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Abstract: The paper proposes a Δ-Y transformations technique for stiffness modelling of over-constrained manipulators 
with internal cross-linkages. It allows representing complex structures as a serial-parallel equivalent one that 
can be easily handled by the VJM-based method. To derive desired analytical expressions for the equivalent 
serial-parallel structure, the MSA-based stiffness modelling approach is employed first, which allows 
describing the stiffness response for both the Δ and Y structures operating with VJM-type stiffness matrices. 
Further, the desired relations between equivalent Δ-Y and Y-Δ stiffness matrices are obtained. The example 
of stiffness modelling of a non-rigid Gough-Stewart platform with multiple cross-linkages demonstrates the 
benefits of the proposed technique. 

1 INTRODUCTION 

Stiffness modelling is a hot topic in robotics, essential 
both for the robot manipulation accuracy 
improvement and human-robot collaboration 
enhancement (Wu et al., 2022, Hussain et al., 2021, 
Yue et al., 2022, Blumberg et al., 2021). It enables 
the estimation of mechanical deflections in the 
manipulator components, resulting in slight changes 
to the actual configuration. Based on the computed 
deflections, the related compliance error 
compensation techniques help to reduce the impact of 
the external forces on the manipulator's end-effector 
and improve the end-effector accuracy (Nguyen et al., 
2022, Gonzalez et al., 2022, Kim & Min, 2020, 
Klimchik, Pashkevich, et al., 2013, Kim, 2023). 
Currently, because of practical advantages, the most 
commonly used stiffness modelling approaches in 
robotics are Virtual Joint Modelling (VJM) and 
Matrix Structural Analysis (MSA) (Gosselin & 
Zhang, 2002, Pashkevich et al., 2009, Majou et al., 
2007, Quennouelle & Gosselin, 2008, Deblaise et al., 
2006, Klimchik, Pashkevich, et al., 2019). They are 
relatively simple from the computational point of 
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view but require substantial efforts for related 
stiffness model development and estimation of its 
parameters. The modelling accuracy for both VJM 
and MSA methods can be enhanced by relying on the  
CAD-based FEA identification technique (Klimchik 
et al., 2024). Considering mathematical 
fundamentals, the VJM is efficient for stiffness 
modelling of pure serial-parallel structures, which can 
be decomposed into equivalent serial ones (Görgülü 
et al., 2020, Hu et al., 2019). In contrast, the MSA 
struggles with serial structures but can handle 
complex cross-linkages (Deblaise et al., 2006, 
Klimchik, Chablat, et al., 2019, Soares Júnior et al., 
2015, Detert & Corves, 2017, Klimchik et al., 2018). 
It was proved that the VJM is the best approach for 
non-linear stiffness analysis (Zhao et al., 2022, 
Pashkevich et al., 2011). For these reasons, 
integrating cross-linkages in the VJM is a crucial 
problem.  

There were some attempts to integrate closed 
loops into VJM methods (Klimchik, Wu, et al., 2013, 
Klimchik et al., 2017). But they are not capable of 
handling cross-linkages. To overcome this problem, 
we propose a Δ-Y stiffness model transformation 
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technique that allows us to present cross-linkages as 
an equivalent serial-parallel mechanical structure 
while preserving the original mechanical properties 
of the system. 

2 STIFFNESS MODELLING VIA 
Δ-Y TRANSFORMATIONS 

2.1 Stiffness Model of an Elastic Link 

VJM represents each elastic component as a 
superposition of a rigid element (between the nodes 
u v→ ), which describes the geometry of the perfect 
component, and an elastic component at the right end 
of the link (node v), which represents the mechanical 
flexibility of the corresponding body, as shown in 0, 
where the node u is fixed to the base or previous 
component. This model is mathematically expressed 
as a linear matrix equation.: 

u
v

Δt
uvR

uvK
W

 
Figure 1: VJM-based stiffness model of a flexible link. 

 uv= ⋅ ΔW K t  (1) 

relating the 6-dimensional wrench W  consisting of 
three  force components and three moment 
components applied to node v and the corresponding 
displacement Δt  is a 6-dimensional vector 
consisting of three linear displacements and three 
angular displacements. Here, 6 6×  stiffness matrix 

uvK  must be expressed in the global coordinate 
system, while the VJM usually operates with the 
stiffness matrix θK  obtained in the local coordinate 
system. The latter demands a relevant transformation  

θ uv→K K  

 3 3 3 3

3 3 3 36 6 6 6
θ

uv uv
uv

uv u

T

v

× ×

× ×× ×

⋅   =       
⋅R 0 R 0K K0 R 0 R  (2) 

depending on the 3 3×  rotation matrix uvR  which 
defines the link uv orientation with respect to the 
global coordinate system. It should be noted that in 
classical VJM, the transformation (2) is incorporated 

in the manipulator Jacobian, but it should be applied 
straightforwardly here. 

Let us also present an alternative MSA-based 
model describing the elastic member composed of the 
rigid link and virtual spring, assuming that both ends 
of the link u, v are not fixed (see 0).  Generally, such 
a model is represented in the form of a matrix 
equation as 

duv

u

vRigid Link

uvR

vW

uvK
vΔtuW

uΔt

 
Figure 2: MSA-based stiffness model of a flexible link. 

 11 12

21 22 1 122

u u

v v×

  Δ   = ⋅    Δ    

W tK K
W tK K

 (3) 

relating the 6-dimensional wrenches ( ),u vW W  
applied to the nodes u, v and the corresponding 
displacements ( ),u vΔ Δt t . It is clear that for the 
considered physical model (rigid link + virtual 
spring), the sub-matrices 11 12 21 22, , ,K K K K  can be 
expressed via the spring stiffness matrix uvK  and link 
geometry vector uvd . Corresponding derivations are 
presented in (Klimchik, Pashkevich, et al., 2019) and 
yield the following expression with a symmetrical 
matrix of the size 12 12×  

 
1

1
12 12

T T
u uv uv uv uv uv u

v vuv uv uv

− − −

−
×

 −   = ⋅    −    

K K
K

W D D D Δt
KW ΔtD

 (4) 

It includes 6 6×  geometric transformation matrix 
(Klimchik et al., 2024) 

 ( )
3

3

6

3

33 3 6
uv

uv×

× × ×

 − =  
 

×D I d
0 I

 (5) 

defining translation from the node u to the node v  
expressed in the global coordinate system, which 
includes a 3 3×  skew-symmetric matrix ( )uv ×d  
derived from the vector uvd  ( u v→ ) in the following 
way 

( )
3 13 3

0
0 ;

0

z y x

z x y

y x z

d d d
d d d
d d d

××

−   −
  = − = −    − −    

×d d , (6) 
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as well as 3 3×  identity and zero matrices 33 33 ,× ×I 0
. It has been proven that the matrix uvD  inversion 
leads to a simple change of the vector uvd  direction 

 ( )31 3

3 33 3

uv
uv

×

×

−

×

× =  
 

I d
0 ID  (7) 

that yield the following properties  

 1
vu uv

−=D D  (8) 

Similar properties are observed in the transformed 
matrices 

 
( )

( )

3 3

3

3 3

3 3

3

3 3

33

T
uv

uv

T
uv

uv

× ×

×

×

×

− ×

 =  
 
 =  − 

×

×

D I 0
d I

I 0
d ID

 (9) 

Based on these properties, the following important 
matrix multiplication rules were derived  

 1 1; T T T
ij ik kj ik ij kj
− − − −= =D D D D D D  (10) 

which are convenient for the mathematical 
derivations presented below. It is also worth 
mentioning that in eq. (4) the rank of 12 12× matrix 
is equal to 6, which is in good agreement with the 
physical properties of link representations. In fact, the 
lines of this block matrix are linearly dependent and 
satisfy an obvious relation 

 6 1
T

u uv v
−

×+ =W D W 0  (11) 

that in the adopted notation expresses the static 
equilibrium condition, resulting in a rank deficiency 
of 6. In the following subsection, the obtained model 
will be used to derive stiffness models of complex 
structures. 

2.2 Stiffness Models of Δ-Structures 

Using the elastic link stiffness model (4) let us derive 
the stiffness models for Δ- and Y-structures, which 
are presented in 0. Each of them consists of three 
elastic components connected either at the corners or 
a single central node. 

2

3

1

K12 K23

K31

d 1
2

 
Figure 3: VJM-based stiffness models for Δ-structure and 
their parameters. 

For the Δ-structure, the stiffness model of the 
separate elastic links (1,2) (2,3) (3,1) can be written 
as follows: 

 
(12) 1 (12)

1 12 12 12 12 12 1
(12) 1 (12)
2 12 12 12 2

T T− − −

−

     −= ⋅     −     

W KD D D Δt
W D ΔK t

K
K

 (12) 

1(23) (23)
23 23 23 23 232 2

(23) (23)1
3 323 23 23

T T− − −

−

    −= ⋅    −    

D D DW K K
K K

Δt
W ΔtD

 (13) 

1(31) (31)
31 31 31 31 313 3

1(31) (31)
31 31 311 1

T T− − −

−

    −= ⋅    −    

D D DW K K
K K

Δt
DW Δt

 (14) 

Further, taking into account that total wrenches 
1 2 3, ,W W W are expressed as 

 

(12) (31)
1 1 1

(12) (23)
2 2 2

(31) (23)
3 3 3

= +

= +

= +

W W W
W W W
W W W

 (15) 

and the node displacements satisfy the following 
constraints 

 

(12) (31)
1 1
(12) (23)
2 2
(31) (23)
3 3

=

=

=

Δt Δt
Δt Δt
Δt Δt

 (16) 

the desired stiffness model can be re-written in the 
form of a single matrix equation 

 

( ) ( ) ( )
11 12 131 1
( ) ( ) ( )

2 21 22 23 2
( ) (

318 13 8
) ( )

31 32 33

Δ Δ Δ

Δ Δ Δ

Δ Δ Δ

×

  Δ   
    = Δ    Δ   

⋅


K K KW t
W K K K t
W tK K K

 (17) 

where 
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 (18) 

It can be proved that the rank of 18 18×  matrix is 
equal to 12, which agrees with the physical properties 
of the considered Δ-structure. In fact, the lines of this 
block matrix are linearly dependent and satisfy an 
obvious relation 

 1 12 2 31 3 6 1
T T−

×+ + =W D W D W 0  (19) 

that in the adopted notation expresses the static 
equilibrium condition, resulting in a rank deficiency 
of 6. 

2.3 Stiffness Models of Y-Structures 

For the Y-structure, presented in 0, the stiffness 
model of the separate elastic links (1,0) (2,0) (3,0) can 
be written as follows 

0

2

3

1

K30

K10

K20

 
Figure 4: VJM-based stiffness models for Y-structure 
and their parameters. 
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Further, taking into account that total wrenches 
1 2 3, ,W W W are expressed as 

 

(10) (20) (30)
0 0 0 0

(10)
1 1
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2 2
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3 3

= + +
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=
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and the node displacements satisfy the following 
constraints 

 (10) (20) (30)
0 0 0= =Δt Δt Δt  (24) 

the desired stiffness model can be rewritten in the 
form of a single matrix equation 
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where 
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It can be proved that the rank of 24 24×  matrix is 
equal to 18, which agrees with the physical properties 
of the considered Y-structure.  In fact, the lines of this 
block matrix are linearly dependent and satisfy an 
obvious relation 

 0 10 1 20 2 30 3 6 1
T T T

×+ + + =W D W D W D W 0  (27) 

the desired stiffness model can be rewritten in the 
form of a single matrix equation 

To simplify further derivations, let us present both 
models in a similar way, with the matrices of the same 
dimensions of 18 18× . For this purpose, let us 
eliminate the redundant variable 0Δt  from the linear 
matrix equation (25). Taking into account that in the 
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Δ-type structure, no wrench is applied to the node #0, 
i.e. 0 16×=W 0 , the last line of (25) can written as 

 
1 1 1

10 10 20 20 30 30

10 20 30

1 2 3

0( )

− − −−
Δ

−⋅ Δ ⋅ −Δ ⋅ Δ +
+ + + ⋅ =

K t K t K t
K K K t 0

D D D
 (28) 

which yields the following expression for the 
deflections in the free node #0 

 
3

1 1
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1 1
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1
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−
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Δ+
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D
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 (29) 

where 

 10 20 30Σ = + +K K K K  (30) 

After substitution 0Δt  into the three remaining 
lines of the equation (25), one can obtain the reduced-
size stiffness model of the Y-structure as 
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⋅
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It gives a representation for the Y-structure similar to 
the Δ-type one (17). It is obvious that both 
representations operate with symmetrical matrices of 
size 18 18×  whose rank is equal to 12. Here, the rank 
deficiency of 6 is induced by the equilibrium 
condition (27), which for  0 16×=W 0  can be easily 
transformed into the form (19) after left-
multiplication by 10

T−D  and relevant transformations 
using the D-matrix properties (10). 

2.4 Transformation of Y-Structure to 
Equivalent Δ-Structure 

Now, let us derive expressions relating the parameters 
of Y- and  Δ-structures with similar stiffness 

properties (see 0). To derive the desired expressions 
for Y → Δ transformation, let us equate the upper 
off-diagonal components from equations (17) and 
(31), i.e. block-matrix elements  
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This yields the following equations 
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Figure 5: VJM-based Y-Δ transformation in the stiffness 
models. 

that are easily solved for the desired Δ-structures 
parameters 12 23 31, ,K K K  (stiffness matrices) 

 

1
12 12 10 10 20 20

1
23 23 20 20 30 30

1
31 10 10 30 30 31
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1
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K
K K K D

K
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 (35) 

Further, taking into account the symmetry of the 
stiffness matrices jij

T
i=K K  and specific properties 

of the D-matrix (10) allowing following 
simplifications 

 
12 10

23 20
1 1
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20

30
T

TT T
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−

−
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=
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the above expressions (35) are reduced to a more 
convenient form 

 

1 1
12 20 10 20 20

1 1
23 30 20 30 30

1 1
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T

T

T

− − −
Σ

− − −
Σ

− − −
Σ

= ⋅ ⋅

= ⋅ ⋅

= ⋅ ⋅

K D K K K D
K D K K K D
K D K K K D

 (37) 
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In an alternative way, expressions (37) can be 
rewritten with respect to compliances and presented 
as 

 

( )
( )
( )

1

1 1 1 1 1
12 20 10 20 20 10 20

1 1 1 1 1
23 30 20 30 30 20 30

1 1 1 1 1
31 10 10 30 10 30 10

30

0

20

T

T

T

− − − − −

− − − − −

− − − − −

= + +

= + +

= + +

K D K K K K K D

K D K K K K K D

K D K K K K K D

 (38) 

which are similar to expressions from electrical 
engineering, where the resistance corresponds to the 
compliance matrices and relevant transformation 
equations from Y to Δ circuits are expressed as 
follows. 

 

10 20
12 10 20

30

20 30
23 20 30

10

30 10
31 10 30

20

R RR R R
R

R R
R R R

R
R R

R R R
R

= + +

= + +

= + +

 (39) 

where 12 23 31, ,R R R  are the Δ-circuit resistances and 
10 20 30, ,R R R  are the resistances for the Y-circuit.  

2.5 Transformation of Δ-Structure to 
Equivalent Y-Structure 

For the inverse transformation, for YΔ →
transformation (see 0), let us consider the above-
derived equations (37) but solve them for 

10 20 30, ,K K K . For convenience, these equations can 
be rewritten as 

2

3

1

0

2

3

1

K30

K10

K20

K12 K23

K31

d 1
2

Y -type model Δ-type model 

 
Figure 6: VJM-based Δ-Y transformation in the stiffness 
models. 

 

0
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1 2

1
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1
30 00 30

10 20 31

23 30 20 30
1

10 31 10 0 30

( )
( )
( )

T

T

T

−

−

−

= + +

= + +

= + +

D K D K K K K K
D K D K K K K K
D K D K K K K K

 (40) 

and further transformed to. 

 
10 20 30

10 20 3

1 1
10 20 12 20 20

1 1
20 3

0

0 23 30 30
1 1

30 10 31 10

0

10 20 310

T

T

T

− − −

− − −

− − −

= + +

= + +

= + +

K D K D K K K K
K D K D K K K K
K D K D K K K K

 (41) 

which yields the following equalities. 

 

1 1 1 1
10 20 12 20 20 20 30 23 30 30

1 1 1 1
20 30 23 30 30 30 10 31 10 10

1 1 1 1
10 20 12 20 20 30 10 31 10 10

T T

T T

T T

− − − − − −

− − − − − −

− − − − − −

=

=

=

K D K D K K D K D K
K D K D K K D K D K
K D K D K K D K D K

 (42) 

Then, using the first and third relations, the symmetry 
of the stiffness matrices ijK  as well as commutativity 
of the above matrix products, and applying 
transposition, one can get expressions 

 
1 1 1 1

10 20 12 20 20 30 30 23 30 20
1 1 1 1

20 20 12 20 10 30 10 31 10 10

T T

T T

− − − − − −

− − − − − −

⋅ = ⋅

⋅ = ⋅

K D K D K K D K D K
K D K D K K D K D K

 (43) 

allowing the derivation of relations between 
10 20 30, ,K K K  as 

 
1 1

10 20 12 20 30 23 30 30
1 1

20 20 12 20 10 31 10 30

T T

T T

− − −

− − −

= ⋅

= ⋅

K D K D D K D K
K D K D D K D K

 (44) 

Which  using properties (10) can be further simplified 
down to 

 
1

10 20 12 23 23 30 30
1

20 20 12 21 31 10 30

T T

T T

− −

− −

= ⋅

= ⋅

K D K D K D K
K D K D K D K

 (45) 

Substituting these relations into the third relation of 
the original system (41) and  

 

1 1

0

1
20 12 21 31 10 30 30 23 30 30

1
20 12 23 23 30 30

1
20 12 21 31 1 0 30 3

T T T

T T

T T

− − − − −

− −

− −

⋅ =

= ⋅ +

+ ⋅ +

D K D K D K D K D K
D K D K D K
D K D K D K K

 (46) 

After executing relevant simplifications, one can 
obtain the desired solution for the stiffness matrix 

30K  in the form 

 30 10 31 10 30 23 30
1 1

30 23 30 20 12 20 10 31 10

T T

T T T− − −

= + +

+ ⋅ ⋅

K D K D D K D
D K D D K D D K D

 (47) 

Which can also be presented as  

 0 0 0 0 1 0
30 31 23 23 12 31

−= + + ⋅ ⋅K K K K K K  (48) 

which operates with the modified stiffness matrices 
of Δ-structures 0 0 0

12 23 31, ,K K K  obtained from the 
original once  12 23 31, ,K K K  by shifting the reference 
point to node #0 in accordance with  
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0
12 20 12 20

0
23 30 23 30

0
31 10 31 10

T

T

T

=

=

=

K D K D
K D K D
K D K D

 (49) 

Let us now consider relations (1) and (2) in the system 
(42), and using the symmetry of the stiffness matrices 

ijK  as well as the commutativity of the above matrix 
products, and applying transposition, one can get the 
following expressions 

 
1 1 1 1

10 20 12 20 20 30 30 23 30 20
1 1 1 1

20 30 23 30 30 10 10 31 10 30

T T

T T

− − − − − −

− − − − − −

⋅ = ⋅

⋅ = ⋅

K D K D K K D K D K
K D K D K K D K D K

 (50) 

allowing the derivation of relations between 
10 20 30, ,K K K  as 

 
1 1

30 30 23 30 20 12 20 10
1 1

20 30 23 30 10 31 10 10

T T

T T

− − −

− − −

= ⋅

= ⋅

K D K D D K D K
K D K D D K D K

 (51) 

Which  using properties (10) can be further simplified 
down to 

 
1

30 30 23 32 12 20 10
1

20 30 23 31 31 10 10

T T

T T

− −

− −

= ⋅

= ⋅

K D K D K D K
K D K D K D K

 (52) 

Substituting these relations into the third relation of 
the original system (41) and executing relevant 
simplifications, one can obtain the desired solution 
for the stiffness matrix 30K  in the form 

 10 20 12 20 10 31 10
1 1

10 31 10 30 23 30 20 12 20

T T

T T T− − −

= + +

+ ⋅ ⋅

K D K D D K D
D K D D K D D K D

 (53) 

Which can also be presented as  

 0 0 0 0 1 0
10 12 31 31 23 12

−= + + ⋅ ⋅K K K K K K  (54) 

In a similar way, the expressions can also be derived 
for 20K  

 20 30 23 30 20 12 20
1 1

20 12 20 10 31 10 30 23 30

T T

T T T− − −

= + +

+ ⋅ ⋅

K D K D D K D
D K D D K D D K D

 (55) 

Or in the form  

 0 0 0 0 1 0
20 23 12 12 31 23

−= + + ⋅ ⋅K K K K K K  (56) 

Hence, the final solution has the following 
presentation  

 

0 0 0 0 1 0
10 12 31 31 23 12

0 0 0 0 1 0
20 23 12 12 31 23

0 0 0 0 1 0
30 31 23 23 12 31

−

−

−

= + + ⋅ ⋅

= + + ⋅ ⋅

= + + ⋅ ⋅

K K K K K K
K K K K K K
K K K K K K

 (57) 

Also, after relevant matrix transformations and 
inversion of eq. (57), the desired solutions can be 
presented with respect to the compliance 

 

( )
( )
( )

11 0 1 0 1 0 1 0 1 0 1
10 12 12 23 31 31

11 0 1 0 1 0 1 0 1 0 1
20 23 12 23 31 12

11 0 1 0 1 0 1 0 1 0 1
30 31 12 23 31 23

−− − − − − −

−− − − − − −

−− − − − − −

= + +

= + +

= + +

K K K K K K

K K K K K K

K K K K K K

 (58) 

Thus, the obtained expressions (37), (38), (57) and 
(58) allow the transformation of the Y-type elastic 
structure into the equivalent Δ-type one and vice 
versa. They are similar to the scalar expressions from 
electrical engineering.  

 

12 31
10

12 23 31

12 23
20

12 23 31

23 31
30

12 23 31

R R
R

R R R
R R

R
R R R

R RR
R R R

=
+ +

=
+ +

=
+ +

 (59) 

However,  the expressions for stiffness 
transformations are based on the 6 6×  matrix 
operations and include additional components ijD  
that take into account the geometry of the relevant 
mechanical structure, although they can be excluded 
if all stiffness matrices ijK  are presented with respect 
to the node #0, i.e.  in the form 0

ijK  defined by eq. 
(49). It is worth mentioning that for YΔ →  
transformations, the location of the node #0 can be 
assigned arbitrarily. Besides, it should be noted that 
because of the symmetry of  the matrices ijK  and 
0

ijK  leading to commutativity of some matrix 
products, one can obtain slightly different expressions 
for equivalent stiffness/compliance matrices, which 
are equal up to a transposition. 

3 APPLICATION EXAMPLE 

To demonstrate the value of the proposed technique, 
let us apply it to the stiffness analysis of the Gough-
Stewart manipulator with a non-rigid mobile platform 
(see 0). Legs’ stiffness modelling (0) does not create 
any problems due to their strictly serial kinematics 
(Klimchik et al., 2012). However, due to the 
platform's elasticity, the entire mechanism cannot be 
presented as a serial-parallel structure, as is typically 
considered in relevant works. In fact, the platform 
contains multiple elastic cross-linkages that make it 
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impossible to handle within the frame of the 
conventional VJM approach. However, using the 
developed YΔ →  transformation, one can obtain an 
equivalent pure serial-parallel topology suitable for 
stiffness modelling employing the VJM approach.  

 

Elastic 
platform

Elastic 
Legs

 
Figure 7: Gough-Stewart platform with 3-3 connection. 

The considered elastic platform consists of six 
mutually connected elastic beams forming the frame, 
as shown in 0. For each beam, the 6 6×  the stiffness 
matrix is computed using the following expression 

Rigid Link RzRx RyRy Rz

U-joint S-joint

6-d.o.f.
spring

x

z
y

U-joint
(passive)

S-joint
(passive)

{Rx} {Ry} {Rz}{Ry} 
{Rz}

P-joint
(actuated)

{Tx}

(b) VJM-based model of Gough-Stewart  leg  

(a) kinematic model of Gough-Stewart  leg   

 
Figure 8: VJM-based stiffness models for Gough-Stewart’s 
leg. 
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joints

 
Figure 9: Gough-Stewart’s Δ+Y structure of mobile 
platform. 
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 
 =  
 
 

−  

K
 (60) 

 
where 2

44 (1 ) / 2K JL υ= + , Young's modulus E  and 
Poisson's ratio coefficient υ  describe beam’s elastic 
properties, its geometry is described by length L and 
cross-section area A, the variables Iy, Iz, and J are the 
cross-section quadratic and polar moments of inertia. 
For the considered example, it is assumed that 
actuated legs are connected to the elastic platform at 
the corners of the equilateral triangle with the edge 
length a , while the reference point is located at the 
triangle's centre. For such an arrangement, the lengths 
of the links (1,2), (2,3) and (3,1) are equal to the 
triangle parameter a  and the lengths of the links 
(1,0), (2,0) and (3,0) are / 3b a= . The remaining 
parameters included in the matrix beamK  are 
computed as 2 / 4A dπ= ⋅ , 4 / 64y zI I dπ= = ⋅ , 

4 / 32J dπ= ⋅ , where d  is the link diameter that is 
assumed to have a circular cross-section.  

The original platform consisted of six mutually 
connected elastic elements: three beams of length a  
and three beams of length b  (0a). After applying the 
developed YΔ →  transformation, the original 
model is converted into an equivalent double-Y-
structure composed of six elements of length b  each 
(0b). Then this double-Y-structure was transformed 
into a classical Y-structure that can be easily handled 
by the conventional VJM approach (0c).  
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platform with cross-linkages   

(b) Equivalent model for elastic 
platform without cross-linkages  

(c) Target equivalent Y-type 
model for elastic platform    

Figure 10: VJM-based stiffness models for the Δ-structure 
and their parameters. 

Using the developed YΔ →  transformation, we can 
compute 10 20 30, ,′ ′ ′K K K  as follows 

 

0 0 0 0 1 0
10 12 31 31 23 12

0 0 0 0 1 0
20 23 12 12 31 23

0 0 0 0 1 0
30 31 23 23 12 31

−

−

−

′ = + + ⋅ ⋅
′ = + + ⋅ ⋅
′ = + + ⋅ ⋅

K K K K K K
K K K K K K
K K K K K K

 (61) 

And then, considering the parallel connection of 
10 20 30, ,K K K  and 10 20 30, ,′ ′ ′K K K  get stiffness 

matrices 10 20 30, ,′′ ′′ ′′K K K  as 

 
10 10 10

20 20 20

30 30 30

′′ ′= +
′′ ′= +
′′ ′= +

K K K
K K K
K K K

 (62) 

To obtain the stiffness model for the entire 
manipulator, one can consider pairs of legs connected 
in parallel and attached to the mobile platform, i.e. we 
can write  

 

( ) 1 2
10

( ) 3 4
10

( ) 5 6
10

leg
leg leg

leg
leg leg

leg
leg leg

= +

= +

= +

K K K

K K K

K K K

 (63) 

Where leg stiffness matrices i
legK  can be computed 

as follows (see (Klimchik et al., 2025) for details) 

 3 3
11

3 3 3 3

T
i i i
leg K ×

× ×

 ⋅= ⋅  
 

u u 0K 0 0  (64) 

where 11 /K LEA=  is the leg stiffness on the 
compression along the main axis and iu  The unit 
direction vectors specify the orientation of the leg.  
To integrate the legs’ stiffness in the stiffness model 
of the manipulator, we need to move ( )leg

iK  to the 
zero node using the following transformations 

 0

(0) 10
10 10

2

10

(0) 20
20

(0) 30
3 00

20

3 30

T
i

T

T

leg leg

leg leg

leg leg

=

=

=

K K

K K

D

DK K

D

D D

D

 (65) 

Thus, the final Cartesian stiffness matrix for the 
Gough-Stewart Platform can be computed as  

 
( ) ( )

( )
(0) (0)

10 10 20 20

(0)
30 30

C leg leg

leg

′′ ′′= + + + +

′′+ +

K K K K K

K K
 (66) 

Hence, this development expands the application 
scope of the VJM method for over-constrained 
parallel manipulators, where cross-linkages are 
widely used to improve stiffness properties. 
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4 CONCLUSIONS 

This paper proposes a new stiffness model 
transformation technique for modelling the elastic 
behaviour of hybrid over-constrained robotic 
manipulators with multiple cross-linkages. This 
technique helps users address the critical limitation of 
the VJM method. It provides an analytical expression 
for equivalent transforming the cross-linkages into 
serial-parallel structures suitable for the VJM.  

To derive the desired transformations, the specific 
MSA-based representation is employed, which uses a 
conventional VJM-type 6 6×  virtual springs. This 
helps to derive analytical relations between the 
equivalent models. The main results were obtained 
for 3-node structures, but they can be further 
generalised for the n-node case. To demonstrate the 
efficiency of the developed technique, Gough-
Stewart manipulator with elastic platforms and 
compliant legs was considered.  
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