Unsupervised Analysis of Cyclist Performance for Route Segmentation and Ranking

Rensso Mora-Colque¹ and William Robson Schwartz ² b

¹Data Science Department, Universidad de Ingenieria y Tecnologia UTEC, Barranco, Lima, Peru ²Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte - MG, Brazil

Keywords: Cyclist Behavior Analysis, Unsupervised Learning, Temporal Series Autoencoder, Smart Mobility Data.

Abstract:

This paper presents a study on the analysis of cycling tours along a designated route, addressing the limited attention given to non-professional cyclists in existing research. Unlike previous work focused on elite athletes, this study considers a broader population, including commuters, recreational riders, and fitness-oriented cyclists. Data was collected using advanced sensors to capture diverse ride characteristics. An unsupervised learning approach was applied to segment cyclists based on behavioral and performance patterns. Furthermore, a novel ranking method based on genetic algorithms was developed to classify and prioritize cyclist groups meaningfully. Experiments were conducted on a newly proposed dataset tailored to this objective, enabling deeper insights into cycling dynamics across user types. The results validate the effectiveness of both the segmentation and ranking methods, offering practical implications for route planning and cyclist-focused infrastructure management.

1 INTRODUCTION

In recent years, the analysis of amateur cycling data has gained significant attention due to the growing popularity of cycling as both a sport and a means of transportation (Holmgren et al., 2017). With advancements in wearable technology and sensors devices, a substantial amount of data is generated by amateur cyclists (De Brouwer et al., 2018b), providing a rich source of information for clustering and prediction tasks (Hilmkil et al., 2018a). For instance, the application of clustering algorithms can help in identifying different cycling behavior patterns and optimizing group training sessions (Dalton-Barron et al., 2022). Predictive models can further enhance individual training plans by forecasting performance outcomes based on historical data (Mirizio et al., 2021a). Moreover, the findings can inform city planners and policymakers to improve cycling infrastructure, promoting sustainable transportation (Kaiser, 2023). However, most research focuses on professional cyclists, often neglecting those who cycle for purposes other than professional competition. This study aims to address that gap by providing a com-

^a https://orcid.org/0000-0003-4734-8752

prehensive analysis of the general cyclist, considering the various motivations and contexts in which cycling occurs beyond the realm of professional sports.

Nowadays, technology has become a part of the vast majority of people who engage in any sport (Aroganam et al., 2019). The world of cycling is no exception, and there is a lot of enthusiasm among cyclists because information about their routes can be visualized on mobile devices, providing technological support (Kapousizis et al., 2022). The data displayed can be diverse; however, in many cases, it is merely informative and does not imply any intelligence that would allow an analysis of the route taken. Although the goals for which people cycle can vary greatly (Zhang et al., 2024), many cyclists use various computational models to monitor or track their activity. It is important to consider that our work fits into an initial context where, while cyclists may not be professionals, they at least use basic sensors to monitor their development as cyclists. In other words, cyclists want to understand how they perform in their cycling activity.

Although it is relatively straightforward to differentiate an elite athlete who participates in competitions (Martinez-Noguera et al., 2021), it is more challenging to do the same for other cyclists, as their goals can vary widely (van Bon and Vroemen, 2019). This complicates the definition of what constitutes an ama-

b https://orcid.org/0000-0003-1449-8834

teur cyclist. For example, people might ride bikes for various reasons, such as transportation, health, recreation, improvement of fitness, or training (Fraboni et al., 2021). In addition, professionals can share these goals. This ambiguity is reflected in the literature, where a large majority of studies focus on elite athletes (Phillips and Hopkins, 2020), specifically on prediction models for races or route development (Kataoka and Gray, 2019). However, with the increasing number of cyclists and the use of new technologies, new models are necessary that include all types of cyclist (Murillo Burford, 2020).

To delineate between a cyclist with general objectives and a dedicated athlete, we can employ the notion of metrics used to measure their level of training. Generally, a cyclist oriented towards competition conducts various tests to calculate values such as PSP (Power Sustained Peak), FTP (Power Threshold Function), and VO2 max, among others (Jeukendrup and Diemen, 1998). These values help predict their performance based on factors such as power output, heart rate, caloric expenditure, and lactic acid usage. Nonetheless, most cyclists do not perform these types of tests. Therefore, we can establish a division between cyclists who train based on classical metrics (whom we will call non-amateur cyclists) and those who, for various reasons, do not perform these classical tests. Then, our study focuses on information that can be obtained from the latter cyclists.

Our proposal aims to provide cyclists with information about their performance on a specific route through the analysis of cyclists who have completed that route. Unlike an individual study, our model conducts a collective study by collecting data from all cyclists who complete the same route. With this information, the idea is to create clusters and provide cyclists with insights into cyclist behavior. Also our model provides a cluster categorization, in such a way that they generate a growing categorical organization based on optimization criteria. Therefore, our model aims to generate meaningful groupings based on optimization criteria, facilitating the categorization of cyclists. This enables cyclists seeking to improve their performance to target climbs within their assigned category. It is important to note that our model produces groupings specific to each route, which is reasonable given that different routes serve distinct objectives. Consequently, the model can be effectively applied across various contexts.

One of the main motivations is that there are many enthusiastic cyclists interested in learning more about their development with the bicycle (De Brouwer et al., 2018a). This is important because it introduces the need for models that provide more specialized infor-

mation to the cyclist. While cycling as a sport has been studied for a long time by sports professionals, it is important to highlight that our proposal and the focus of our study lie in a computational model. Therefore, the idea is to provide a technological tool for all types of cyclists. This poses a challenge as the metrics used require specific preparation and protocols, along with information that a new or amateur cyclist may not have. In this sense, the analysis conducted is much broader, based on common information from a particular route. The main contributions of our proposed approach are: i) A simple model that allows generating sets of cyclists and performing a classification based on that segmentation. ii) A new database that contains a diversity of types of cyclists, including non professional individuals. iii) The proposed model performs an unsupervised analysis of a specific route, providing a ranking of the established clusters.

2 RELATED WORK

Collective Analysis and Hierarchy. An important aspect in most studies is the number of athletes or cyclists observed for the analyses. Usually, they employ between five to fifteen cyclists (Hilmkil et al., 2018b; Thiel and Sarkar, 2014). Despite the fact that this range of values can be somewhat arbitrary, we can divide the studies into two groups: those that employ a few cyclists for their research and those where the number of cyclists exceeds hundreds (Martínez-Cevallos et al., 2020; Baron et al., 2023). With the latter group being the focus of our analysis.

The idea of being able to perform clustering is precisely to create a kind of hierarchy where the cyclist can somehow determine the characteristics of the group to which they belong (Cejuela et al., 2024). Some works present hierarchies based on the general objective of the paper. We can highlight proposals (Martínez-Cevallos et al., 2020; Gallo et al., 2021) that are based on data analysis from survey information, where the process is more statistical and does not require an advanced learning model (Mirizio et al., 2021b). Other models (Cesanelli et al., 2024) use information from cyclists to generate hierarchies using computational algorithms; however, these analyses are usually not collective in nature, as the focus of these works is more individual. Our model aims to propose a hierarchy based on a collective analysis of the data. This analysis can be conducted with limited sensor information and in various cycling contexts.

A similar work to ours is proposed in (van der Zwaard et al., 2019), which aims to categorize cyclists using unsupervised analysis through clustering

algorithms like K-means. However, this study uses static information regarding the cyclists, whereas our model introduces temporal data from bicycle sensors, providing a different perspective on the information. Clustering Methods. In the realm of clustering and classification, recent research has employed various algorithms to segment athletes based on physiological and performance data. One study classified cyclists according to their fatigue outcomes from ultra-endurance events, using cluster analysis to identify distinct groups with different fatigue responses (Lewis et al., 2016). Another study utilized k-means clustering to group amateur cyclists based on observational data, which helped in understanding different training and performance profiles (Priego et al., 2018). However, clustering and classification models also have their drawbacks. One of the main challenges is the high variability in cyclists' performance data, which can lead to overfitting in classification models. Moreover, many studies focus on elite athletes, often neglecting recreational or less competitive cyclists. This gap indicates a need for more inclusive research that encompasses a broader spectrum of the cycling population. Despite these challenges, the use of clustering and classification in cycling research shows promise. For example, cluster analysis has been used effectively to understand the impact of different training regimens on cyclists' performance and to tailor training programs accordingly (Ørtenblad et al., 2013). Additionally, classification models have been instrumental in identifying key factors that influence performance and recovery in ultraendurance events (Mrakic et al., 2015).

3 APPROACH

Route Representation. Given a specific route, we define a set R, where each element $r \in R$ represents a cyclist's completion of the route. Each observation r is a sequence of variables p, such as speed, heart rate, and power output, collected over time. The data construction process is detailed in Section 4. Importantly, the number of observations within each r may vary due to differences in completion times among cyclists. To generate a compact, unsupervised representation of the performance of a cyclist on a route, we use a time series autoencoder, a well-established technique for encoding temporal data. The proposed architecture is shown in Figure 1. The input to the model consists of sequential segments $r[i, i+1, \dots, i+l] \in r$ at time step i, where l defines the temporal window. Each variable is processed through an LSTM cell, with the resulting hidden states (h) stacked and flattened. This

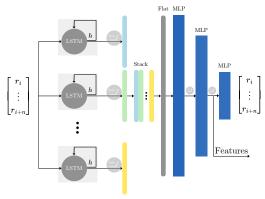


Figure 1: Time series autoencoder architecture. The encoder processes sequential segments using LSTM cells, while the decoder reconstructs the signal through MLP layers. The latent representation is extracted from the second MLP layer.

representation is passed through three multilayer perceptron (MLP) layers, introducing a bottleneck at the second layer. The output of this bottleneck layer defines the feature vector f_r . Subsequently, the model reconstructs the original sequence, and training is guided by a Mean Squared Error (MSE) loss function. The core idea behind this architecture is to leverage LSTM cells to capture temporal dependencies, while the MLP layers combine and abstract these dependencies into a concise feature representation, effectively integrating both sequential patterns and multivariate relationships.

Dual-Stage Clustering. Although simple, the bagof-words model remains widely used in various domains (Bakheet et al., 2023). We adopt this approach in a two-stage clustering process. First, the Kmeans algorithm is applied to the set of segment feature vectors F_r extracted from the autoencoder, producing K centroids. Using the same temporal segmentation as in the autoencoder input, each segment is assigned to its nearest centroid. This assignment builds a histogram g_r representing the distribution of feature types throughout the route. Next, a second clustering step is performed on the set of histograms g_r . At this stage, Spectral Clustering (Ng et al., 2001) is employed to partition the data into a set of clusters C. The reason for using two different clustering algorithms lies in the nature and goals of each stage. Initially, K-means efficiently captures diverse patterns across a large set of timeseries segments. Subsequently, Spectral Clustering, which excels in identifying non-convex and intricate data structures, organizes the histograms into more meaningful groups. This dual-stage clustering strategy ensures both fine-grained feature discovery and high-level pattern grouping, ultimately enhancing the

interpretability of the results.

Group Categorization. Based on the centroids C obtained in the previous stage, our model builds a hierarchical categorization of cyclist behavior. To achieve this, we apply NSGA-II, a widely used genetic algorithm for multi-objective optimization (Yang, 2014). In our setting, NSGA-II ranks the clusters by optimizing a set of domain-specific objectives, reflecting characteristics that we seek to maximize or minimize. The output is an ordered list of clusters, providing a categorization criterion grounded in multiple relevant variables. It is crucial to note that the goal of this categorization is not to summarize cyclists based on a single variable but to organize them based on multivariate behavior patterns observed during route completion. By grouping cyclists with similar multidimensional performance profiles, our model offers a reference framework for cyclists to assess their progression and identify performance benchmarks relative to others who completed the same route. This structured categorization facilitates meaningful comparisons and provides deeper insights into training and competition strategies.

4 EXPERIMENT RESULTS AND DISCUSSION

To conduct the experiments, we introduced a new dataset called Lagoa. It contains information from several cyclists performing a route around the Pampulha Lagoon located in Belo Horizonte, Minas Gerais, Brazil. The data are: time, heart rate, smoothed velocity, grade smooth, watts, distance and other variables that were not considered in our analysis because they appeared only in the records of a few cyclists. The database contains information on 126 cyclists, for whom |R| = 1014 rides were recorded. The vast majority of cyclists rode around the lake multiple times.

Data Preparation. The Lagoa dataset consists of a list of observations. Each observation represents the start and end of an entire route taken by the cyclist. Specifically, it records the complete lap around the lagoon, which has a perimeter of 18 km. Each element is composed of four main data points: observations per unit of time, cyclist ID, general statistics, and the date when the route was completed. In our experiments, we only used the observations r for clustering and data analysis, and the cyclist ID r^{id} for classification.

Essentially, r is the time series in the form of a matrix with n rows and m columns, where each row n_i represents data collected at a specific time t. This

information is obtained from sensors installed on the bicycle or carried by the cyclist. A key feature of our study is the use of data from popular sensors that most cyclists can install on their bicycles. In our analysis, we use information on speed, heart rate, and watts. Additionally, we employ grade_smooth also for a better analysis. We include the time information in each row to enable preprocessing since, in the observations, data recording does not always occur every second. To minimize the processing time of the autoencoder and avoid redundant data, we use intervals of q = 5 seconds, nonetheless for final cyclist representation, the interval is q = 1, we can see this interval as the overlapping in a time series. Thus, if a cyclist records data every second, we take the average of all information in the q interval. Generally, in the database, the recording interval does not exceed this time. Another important aspect of the database is that while most cyclists complete the full lap, a small group does not reach 18 km. Therefore, to obtain a consistent dataset, we filter using the distance traveled, ensuring that all cyclists covered at least 16 km, which becomes our endpoint. This allows us to include the information of all cyclists in the database. Note that although we use the time and distance data present in the database observations, these variables will not be part of the data representation process.

Experiments Methodology. For our experiments, we used two configurations that differ primarily by the introduction of an additional variable in the time series. The first configuration A, uses the variables: speed, heart rate, and watts. In the second configuration B, we added the variable grade smooth to the existing configuration A. Our proposal was developed using a computer with 25 GB of RAM, 40 core processors, and a 11 GB of memory GeForce GTX 1080 Ti graphics card. The complete framework was deployed in Python language.

Autoencoder Training and Feature Extraction. For training the autoencoder, the Adam optimizer was utilized. The model underwent 20 epochs to optimize the MSE loss function. For this training, each dataset was divided into 80% for training and 20% for validation, with elements selected randomly. Before starting the training of the models, the data was normalized using Z-normalization. For configuration A, the loss value was 0.0005 for validation and testing. In the case of configuration B, the loss value were 0.0011 and 0.0019 for validation and testing, respectively. The autoencoder takes time series as input and output, and the time range l used in our experiments is 10 observations. Note that the model varies according to the number of variables used. In the case of configuration A, the initial part of the encoder consists of three layers containing LSTM cells, whereas in configuration B, there are four LSTM cells. Once the network was trained, for both configurations A and B, features were extracted from all elements associated with each configuration. To clarify, in configuration A, the data contains only three variables, while in configuration B, information from another sensor is added. Certainly, the data is the same, but with an additional variable. However, the autoencoder model changes in the number of LSTM cells.

Clustering. The clustering stage is divided into two processes: time window clustering and clustering for the generation of a bag of words. The objective is to describe small route segments r[i,i+l] and use this granular information to describe the entire route r.

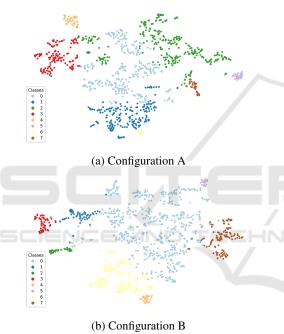


Figure 2: T-SNE visualization of both configurations of all routes R in dataset. These figures present the c=8 centroids generated by Spectral clustering.

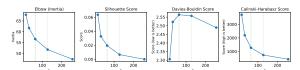


Figure 3: Clustering evaluation metrics across different numbers of clusters The vertical dashed lines at k=64 and k=128 highlight a candidate value.

The first clustering uses features extracted from the autoencoder. Given a time window of l = 10 with a stride of s = 5 observations of the time series, this means that the features extracted from the autoencoder correspond to a minimum span of 50 seconds

(in our dataset). These feature vectors are grouped into k=64 clusters. The choice of k=64 emerges as a suitable balance between cluster compactness, separation, and model complexity. At this value, the inertia shows diminishing returns (elbow point), the silhouette score remains positive, unlike at higher values where it becomes negative, and both the Davies-Bouldin and Calinski-Harabasz indices indicate stable and well-defined clustering. This suggests that k=64 provides meaningful structure without overfragmenting the data. Figure 3 graphically presents this analysis.

Once the k centroids are obtained, the route descriptor is constructed using a bag-of-words strategy (Jurafsky and Martin, 2009). In this case, the stride within the time series is s = 1, ensuring that each route segment contributes information to the creation of the feature vector g_r (64 dimensions). Figure 2 shows the segments generated using the Spectral Clustering algorithm. For visualization purposes, we use T-SNE for dimensionality reduction. In our experiments, the number of selected segments or clusters is 8, and the number of components is the same. The affinity matrix is constructed by calculating the graph with nearest neighbors, and the number of different K-means seeds is set to 10. To facilitate interpretation of Figure 2, Table 1 presents the mean and standard deviation of the elements belonging to each segment for both configurations. The numbers and colors in Figure 2 correspond to the values in the Class column of Table 1.

Ranking the Segments. To generate the cluster ranking, NSGA-II (Yang, 2014) genetic algorithm is employed. The input to this model is a matrix for each configuration, containing the means of the centroids (the μ columns of each variable in Table 1). The data is normalized using Z-scaling before being used as input. The hyperparameter n specifies the number of times the generator function is called to create an individual, with n=3 indicating that each individual is initialized with three genes. An important hyperparameter in the final stage of our framework is the weight vector of the fitness function. For the experiments conducted, the vector is [0.3, -0.3, 0.4](speed, heart rate, watts), aiming to maximize speed and watts while minimizing heart rate. This distribution is inspired by the studies presented by (Garvican et al., 2015) and is crucial for optimizing cyclist performance metrics.

In Tables 2 and 3, the ranking generated by the optimization algorithm is shown. The 'Class' column represents the cluster number, colored according to its assigned color. Cells with the highest (dark gray) and lowest (light gray) values in each column are also

	Configuration A						Configuration B					
	Velocity		Heartrate		Watts		Velocity		Heartrate		Watts	
Class	μ	σ	μ	σ	μ	σ	μ	σ	μ	σ	μ	σ
0	9.70	0.35	148.44	4.08	192.26	18.03	9.09	0.37	144.58	3.78	173.61	20.38
1	10.90	0.54	152.84	4.67	232.71	32.94	8.99	0.34	125.67	2.85	163.67	15.86
2	8.52	0.36	133.01	3.41	147.41	20.68	10.19	0.31	112.50	3.18	180.83	20.09
3	8.75	0.33	161.09	4.11	169.20	18.15	7.89	0.25	110.63	3.46	124.17	16.59
4	7.16	0.36	143.40	3.51	142.85	15.67	11.58	0.55	170.44	4.33	252.31	17.35
5	7.86	0.16	105.58	2.34	125.65	13.06	7.01	0.22	143.44	2.93	145.35	9.27
6	12.02	0.30	158.44	1.59	200.62	72.80	10.95	0.52	148.42	4.63	220.39	37.46
7	9.78	0.32	113.31	2.90	174.11	14.48	8.84	0.32	162.86	4.24	175.63	17.63

Table 1: Variable centroids for configurations A and B.

highlighted. The algorithm creates a hierarchy that ranks the groups based on a specific criterion. In our experiment, the goal is to minimize heart rate while maximizing both watts and velocity. In the weighting used, slightly more importance is given to watts, as velocity is highly correlated with power output.

Table 2: Configuration A (Data ordered by Rnk in descending order).

	N			
Class	Velocity	Heartrate	Watts	Rnk
1	10.90	152.84	232.71	7
6	12.02	158.44	200.62	6
7	9.78	113.31	174.11	5
0	9.70	148.44	192.26	4
5	7.86	105.58	125.65	3
2	8.52	133.01	147.41	2
3	8.75	161.09	169.20	1
4	7.16	143.40	142.85	0

Table 3: Configuration B (Data ordered by Rnk in descending order).

	Measurements							
Class	Velocity	Heartrate	Watts	Rnk				
4	11.58	170.44	252.31	7				
6	10.95	148.42	220.39	6				
2	10.19	112.50	180.83	5				
1	8.99	125.67	163.67	4				
0	9.09	144.58	173.61	3				
3	7.89	110.63	124.17	2				
7	8.84	162.86	175.63	1				
5	7.01	143.44	145.35	0				

Discussion. In this section, we will discuss several key aspects of our research, starting with the proposed model, examining variables, and analyzing specific points from the results.

Although the proposed model, as a feature extractor, presents a relatively simple architecture, it is effective for our purposes. It is important to highlight

that the algorithm's primary objective is to achieve a representation of the route or tour. From a modular perspective, our approach requires a model that characterizes the tour. Given the unsupervised nature of our method, we can assert, based on the visualization in Figure 2 and the data from Table 1, that the autoencoder successfully describes the segments considering the employed variables. This is significant as our model differs from conventional models that process multivariate time series data. In our case, the first MLP layer handles this information processing.

The selection of the number of clusters is another important aspect to discuss. Given that these values are somewhat arbitrary, we chose 64 clusters for the K-means algorithm and 8 clusters for the spectral algorithm. These choices are justified as follows: In the case of K-means clustering, determining the number of segments is difficult without prior knowledge of the route or a criterion to establish an appropriate number of clusters for a given route. To ensure robustness across different types of routes, we based the selection on the number of segments that could be generated from the route information. Specifically, the 64 clusters generate sufficient information for the histograms that describe the routes to be representative. Although this choice is somewhat arbitrary and dependent on the number of observations per tour, we found it suitable for our experiments, especially after conducting tests with 128 clusters. For spectral clustering, which uses only 8 clusters, we selected this number primarily because, in an unsupervised setting, we can assume the number of groups we want to represent. Determining the exact number is challenging, as cyclists undertaking the routes are not necessarily professionals or trained athletes (Lewis et al., 2016), thus excluding models that rely on precise metrics like VO2max or FTP (Pardo Albiach et al., 2021) or anthropometric measures (van der Zwaard et al., 2019). Our experiments aim to demonstrate that it is possible to generate sets and provide a ranking, with the number of sets being a hyperparameter for further study.

We believe that the choice of values is not a limitation but rather parameters that can be fine-tuned depending on the specific characteristics of the routes our model is applied to. However, we consider it a good starting point for future research (de Leeuw et al., 2023) on our proposal and new models that explore the optimal selection of hyperparameters.

Given the information on speed, power (watts), and heart rate, a cyclist typically aims to achieve higher speeds or generate more power while minimizing their heart rate (Mazzoleni et al., 2016). This goal reflects the desire to enhance performance by increasing speed and power output—indicators of improved athletic capability—without corresponding increases in physiological strain (Burke, 2001). By maintaining a lower heart rate, the cyclist can reduce fatigue and sustain high performance over longer periods (Schnohr et al., 2006). Therefore, the objective is to optimize these metrics to become faster and more powerful while experiencing less fatigue, ultimately improving overall efficiency and endurance.

5 CONCLUSIONS

This study presents an innovative approach to analyzing and clustering cyclists along a given route, regardless of their experience or physical condition. Using autoencoders, we model the routes and apply unsupervised learning to segment cyclists and rank them meaningfully, despite challenges such as data variability, sensor limitations, and the absence of standardized physical metrics. Our method is designed to work with basic, low-cost sensors and considers the diverse motivations behind cycling. The proposed model enables the positioning of new cyclists within identified clusters and offers general yet practical insights applicable to various types of users and routes. We also highlight opportunities for future work, including expanding the dataset and exploring hyperparameter tuning to refine behavioral analysis and provide personalized recommendations based on cluster profiles.

ACKNOWLEDGEMENTS

The authors would like to thank the National Council for Scientific and Technological Development – CNPq (Grant 312565/2023-2).

REFERENCES

- Aroganam, G., Manivannan, N., and Harrison, D. (2019). Review on wearable technology sensors used in consumer sport applications. *Sensors*, 19(9).
- Bakheet, S., Al-Hamadi, A., Soliman, E., and Heshmat, M. (2023). Hybrid bag-of-visual-words and featurewiz selection for content-based visual information retrieval. Sensors, 23(3).
- Baron, E., Janssens, B., and Bogaert, M. (2023). Bike2vec: Vector embedding representations of road cycling riders and races. In *Proceedings of the 10th MathSport International Conference*.
- Burke, L. (2001). Improving cycling performance: How should we spend our time and money? *Sports Medicine*, 31(7):521–532.
- Cejuela, R., Arévalo-Chico, H., and Sellés-Pérez, S. (2024). Power profile during cycling in world triathlon series and olympic games. *Journal of Sports Science and Medicine*, 23(1):25–33.
- Cesanelli, L., Lagoute, T., Ylaite, B., Calleja-González, J., Fernández-Peña, E., Satkunskiene, D., Leite, N., and Venckunas, T. (2024). Uncovering success patterns in track cycling: Integrating performance data with coaches and athletes' perspectives. *Applied Sciences*, 14(7).
- Dalton-Barron, N., Palczewska, A., Weaving, D., Rennie, G., Beggs, C., Roe, G., and Jones, B. (2022). Clustering of match running and performance indicators to assess between- and within-playing position similarity in professional rugby league. *Journal of Sports Sciences*, 40(15):1712–1721.
- De Brouwer, M., Ongenae, F., Daneels, G., Municio, E., Famaey, J., Latré, S., and De Turck, F. (2018a). Personalized real-time monitoring of amateur cyclists on low-end devices: Proof-of-concept & performance evaluation. In WWW '18: The Web Conference 2018, pages 1833–1840.
- De Brouwer, M., Ongenae, F., Daneels, G., Municio, E., Famaey, J., Latré, S., and De Turck, F. (2018b). Personalized real-time monitoring of amateur cyclists on low-end devices: Proof-of-concept and performance evaluation. In WWW '18: Companion Proceedings of the The Web Conference 2018, pages 1833–1840.
- de Leeuw, A.-W., Oberkofler, T., Heijboer, M., and Knobbe, A. (2023). Athlete monitoring in professional road cycling using similarity search on time series data. In Brefeld, U., Davis, J., Van Haaren, J., and Zimmermann, A., editors, *Machine Learning and Data Mining for Sports Analytics*, pages 115–126. Springer Nature Switzerland.
- Fraboni, F., Prati, G., Casu, G., De Angelis, M., and Pietrantoni, L. (2021). A cluster analysis of cyclists in europe: common patterns, behaviours, and attitudes. *Transportation*, 49.
- Gallo, G., Filipas, L., Tornaghi, M., Garbin, M., Codella, R., Lovecchio, N., and Zaccaria, D. (2021). Thresholds power profiles and performance in youth road cycling. *International Journal of Sports Physiology and Performance*.

- Garvican, L., Clark, B., Martin, D., Schumacher, Y., Mc-Donald, W., and Stephens, B. (2015). Impact of altitude on power output during cycling stage racing. PLOS ONE, 10(12):e0143028.
- Hilmkil, A., Ivarsson, O., Johansson, M., Kuylenstierna, D., and van Erp, T. (2018a). Towards machine learning on data from professional cyclists. In *Proceedings* of the 12th World Congress on Performance Analysis of Sports, pages 168–176, Opatija-Croatia. Faculty of Kinesiology, University of Zagreb.
- Hilmkil, A., Ivarsson, O., Johansson, M., Kuylenstierna, D., and van Erp, T. (2018b). Towards machine learning on data from professional cyclists. In *Proceedings of* the 12th World Congress on Performance Analysis of Sports, pages 168–176, Opatija, Croatia. Faculty of Kinesiology, University of Zagreb.
- Holmgren, J., Aspegren, S., and Dahlströma, J. (2017). Prediction of bicycle counter data using regression. *Procedia Computer Science*, 113:502–507.
- Jeukendrup, A. E. and Diemen, A. V. (1998). Heart rate monitoring during training and competition in cyclists. *Journal of sports sciences*, 16 Suppl:S91–9.
- Jurafsky, D. and Martin, J. H. (2009). Speech and language processing. Prentice Hall series in artificial intelligence. Prentice Hall, Pearson Education International, 2. ed., [pearson international edition] edition.
- Kaiser, S. K. (2023). Predicting cycling traffic in cities: Is bike-sharing data representative of the cycling volume? In ICLR 2023 Workshop on Tackling Climate Change with Machine Learning.
- Kapousizis, G., Ulak, M., Geurs, K., and Havinga, P. (2022). A review of state-of-the-art bicycle technologies affecting cycling safety: level of smartness and technology readiness. *Transport Reviews*, 43:1–23.
- Kataoka, Y. and Gray, P. (2019). Real-time power performance prediction in tour de france. In Brefeld, U., Davis, J., Van Haaren, J., and Zimmermann, A., editors, *Machine Learning and Data Mining for Sports Analytics*, pages 121–130, Cham. Springer International Publishing.
- Lewis, N. A., Towey, C., Bruinvels, G., Howatson, G., and Pedlar, C. R. (2016). Clustering classification of cyclists according to the acute fatigue outcomes produced by an ultra-endurance event. *European Journal of Human Movement*.
- Martinez-Noguera, F., Alcaraz, P., Ortolano-Ríos, R., Dufour, S., and Marín-Pagán, C. (2021). Differences between professional and amateur cyclists in endogenous antioxidant system profile. *Antioxidants*, 10:282.
- Martínez-Cevallos, D., Proaño-Grijalva, A., Alguacil, M., Duclos-Bastías, D., and Parra-Camacho, D. (2020). Segmentation of participants in a sports event using cluster analysis. *Sustainability*, 12(14).
- Mazzoleni, M., Battaglini, C., Martin, K., et al. (2016). Modeling and predicting heart rate dynamics across a broad range of transient exercise intensities during cycling. *Sports Engineering*, 19(2):117–127.
- Mirizio, G. G., Muñoz, R., Muñoz, L., Ahumada, F., and Del Coso, J. (2021a). Race performance prediction from the physiological profile in national level youth cross-country cyclists. *International Journal of Envi*ronmental Research and Public Health, 18:5535.

- Mirizio, G. G., Muñoz, R., Muñoz, L., Ahumada, F., and Del Coso, J. (2021b). Race performance prediction from the physiological profile in national level youth cross-country cyclists. *International Journal of Envi*ronmental Research and Public Health, 18:5535.
- Mrakic, S., Gussoni, M., Moretti, S., Pratali, L., Giardini, G., Tacchini, P., Dellanoce, C., Tonacci, A., Mastorci, F., Borghini, A., Montorsi, M., and Vezzoli, A. (2015).
 Effects of mountain ultra-marathon running on ros production and oxidative damage by micro-invasive analytic techniques. *PLoS ONE*, 10(11):e0141780.
- Murillo Burford, E. (2020). Predicting cycling performance using machine learning. Master's thesis, Wake Forest University Graduate School of Arts and Sciences, Winston-Salem, North Carolina. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science.
- Ng, A., Jordan, M., and Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. In Dietterich, T., Becker, S., and Ghahramani, Z., editors, *Advances in Neural Information Processing Systems*, volume 14. MIT Press.
- Ørtenblad, N., Westerblad, H., and Nielsen, J. (2013). Muscle glycogen stores and fatigue. *The Journal of Physiology*, 591(18):4405–4413.
- Pardo Albiach, J., Mir-Jimenez, M., Hueso Moreno, V., Nácher Moltó, I., and Martínez-Gramage, J. (2021). The relationship between vo2max, power management, and increased running speed: Towards gait pattern recognition through clustering analysis. *Sensors*, 21(7).
- Phillips, K. and Hopkins, W. (2020). Determinants of cycling performance: a review of the dimensions and features regulating performance in elite cycling competitions. *Sports Medicine Open*, 6.
- Priego, J. I., Kerr, Z. Y., Bertucci, W. M., and Carpes, F. P. (2018). The categorization of amateur cyclists as research participants: Findings from an observational study. *Journal of Sports Sciences*, 36(17):2018–2024.
- Schnohr, P., O'Keefe, J. H., Marott, J. L., Lange, P., Jensen, G. B., Riegger, G. A., Allard, N. A., and Green, C. A. (2006). Intensity versus duration of cycling, impact on all-cause and coronary heart disease mortality: the copenhagen city heart study. *European Journal of Preventive Cardiology*, 9(5):924–930.
- Thiel, D. and Sarkar, A. (2014). Swing profiles in sport: An accelerometer analysis. *Procedia Engineering*, 72:624–629.
- van Bon, M. and Vroemen, G. (2019). Power speed profile: Performance model for road cycling.
- van der Zwaard, S., de Ruiter, C. J., Jaspers, R. T., and de Koning, J. J. (2019). Anthropometric clusters of competitive cyclists and their sprint and endurance performance. *Frontiers in Physiology*, 10.
- Yang, X.-S. (2014). Chapter 14 multi-objective optimization. In Yang, X.-S., editor, *Nature-Inspired Optimiza*tion Algorithms, pages 197–211. Elsevier, Oxford.
- Zhang, R., Te Brömmelstroet, M., Nikolaeva, A., and Liu, G. (2024). Cycling subjective experience: A conceptual framework and methods review. *Transportation Research Part F: Traffic Psychology and Behaviour*, 101:142–159.