one athlete 
(RMSE = 7.10). Overall, the explained variation in 
the RS by the general model (R²) ranged between 0.58 
and 0.95, excluding one athlete. This athlete was the 
only athlete for whom the general model exhibited a 
poor performance in the validation process. These 
results suggest that the proposed general model has 
strong potential for describing and predicting the RS 
but individual adjustments should not be excluded. 

3.3.2 RS Approximated by Approximations 
of Its Real Contributors 

This regression analysis aimed to examine whether 
models based on predicted (Balance) Scores could 
adequately describe the RS. Consequently, the RS, 

along with its contributors, would be uncovered and 
identified in its totality, as opposed to the black-box 
nature of the score that previously dominated. 

It was found that sleep-related variables, 
particularly the approximated Sleep Score and Sleep 
Balance Score, were strong positive predictors of the 
athletes' RS, underscoring the importance of sleep for 
recovery and readiness. Likewise, activity-related 
variables, especially the Previous Day Activity Score, 
showed primarily positive associations with the RS. 
Average RHR appeared inversely related to the RS, 
while the HRV Balance Score and Recovery Index 
had positive effects. Consistent with previous 
findings, Temperature Deviation was the least 
significant predictor of the RS. Model validation 
yielded RMSE values between 2.60 and 5.44, with 
badly an average predictive accuracy R² of 0.56, 
excluding one athlete (RMSE = 7.74 and R² = 0.18). 
In a one-to-one comparison of validation statistics, 
models based on the true contributors exhibited 
superior performance for all but two athletes. 

3.3.3 RS Approximated by an Alternative 
Subset of Predictor Variables 

To meet the fourth objective, regression models using 
multiple non-collinear, directly measured Oura 
variables, in combination with sRPE and TQR scores, 
were developed. Due to missing data, sRPE and TQR 
scores were excluded for the U19 group. The models 
exhibited poor performance (average validation R² = 
0.29), with sleep-related variables, average RHR and 
HRV, and respiratory rate most frequently included. 
The models failed to adequately describe and predict 
the RS, indicating that the subset of contributor 
variables to the RS proposed by Oura is needed to 
adequately describe the RS using regression models 
which only allow the inclusion of main effects and 
first-degree interaction terms. 

3.4 Limitations  

While devices like the Oura Ring show high validity 
for directly measured metrics (e.g., RHR, HRV; 
Kinnunen et al., 2020), their proprietary scores lack 
transparency and gold-standard validation, without 
which it remains unclear how well the RS reflects 
actual physiological readiness. Therefore, caution is 
advised when interpreting wearable-derived – black-
box – metrics for modeling purpose, as compounded 
estimation errors may reduce accuracy – especially 
for inferred parameters like readiness. 

This study’s effort to deconstruct Oura’s scores 
into interpretable models offers valuable insights, yet 
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also highlights the need for prioritizing directly 
measured, well-contextualized data. However, due to 
the assumption of linearity, multicollinearity among 
physiological variables, the inclusion of interaction 
terms that may increase the risk of overfitting, and the 
hierarchical structure and limited size of the dataset, 
linear regression may not be the most robust 
modeling approach for this context. Therefore, future 
research should consider alternative modeling 
techniques, and pursue external validation using 
larger independent datasets and comparisons with 
established physiological reference measurements to 
assess the validity and generalizability of both the 
model and underlying wearable metrics. 

While the sRPE method is widely used and 
correlates well with HR zones (up to 𝑟 = 0.84 for 
endurance athletes (Borresen & Lambert, 2008)), it 
lacks precision in time quantification, as it includes 
total session duration regardless of pauses (Halson, 
2014). Despite this, the simplicity, reliability, and 
demonstrated agreement of the (s)RPE method with 
more complex metrics support its continued use. In 
addition, the TQR questionnaire lacked specificity for 
triathlon, with outdated or not clearly defined items 
(e.g., cooling down, stretching), limiting its relevance 
and score potential. A sport-specific and updated 
version, aligned with modern recovery strategies, is 
recommended for future research. Noteworthy is the 
unavailability of (s)RPE and TQR data for the U19 
subgroup which restricts the generalizability of 
findings, which are based on only six (U23) athletes.  

Lastly, this study focused on twelve youth pre-
elite triathletes monitored over three months, limiting 
generalizability to other populations or long-term 
trends. Individualized monitoring prevailed over a 
generalized approach due to varied physiological 
responses among the athletes.  

4 CONCLUSION 

Readiness and recovery levels of young triathletes 
can (potentially) be monitored using wearable 
technology in combination with reference training 
load and recovery measures. The primary focus 
should be on the individual athletes’ responses, rather 
than general trends, and their sleep patterns, both in 
the short- and long-term. Beside objectively collected 
data, the significance of subjective data should not be 
underestimated. A novel contribution is presented, as 
no prior published work has approximated the RS by 
using simple regression analysis based on Oura’s 
stated contributing factors, nor based on other 
(physiological) wearable data or subjective measures. 
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