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The paper proposes a A-Y transformations technique for stiffness modelling of over-constrained manipulators
with internal cross-linkages. It allows representing complex structures as a serial-parallel equivalent one that
can be easily handled by the VIM-based method. To derive desired analytical expressions for the equivalent
serial-parallel structure, the MSA-based stiffness modelling approach is employed first, which allows
describing the stiffness response for both the A and Y structures operating with VIM-type stiffness matrices.
Further, the desired relations between equivalent A-Y and Y-A stiffness matrices are obtained. The example
of stiffness modelling of a non-rigid Gough-Stewart platform with multiple cross-linkages demonstrates the

benefits of the proposed technique.

1 INTRODUCTION

Stiffness modelling is a hot topic in robotics, essential
both for the robot manipulation accuracy
improvement and human-robot collaboration
enhancement (Wu et al., 2022, Hussain ef al., 2021,
Yue et al., 2022, Blumberg et al., 2021). It enables
the estimation of mechanical deflections in the
manipulator components, resulting in slight changes
to the actual configuration. Based on the computed
deflections, the related compliance  error
compensation techniques help to reduce the impact of
the external forces on the manipulator's end-effector
and improve the end-effector accuracy (Nguyen et al.,
2022, Gonzalez et al., 2022, Kim & Min, 2020,
Klimchik, Pashkevich, et al, 2013, Kim, 2023).
Currently, because of practical advantages, the most
commonly used stiffness modelling approaches in
robotics are Virtual Joint Modelling (VIM) and
Matrix Structural Analysis (MSA) (Gosselin &
Zhang, 2002, Pashkevich et al., 2009, Majou et al.,
2007, Quennouelle & Gosselin, 2008, Deblaise ef al.,
2006, Klimchik, Pashkevich, et al., 2019). They are
relatively simple from the computational point of
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view but require substantial efforts for related
stiffness model development and estimation of its
parameters. The modelling accuracy for both VIM
and MSA methods can be enhanced by relying on the
CAD-based FEA identification technique (Klimchik
et al, 2024). Considering mathematical
fundamentals, the VIM is efficient for stiffness
modelling of pure serial-parallel structures, which can
be decomposed into equivalent serial ones (Gorgiilii
et al., 2020, Hu et al., 2019). In contrast, the MSA
struggles with serial structures but can handle
complex cross-linkages (Deblaise ef al, 2006,
Klimchik, Chablat, et al., 2019, Soares Junior et al.,
2015, Detert & Corves, 2017, Klimchik ef al., 2018).
It was proved that the VIM is the best approach for
non-linear stiffness analysis (Zhao et al, 2022,
Pashkevich et al, 2011). For these reasons,
integrating cross-linkages in the VIM is a crucial
problem.

There were some attempts to integrate closed
loops into VIM methods (Klimchik, Wu, et al., 2013,
Klimchik et al., 2017). But they are not capable of
handling cross-linkages. To overcome this problem,
we propose a A-Y stiffness model transformation
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technique that allows us to present cross-linkages as
an equivalent serial-parallel mechanical structure
while preserving the original mechanical properties
of the system.

2 STIFFNESS MODELLING VIA
A-Y TRANSFORMATIONS

2.1 Stiffness Model of an Elastic Link

VIM represents each elastic component as a
superposition of a rigid element (between the nodes
u —v), which describes the geometry of the perfect
component, and an elastic component at the right end
of the link (node v), which represents the mechanical
flexibility of the corresponding body, as shown in 0,
where the node u is fixed to the base or previous
component. This model is mathematically expressed
as a linear matrix equation.:

W
ﬁ /, Rigid Link KUV
R @5
uv duv At

Figure 1: VIM-based stiffness model of a flexible link.

W=K, At (1)

relating the 6-dimensional wrench W consisting of
three force components and three moment
components applied to node v and the corresponding
displacement At is a 6-dimensional vector
consisting of three linear displacements and three
angular displacements. Here, 6x 6 stiffness matrix
K, must be expressed in the global coordinate
system, while the VIM usually operates with the
stiffness matrix K, obtained in the local coordinate
system. The latter demands a relevant transformation
K,—» K,

R* 0>< sz 0>< !
Kuv:|:0m 1{3} .Ke.liol 1{3:| (2)
6x6

3x3 uy 3x3 uv _ex6

depending on the 3x3 rotation matrix R, which
defines the link uv orientation with respect to the
global coordinate system. It should be noted that in
classical VIM, the transformation (2) is incorporated
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in the manipulator Jacobian, but it should be applied
straightforwardly here.

Let us also present an alternative MSA-based
model describing the elastic member composed of the
rigid link and virtual spring, assuming that both ends
of the link u, v are not fixed (see 0). Generally, such
a model is represented in the form of a matrix
equation as

A W
At,| , Rigid Link v g
R duv
uv
WM u Atv

Figure 2: MSA-based stiffness model of a flexible link.

[Wu}{K“ KIZ} .[Atu} 3
WV KZI K22 1212 At"

relating the 6-dimensional wrenches (W,,W,)
applied to the nodes u, v and the corresponding
displacements (At,,At ). It is clear that for the
considered physical model (rigid link + virtual
spring), the sub-matrices K,,,K,,,K,,,K,, can be
expressed via the spring stiffness matrix K, and link
geometry vector d, . Corresponding derivations are
presented in (Klimchik, Pashkevich, et al., 2019) and
yield the following expression with a symmetrical
matrix of the size 12x12

Wll p— D;VTKMVDl_I\E _D;\TKMV . Atlt (4)
WV B K, D, K 1212 At"

uv= uy uy

It includes 6x6 geometric transformation matrix
(Klimchik et al., 2024)

— sts _(duv X)
Dw - |:0 :|6><6 ®

3x3 I}><3

defining translation from the node u to the node v
expressed in the global coordinate system, which
includes a 3x3 skew-symmetric matrix (d,, X)
derived from the vector d,, (u — v ) in the following
way

0 -d. d, —d.
(dx)=|d. 0 —d | ; d=|-d | . (6
~d, d, 0 ~d

’ 3x3 z /3x1
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as well as 3x3 identity and zero matrices I, 0,
. It has been proven that the matrix D, inversion
leads to a simple change of the vector d, direction

-1 _ I3><3 (duv X)
Duv - |:03><3 I3><3 (7)

that yield the following properties
D, =D, ®)

Similar properties are observed in the transformed
matrices

D T — I3><3 03><3
vl (d,x) L,
D—T — I3><3 03><3
“ _(duv X) I3><3
Based on these properties, the following important
matrix multiplication rules were derived

)

DD, =D,; D,D) =D (10)
which are convenient for the mathematical
derivations presented below. It is also worth
mentioning that in eq. (4) the rank of 12x12 matrix
is equal to 6, which is in good agreement with the
physical properties of link representations. In fact, the
lines of this block matrix are linearly dependent and
satisfy an obvious relation

W, +D;vTWv =0, (11)

that in the adopted notation expresses the static
equilibrium condition, resulting in a rank deficiency
of 6. In the following subsection, the obtained model
will be used to derive stiffness models of complex
structures.

2.2 Stiffness Models of A-Structures

Using the elastic link stiffness model (4) let us derive
the stiffness models for A- and Y-structures, which
are presented in 0. Each of them consists of three
elastic components connected either at the corners or
a single central node.
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Figure 3: VIM-based stiffness models for A-structure and
their parameters.

For the A-structure, the stiffness model of the
separate elastic links (1,2) (2,3) (3,1) can be written

as follows:
|:W1(12):| — |:D12TK12D12l _D;zTKlz :| . |:At§m:| (12)

Wz(m _Klle_zl Klz At(zm
|:W2(23):| — |:D23TK23D231 _D;3TK23 :| . |:At(223):| (13)
23 -1 23
W3( ) _K23D23 K23 Atg :
|:w3(31):| — |:D31TK31D311 _D;{Kn :| . |:At(331):| (14)
31 -1 31
Wl( : _K31D31 K31 Ati )

Further, taking into account that total wrenches
W, ,W,, W, are expressed as

W =W 1 web

1 1 1
W, = W' + Wi* (15)
W, = Wi+ Wi

and the node displacements satisfy the following
constraints

AL = ALY
AL = At (16)
AL = AL

the desired stiffness model can be re-written in the
form of a single matrix equation

w1 K Ky K At,
A A A
W, |= K(Zl) K(zz) K(23) ‘| At, (17)
A A A
W K KR KG LA
where



A _n-T -1
Kll - D]Z K12D12 +K31

K =-D;K,,
Ky =-K, Dy
K =-K,,D;,
K =D;/K,.D;: +K,, (18)

K(zé) = _D;3TK23

Kg?) = _D;1TK31

Kgg) = _KzaDgsl

Kﬁ) = D;ITKND;II +Ky,
It can be proved that the rank of 18x18 matrix is
equal to 12, which agrees with the physical properties
of the considered A-structure. In fact, the lines of this

block matrix are linearly dependent and satisfy an
obvious relation

W, + D;zrwz + D;Wz =0, (19)

that in the adopted notation expresses the static
equilibrium condition, resulting in a rank deficiency
of 6.

2.3 Stiffness Models of Y-Structures

For the Y-structure, presented in 0, the stiffness
model of the separate elastic links (1,0) (2,0) (3,0) can
be written as follows

Figure 4: VIM-based stiffness models for Y-structure
and their parameters.

|:Wl(]0):| — |:DI_OTK10D1_0]

_DI_OTKIO . Atim) (20)
Wém)

-1 (10
_KIODIO K10 Ato )

|:W2(20):| — |:D50TK20D;(]J _D;oTKzo :| . |:At(220):| (21)

Wézo) _KzoD;(lJ Kzo AtE)ZO)
|:W3(30)i| — |:D30TK30D3(; _D;OTKso :| . |:At(330):| (22)

30 - 30

W(; : _K30D3(; K30 Atg '
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Further, taking into account that total wrenches
W, ,W,, W, are expressed as

W, = ngo) +W(§20) +W(§30)

W, =W

W, = W @
2 = 2

W, = W

and the node displacements satisfy the following
constraints

AE” = AL = AL (24)

the desired stiffness model can be rewritten in the
form of a single matrix equation

W1 KS,O) 06><6 06><6 K}ZO) Atl

W, — 056 K;;(O) U K(zz()) _Atz (25)

VV3 06><6 06><6 KgO) K(sz()) At3
W L i e i Lag
where
KS/O) = DI_OTKIODI_OI
KSO) = _DI_OTKIO
K(;zm) = D;oTKzoD;é
K(zzm = _D;oTKzo
Kgm = D;oTKsoD;é
(26)

(Y0) _ =5
K34 iy _Dso K30

(Y0) _ -1
K41 - _K10D10

(Y0) _ ~1
K42 - _KzoD

20
(Y0) _ -1

K43 - _K30D30
(YO) _

K44 - K]o +K20 +K30

It can be proved that the rank of 24X24 matrix is
equal to 18, which agrees with the physical properties
of the considered Y-structure. In fact, the lines of this
block matrix are linearly dependent and satisfy an
obvious relation

W, +DI,W, + DI, W, + D/, W, =0 27)

6x1

the desired stiffness model can be rewritten in the
form of a single matrix equation

To simplify further derivations, let us present both
models in a similar way, with the matrices of the same
dimensions of 18x18 . For this purpose, let us
eliminate the redundant variable At; from the linear
matrix equation (25). Taking into account that in the
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A-type structure, no wrench is applied to the node #0,

ie. W, =0, the last line of (25) can written as

_K]()D]_(: 'Atl _KzoD;(; 'Atz _K30D;(; 'At3 +

(28)
+(K,, +K,, +K;,)-At, =0

which yields the following expression for the
deflections in the free node #0

At, = K;'K, D At, + K;'K, D At, 29)
+K; 'K, DAt
where
K; =K, +K,, +K;; (30)
After substitution At into the three remaining

lines of the equation (25), one can obtain the reduced-
size stiffness model of the Y-structure as

w1 Ky K K At,
W, |=| Ky K OKY | At 31)
W] [KY KG K| LA

where

KilY) = D;()TKloD;(} _D;()TKloK;KloDIOI
Kg) = _Dl_oTKloK;KzoD;(l)
KY =-D, K, K;'K,,D;,
13 10 107X 307730
K(;l,) T _DEOTKzoK;KloD;ol
K(zz) = D;()TKzoD;(l) - D;()TKzoK;KzoD;é (32)
K(zg) = _D;()TKzoK;KzoD;é
Kg},) = _D;()TKsoK;K10D1_01
Kg) = _D;()TKmK;KzoD;(IJ
Kg? = D;oTKmD;é - D;()TKsnglK3oD;(§
It gives a representation for the Y-structure similar to
the A-type one (17). It is obvious that both
representations operate with symmetrical matrices of
size 18x18 whose rank is equal to 12. Here, the rank

deficiency of 6 is induced by the equilibrium
condition (27), which for W, =0, can be easily

transformed into the form (19) after left-
multiplication by D;, and relevant transformations

using the D-matrix properties (10).

2.4 Transformation of Y-Structure to
Equivalent A-Structure

Now, let us derive expressions relating the parameters
of Y- and A-structures with similar stiffness
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properties (see 0). To derive the desired expressions
for Y — A transformation, let us equate the upper
off-diagonal components from equations (17) and
(31), i.e. block-matrix elements

K =K
Ky =K (33)
KL - K
This yields the following equations
-D,K,, =-D,/ K, K;'K,,Dj,
-D,/K,, =-D, K, K;'K, D;, (34)
-K, D; =-D,/ K, K;'K,, Dy,

A -type model

Y-type model

Figure 5: VIM-based Y-A transformation in the stiffness
models.

that are easily solved for the desired A-structures
parameters K,,, K,,, K;, (stiffness matrices)

K, = D1T2D;0TK10K£1K20D;(§
K, = D;D;()TKzoK;KsoD;é (35)
K, = D;oTKloK;lK30D;(;D31

Further, taking into account the symmetry of the
stiffness matrices K =K; and specific properties

of the D-matrix (10) allowing following
simplifications

D;oT :DITZDI_OT

Dy; =D;,Dy (36)

D;()l = D;(;DSI

the above expressions (35) are reduced to a more
convenient form

K, = D;()T ~K10K;K20 D;é
K, = D;()T 'KzoK;Km D;(]) (37)
K, = D;OT 'KsoK;Klo D;()l



In an alternative way, expressions (37) can be
rewritten with respect to compliances and presented
as

Kl_zl =D, (Kl_(} + K;(l) + Kg(l)KmKl_o1 )D;)
K3; =Dy, (Ko + K5 + KK Ky )by, (38)
Kgll =D, (K;(: + K;(i + K;(iKzng(i)DITO

which are similar to expressions from electrical
engineering, where the resistance corresponds to the
compliance matrices and relevant transformation
equations from Y to A circuits are expressed as
follows.
R R
R, =R +Ry+—=
R
30

R, R
Ry =R,y + Ry +% (39

10

R. R
Ry, =R, + Ry +—
Ry,

where R,,R,;,R;, are the A-circuit resistances and
R, R, R,, are the resistances for the Y-circuit.

2.5 Transformation of A-Structure to
Equivalent Y-Structure

For the inverse transformation, for A — Y
transformation (see 0), let us consider the above-
derived equations (37) but solve them for
K,,, K,,, K;, . For convenience, these equations can
be rewritten as

A-type model

Y -type model

2
K12 dg\? K23
L, —
3
&>
1 K

Figure 6: VIM-based A-Y transformation in the stiffness
models.

D§0K12D20 =K, (K, +Ky +K;, )_1 Ky
D3T0K23D30 =K, (K, + K, +K;, )_I K, (40)
D1T0K31D10 =K, (K,, +K, +K, )71 K,

and further transformed to.
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K, D, K,D, K, =K, +K,, +K,,
K, D, KD, K, =K, +K,, +K,, (41)
K, D K; D/ K, 6 =K, +K, +K,,
which yields the following equalities.
K, Dy K o Dy Koy = Koy Dy KDy Ky,
K, D3 KD K, =K, DK D/K,, (42)
K, Dy KDy Ko = Ky DKo DK,
Then, using the first and third relations, the symmetry
of the stiffness matrices K, as well as commutativity

of the above matrix products, and applying

transposition, one can get expressions
1y -1y — [ P
K10D20K12D20T 'Kzo =K30D3(1K23D30T 'Kzo (43)
1y — — — 1
KzoDzoKlleon 'K10 = K30D13K31D10T 'Klo

allowing the derivation of relations between
KIO’KZO’K30 as
T —lyr-1ny-7
KIO = D20K12D20D30K23D30 .K30

T —lyr-ly-T (44)
Kzo :D20K12D20D10K31D10 'K30

Which using properties (10) can be further simplified

down to
K, = DgoKlzDst;D;oT Ky, (45)
K,, = DgoKlzDlegllDfoT Ky,

Substituting these relations into the third relation of
the original system (41) and

DgoKlzDlegllDfor 'K30D;(;K;;D;0TK30 =
=D) K,,D, K;;D;] ‘K, + (46)
+D] K,D,K; D,/ ‘K, +K;,,
After executing relevant simplifications, one can

obtain the desired solution for the stiffness matrix
K, in the form

K;, =D K; D, +D;K,.D;, +

T Aye-In-T T (47)
+D30K23D30 'DzoKlzDzo 'DloKlelo
Which can also be presented as
K, = 0K31 + 0K23 + 0K23 : OKl_zl : 0K31 (48)

which operates with the modified stiffness matrices
of A-structures "K,,, "K,;, "’K,, obtained from the
original once K,,,K,,;,K,, by shifting the reference

point to node #0 in accordance with
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OKlz = DgoKlzDzo
0K23 = D3T0K23D30 (49)
0K31 = D1T0K31D10

Let us now consider relations (1) and (2) in the system
(42), and using the symmetry of the stiffness matrices
K, as well as the commutativity of the above matrix
products, and applying transposition, one can get the

following expressions
KloD;(l)Kl_;D;oT Ky = KsoD;(I)K;;D;oT Ky (50)
KzoD;(])K;;D;oT Ky = KloDl_olKgllDl_or Ky,

allowing the derivation of relations between
K,.K,,K;, as

10° 20°

K, = D3T0K23D30D;3K;21D;0T Ky

T 1y -1y-T G
K, =D KDy D K5 Dy - Ky,

Which using properties (10) can be further simplified
down to

K, = D§0K23D32K1_21D;0T ‘K,

T i i (52)
KZO = D30K23D31K31D10 ! KIO
Substituting these relations into the third relation of
the original system (41) and executing relevant
simplifications, one can obtain the desired solution
for the stiffness matrix K, in the form

K, = DgoKlzDzo +D1T0K31D10 +

T yr-1y-T T (33)
+ D10K31D10 'D30K23D30 'D20K12D20
Which can also be presented as
K, = 0Klz + 0K31 + 0K31 : OK;; : 0Klz (54)

In a similar way, the expressions can also be derived
for K,,

K, = D3T0K23D30 + DgoKlzDzo +

e e (55)
+D§0K12D20 'D101K311D10T 'D§0K23D30
Or in the form
K, = 0K23 + 0K12 + 0K12 ) OKgll : 0K23 (56)

Hence, the final solution has the following
presentation

K, = OKlz + 0K31 + 0K31 : OK; : OKlz
K, = 0K23 + 0K12 + 0K12 ) OK;: ) 0K23 (57)
K, = 0K31 + 0K23 + 0K23 : 0K1_2] 'K

31
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Also, after relevant matrix transformations and
inversion of eq. (57), the desired solutions can be
presented with respect to the compliance

1 010yl , Ogr—1 , Ogr—1\"! 0qr-1
K, = KIZ( K, + K, + K}l) K3

K = Ko ('K + K3+ OK) K (59)
Ko ="K (K + K+ KUK

Thus, the obtained expressions (37), (38), (57) and
(58) allow the transformation of the Y-type elastic
structure into the equivalent A-type one and vice
versa. They are similar to the scalar expressions from
electrical engineering.

— R12R3l
10
RIZ + R23 + R31
R,R
o = 127723 (59)
R]Z + R23 + R31
— Ry Ry,
30
Rl2 + R23 + R}l
However, the expressions for stiffness

transformations are based on the 6x6 matrix
operations and include additional components D,
that take into account the geometry of the relevant
mechanical structure, although they can be excluded
if all stiffness matrices K are presented with respect
to the node #0, i.e. in the form OK,-,- defined by eq.
(49). It is worth mentioning that for A —Y
transformations, the location of the node #0 can be
assigned arbitrarily. Besides, it should be noted that
because of the symmetry of the matrices K, and
K, leading to commutativity of some matrix
products, one can obtain slightly different expressions
for equivalent stiffness/compliance matrices, which
are equal up to a transposition.

3 APPLICATION EXAMPLE

To demonstrate the value of the proposed technique,
let us apply it to the stiffness analysis of the Gough-
Stewart manipulator with a non-rigid mobile platform
(see 0). Legs’ stiffness modelling (0) does not create
any problems due to their strictly serial kinematics
(Klimchik et al., 2012). However, due to the
platform's elasticity, the entire mechanism cannot be
presented as a serial-parallel structure, as is typically
considered in relevant works. In fact, the platform
contains multiple elastic cross-linkages that make it



impossible to handle within the frame of the
conventional VIM approach. However, using the
developed A — Y transformation, one can obtain an
equivalent pure serial-parallel topology suitable for
stiffness modelling employing the VIM approach.

Elastic
platform

Elastic
Legs

Figure 7: Gough-Stewart platform with 3-3 connection.

The considered elastic platform consists of six
mutually connected elastic beams forming the frame,
as shown in 0. For each beam, the 6x 6 the stiffness
matrix is computed using the following expression

Ry y ) (RIRIRI
R}

U-joint P-joint S-joint

(passive) (actuated) (passive)

(a) kinematic model of Gough-Stewart leg

st
Rigid Link €9®®@
| Urjoint ____ Sdoint

(b) VIM-based model of Gough-Stewart leg

Figure 8: VIM-based stiffness models for Gough-Stewart’s
leg.
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Leg #4

Connection
joints

Reference
point

Leg #2

/Lng#l

Figure 9: Gough-Stewart’s A+Y structure of mobile
platform.

Leg #5

Leg #6

A0 0 !lo 0 0
0 121, 0 |0 0 6L

k_-E[0 0 mnjo 6L 0 | (60)
ean =~ 7310 0 0 1K, 0 0
0 0 6LLI 0 41 0
0 —6ILL 0 |0 0 4Lr

where K,, =JL*(1+v)/2, Young's modulus £ and
Poisson's ratio coefficient v describe beam’s elastic
properties, its geometry is described by length L and
cross-section area A4, the variables /7, /-, and J are the
cross-section quadratic and polar moments of inertia.
For the considered example, it is assumed that
actuated legs are connected to the elastic platform at
the corners of the equilateral triangle with the edge
length a, while the reference point is located at the
triangle's centre. For such an arrangement, the lengths
of the links (1,2), (2,3) and (3,1) are equal to the
triangle parameter a and the lengths of the links
(1,0), (2,0) and (3,0) are b=a/~/3 . The remaining
parameters included in the matrix K, are
computed as A=x-d*/4 , I =1 =rx-d* /64,
J=m-d* /32, where d is the link diameter that is
assumed to have a circular cross-section.

The original platform consisted of six mutually
connected elastic elements: three beams of length a
and three beams of length » (0a). After applying the
developed A — Y transformation, the original
model is converted into an equivalent double-Y-
structure composed of six elements of length » each
(Ob). Then this double-Y-structure was transformed
into a classical Y-structure that can be easily handled
by the conventional VIM approach (0c).
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()
S
/& 70N
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1 K 3

31

(a) Original structure of elastic
platform with cross-linkages

(b) Equivalent model for elastic
platform without cross-linkages

(c) Target equivalent Y-type
model for elastic platform

Figure 10: VJM-based stiffness models for the A-structure
and their parameters.

Using the developed A — Y transformation, we can

compute K/ ,K’,,K’, as follows
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K]’O = OKlz + 0K31 + 0K31 : OK; ’ OKlz
K;() = OKzs + OKlz + OKlz ) OK;11 : OKzz (61)
K;O = 0K31 + 0K23 + 0K23 ) 0K1_2l : 0K31

And then, considering the parallel connection of

K, K,.K;,, and K K} Kj get stiffness
matrices K|, K7, K}, as

K}, =K, +Kj,

K% =K, +K5, (62)

4 ’
K3, =K, +K;,

To obtain the stiffness model for the entire
manipulator, one can consider pairs of legs connected
in parallel and attached to the mobile platform, i.e. we
can write

(leg) __ 1 2

KIO - Kleg + Kleg
(leg) _ 3 4

KIO - Kleg + Kleg (63)
(leg) __ 5 6

KIO - Kleg + Kleg

Where leg stiffness matrices Kjeg can be computed
as follows (see (Klimchik ef al., 2025) for details)

7|
Y e B B )
Kleg _KH |: 03><3 i_03><3:| (64)

where K, =FA/L is the leg stiffness on the
compression along the main axis and u, The unit
direction vectors specify the orientation of the leg.
To integrate the legs’ stiffness in the stiffness model
of the manipulator, we need to move K® to the
zero node using the following transformations

K;f;lo = DloKm DITOi

leg

o) _ 20 1T

KlegZO - DZOKIegD2O (65)
o) _ 30 W

Kleg30 - D3OK1egD30

Thus, the final Cartesian stiffness matrix for the
Gough-Stewart Platform can be computed as

K. = (Kfo +K§§;10)+(K;’0 +K§§g)20)+ (66)
+(KZ + Ky )

Hence, this development expands the application
scope of the VIM method for over-constrained
parallel manipulators, where cross-linkages are
widely used to improve stiffness properties.



4 CONCLUSIONS

This paper proposes a new stiffness model
transformation technique for modelling the elastic
behaviour of hybrid over-constrained robotic
manipulators with multiple cross-linkages. This
technique helps users address the critical limitation of
the VIM method. It provides an analytical expression
for equivalent transforming the cross-linkages into
serial-parallel structures suitable for the VIM.

To derive the desired transformations, the specific
MSA-based representation is employed, which uses a
conventional VIM-type 6x6 virtual springs. This
helps to derive analytical relations between the
equivalent models. The main results were obtained
for 3-node structures, but they can be further
generalised for the n-node case. To demonstrate the
efficiency of the developed technique, Gough-
Stewart manipulator with elastic platforms and
compliant legs was considered.
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