Curvature-Constrained Motion Planning and Control for Traffic Cone Manipulation Robot

Rudolf Krecht^{©a} and Áron Ballagi^{©b}

Department of Automation and Mechatronics, Széchenyi István University, Egyetem square, Győr, Hungary

Keywords: Intralogisctics, Automatic Traffic Cone Manipulation, Curvature-Constrained Path Following, GNSS-RTK

Navigation.

Abstract: This paper presents an integrated system for traffic cone manipulation using a heavy-duty mobile robot

equipped with GNSS-RTK localization, a custom remote supervision and mission control interface, and a curvature-constrained motion controller. Designed for use in semi-structured outdoor environments, the robot receives waypoint and speed commands via a tailored extension of Foxglove Studio, which enables intuitive map-based interaction and real-time trajectory editing. Owning to its high payload capacity, the platform prioritizes stability over maneuverability, thus, it cannot change orientation without longitudinal movement. To address this, we propose a smooth, curvature-based controller that enforces a minimum turning radius while following pose and heading goals. The system architecture is built on Robot Operating System 2 (ROS 2), leveraging modular nodes for map visualization, path planning, motion execution, and action triggering. Our experiments demonstrate the system's ability to navigate complex waypoint paths and pause precisely at mission-dictated locations, more specifically cone placement locations. Our results show that even under turning constraints, the robot reliably executes full cone manipulation routines with high spatial accuracy and operational safety. The system highlights the feasibility of pairing high-level operator interfaces with low-level

kinematic-aware planning for constrained robotic platforms.

1 INTRODUCTION

Autonomous transportation technologies are rapidly reshaping the way people, goods, and infrastructure interact in both urban and industrial environments. Although much of the early focus in autonomy has been directed towards large-scale vehicular automation, such as autonomous cars and trucks, recent advances have highlighted the critical importance of smaller, task-specific systems that operate in constrained, semi-structured domains. Two key domains in this emerging landscape are intralogistics and micromobility, both of which benefit significantly from the deployment of compact, autonomous robotic systems.

Intralogistics refers to the automated management of material flow within localized facilities such as warehouses, ports, campuses, and construction sites. These environments typically require frequent but repetitive motion of small payloads, precise object placement, and coordination with human workers or

^a https://orcid.org/0000-0002-8927-8783

b https://orcid.org/0000-0002-5458-5249

static infrastructure. The ability to automate such processes has direct implications on operational efficiency, safety, and cost reduction. In this context, autonomous mobile robots (AMRs) equipped with accurate localization, adaptable planning, and simple manipulation capabilities have become increasingly relevant (Pfrommer et al., 2024).

Parallel to this, the concept of micromobility has emerged as a framework for understanding small-scale robotic transportation—both for personal mobility (e.g., scooters, delivery drones) and for autonomous systems tasked with maintaining or reconfiguring urban environments. Examples include robots that paint road markings, distribute temporary signage, or manage traffic cones in dynamic zones such as smart test tracks and urban experiments. These systems share the need for tight control in constrained areas, human-readable behavior, and smooth integration into existing infrastructure.

Despite growing interest in these domains, relatively little attention has been paid to robotic systems that perform infrastructure manipulation tasks, such as placing or removing traffic cones, in coordination

with mobile navigation. These tasks require the combination of precise positioning, safe low-speed control, and intuitive human-robot interfaces for real-time supervision. Moreover, the challenge is exacerbated when using large or heavy platforms that are characterized by low maneuverability.

In this paper, we present a complete system for cone manipulation using a GNSS-guided autonomous robot, equipped with a curvature-aware controller and a custom supervision and mission control interface built on Foxglove Studio (Foxglove, 2024). The system enables an operator to define traffic cone placement locations on a live map, and based on the required traffic cone positions, the integrated motion planner assigns speed profiles and behavioral semantics, and finally, the controller executes the required path. The robot tracks these trajectories using a custom controller that enforces a minimum turning radius, ensuring feasibility even under physical motion constraints. The result is a lightweight, adaptable solution for localized infrastructure manipulation—applicable to intralogistics scenarios, micromobility deployments, and emerging smart-city test environments. The setup presented in this paper was developed and tested at the ZalaZONE Automotive Proving Ground (ZalaZONE Research and Innovation, 2023).

2 RELATED WORK

The integration of autonomous mobile robots (AMRs) into intralogistics and micromobility systems has received significant attention in recent years, driven by the need for efficient, flexible and safe transportation solutions within structured environments.

AMRs have revolutionized intralogistics by enabling decentralized problem solving and autonomous navigation in dynamic environments (Fragapane et al., 2021). These robots are increasingly employed in manufacturing, warehousing, and hospital settings to automate material handling tasks. The shift from traditional automated guided vehicles (AGVs) to AMRs is attributed to the latter's ability to adapt to dynamic layouts and workflows without the need for extensive infrastructure modifications.

Micromobility solutions, encompassing lightweight and compact vehicles, have emerged as viable alternatives for short-distance transportation in urban settings. In parallel, the automation of infrastructure manipulation tasks, such as traffic cone placement, has been explored to enhance safety and efficiency. Projects like AutoCone (Hartzer and Saripalli, 2020) have developed omnidirectional

robots capable of precise cone deployment using RTK GPS and onboard localization filtering. Instead of creating a heavy-duty platform for carrying standard traffic cones, AutoCone approaches the task by creating mobile, autonomous traffic cones. The Hong Kong Highways Department introduced RoadBot 1 and RoadBot 2 (Hong Kong Highways Department, 2019), intelligent robot systems designed to autonomously place and collect traffic cones and warning lanterns on high-speed roads, thereby reducing the risk to human workers. RoadBot 1 is a fully integrated robotic arm mounted on a large truck platform, offering high throughput and operational safety at the cost of mobility and flexibility.

Our project combines the advantages of these two approaches while addressing their limitations. It offers a mid-size, heavy-duty robotic platform that can carry and deploy standard traffic cones autonomously, achieving a balance between payload capacity and maneuverability.

Effective trajectory planning and control are critical for AMRs operating in environments with physical constraints. Model Predictive Control (MPC) strategies have been proposed for managing the formation and recovery of traffic cone robots, addressing challenges related to dynamic coordination and input limitations. Additionally, curvature-constrained motion planning has been employed to ensure feasible paths for robots with limited turning capabilities, enhancing their ability to navigate complex terrains.

3 SYSTEM OVERVIEW

Our team started the aforementioned project with the aim of creating a robot platform with a compact form factor, simple mechanical components, yet a generous load capacity and an on-board collaborative robot manipulator. Thus, a compact, four-wheel-drive skidsteer robot platform has been proposed and prototyped (Figure 2). Each of the four brushless drive motors is individually controlled via a dedicated electronic speed controller (ESC), and grouped in pairs under two dedicated Controller Area Network (CAN) adapters. These adapters communicate with the central industrial PC over serial, ensuring real-time control and fault monitoring. This distributed motor control setup reduces system complexity while maintaining modularity and serviceability (Krecht and Ballagi, 2022).

The robotic manipulator subsystem consists of two primary components: a collaborative robotic arm and its end effector. The arm is physically mounted on the mobile base and connects to the central PC via

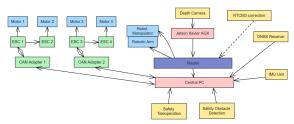


Figure 1: Block diagram of the robot platform for traffic cone manipulation.

the 5G router. The end effector, which is affixed to the arm, interfaces over the same network, allowing unified control and coordination within the ROS 2 framework.

Inertial data is acquired through an on-board IMU unit, connected via a direct serial interface to the central PC. Alongside, a high-precision GNSS receiver also communicates via serial and supports Real-Time Kinematic (RTK) corrections using RTCM3 messages received through the router using the NTRIP protocol. As far as our current setup, position is provided by the GNSS-RTK system, while initial orientation is determined based on the IMU's integrated magnetometer.

For perception, a stereo depth camera is connected to a dedicated NVIDIA Jetson Xavier AGX computer. This PC dedicated for the machine's vision is networked with the central industrial computer via the 5G router, allowing high-bandwidth data transfer and distributed processing. This setup is intended to detect traffic cones using neural networks assigning a collaborative robotic arm to approach the traffic cone (Hollósi et al., 2021).

Altogether, the robot's system design (Figure 1) balances modularity and centralization, leveraging modern industrial and robotics standards to ensure reliability, scalability, and ease of integration with collaborative automation workflows.

4 HUMAN-MACHINE INTERFACE

To enable intuitive human-robot interaction for traffic cone manipulation, we developed a custom user interface panel in Foxglove Studio (Foxglove, 2024), a modern, browser-based visualization tool for ROS 2. Unlike traditional approaches, our solution allows operators to interactively define waypoints, assign speed profiles, and trigger manipulation behaviors in real time through a map-based graphical interface.

Figure 2: Heavy duty robot platform for traffic cone manipulation.

4.1 Panel Overview

The panel was implemented as a Foxglove Panel Extension using React and TypeScript. It integrates directly with ROS 2 via the Foxglove WebSocket bridge, enabling seamless communication with the robot using standard ROS 2 message types. The robot's trajectory is defined by a /textttgeometry_msgs/msg/PoseArray message, which specifies the ordered list of waypoints. An associated std_msgs/msg/Float32MultiArray message provides corresponding speed values for each waypoint. Operator commands, such as starting or stopping the robot, and triggering cone placement routines, are handled via ROS 2 std_srvs/srv/Trigger services.

The panel (Figure 3) presents a live, zoomable map view centered on a user-specified virtual origin, overlaid with dynamic visualizations of way-points, color-coded trajectory lines, and any previously placed cones. The design ensures real-time feedback, improves operator awareness, and enables seamless integration into field deployments.

4.2 Functionality

Through the panel, users can interactively define a trajectory by clicking directly on the map to specify waypoints. These waypoints are immediately visualized as traffic cone-shaped markers. Based on traffic cone locations, a simple trajectory is planned locally. The placed traffic cones are interconnected and waypoints are defined along these sections at constant dis-

Figure 3: Custom Foxglove Studio panel for traffic cone placement and mission control.



Figure 4: Waypoint array including velocity information generated based on the requested traffic cone placement pattern.

tances. For each waypoint, a speed value can be assigned. The discrete longitudinal velocity values are computed locally using a trapezoidal profile between traffic cone locations, reaching zero at waypoints designated for cone placement (Figure 4). After manually assigning traffic cone locations, the user can finalize the editing by clicking on a dedicated button, publishing the waypoint array and speed values to the robot. The interface includes controls for initiating and halting robot motion, mapped to /start_robot and /stop_robot ROS 2 services. As the user modifies the waypoint list or adjusts speed values, the panel does not continuously publish updated trajectory data to avoid unexpected overlays between multiple track layouts.

4.3 Design Considerations

Foxglove Studio was selected for its modern architecture and flexibility in user interface design. It runs in any modern web browser without requiring local ROS installation, making it especially suitable for remote operation and distributed teams. The support for full React-based customization enabled us to tailor the interface precisely to the needs of the cone manipulation

task, reducing cognitive load on the operator. Realtime communication with ROS 2 topics and services ensures that the panel remains highly responsive, even when modifying paths during mission execution.

Furthermore, the web-based deployment model allows the panel to be hosted on a central machine, enabling access from any network-connected device. This facilitates supervisory control by multiple users and aligns well with semi-autonomous or mixed-initiative mission frameworks.

5 TRAJECTORY PLANNING

The trajectory planning strategy employed in this system is deliberately operator-driven, focusing on simplicity, direct control, and real-time feedback. Rather than relying on automated path planning algorithms, the robot follows a trajectory defined manually through the custom Foxglove panel. This approach empowers human operators to design and edit robot paths based on environmental context, task requirements, or safety considerations, while keeping the planning layer lightweight and adaptable.

5.1 Waypoint-Based Path Specification

The planned trajectory consists of a sequence of spatial waypoints, each representing a desired robot pose (position and orientation) in two-dimensional space. In addition to geometric position, each waypoint is associated with a scalar speed value that modulates the robot's linear velocity as it approaches the target.

As mentioned before, these speed values serve both, as velocity commands and as semantic markers. In particular, a speed value of zero designates the waypoint as a logical stop point. When the robot reaches such a waypoint, it initiates a controlled pause and triggers a predefined action—typically the placement or retrieval of a traffic cone. After completing the action and waiting for a configurable duration, the robot resumes motion toward the next target in the sequence.

This combination of spatial and behavioral encoding within the waypoint list enables rich, event-driven trajectories to be constructed with minimal interface complexity.

6 MOTION CONTROLLER

The mobile robot used in this system is physically incapable of performing orientation changes without longitudinal movement due to its size and wheel configuration dictated by stability requirements. As a result, traditional point-turn alignment strategies commonly used in indoor robotics are infeasible. To address this limitation, we designed a curvature-constrained motion controller that enables the robot to follow arbitrary waypoint sequences using only smooth, forward-facing movements with bounded angular curvature (Paden et al., 2016). This controller forms the core of the system's low-level autonomy, enabling reliable execution of the trajectories defined through the user interface.

6.1 Control Architecture

The controller is implemented as a discrete-time, event-driven finite-state machine (Hanžič et al., 2013) with three operational states: ALIGN, GOTO, and PAUSE. These states reflect the primary behaviors needed to execute a semantically rich waypoint-based trajectory while respecting the robot's kinematic constraints.

In the ALIGN state, the robot adjusts its heading toward the current waypoint target. However, unlike conventional in-place rotation strategies, this alignment is performed using a gentle forward arc. The robot moves slowly while modulating its angular velocity based on the heading error, constrained by a maximum allowable curvature that reflects the robot's minimum turning radius.

In the GOTO state, the robot proceeds toward the waypoint, continuing to correct its heading dynamically. If the orientation error is too large, forward velocity is reduced to ensure stability. Otherwise, the robot follows a curvature-constrained path that blends translation and heading correction into a single motion profile.

In the PAUSE state, the robot has reached a waypoint marked with a zero-speed command. It stops moving, triggers traffic cone placement and remains stationary for a configurable delay before proceeding to the next waypoint. During this delay, the robot can perform application-specific tasks, such as placing traffic cones, before continuing to the next waypoint.

State transitions are triggered by geometric proximity to the target waypoint (position tolerance), alignment within an angular threshold (heading tolerance), or time-based conditions during pauses. The robot continues to cycle through these states until all waypoints have been executed or an external stop command is received.

6.2 Curvature-Based Control Law

To ensure smooth and kinematically feasible motion, angular velocity is computed using a curvature-based control strategy. Let (x, y, θ) denote the current pose of the robot, and let (x_w, y_w) be the position of the target waypoint. The Euclidean distance to the waypoint is given by:

$$d = \sqrt{(x_w - x)^2 + (y_w - y)^2}$$
 (1)

The desired heading is computed using the twoargument arctangent function (Siciliano et al., 2009):

$$\theta_d = \operatorname{atan2}(y_w - y, x_w - x) \tag{2}$$

To compute a smooth angular error, we use the wrapped angle difference:

$$\Delta \theta = \operatorname{atan2} \left(\sin(\theta_d - \theta), \cos(\theta_d - \theta) \right)$$
 (3)

From the heading error and distance, we compute an instantaneous curvature κ :

$$\kappa = \frac{\Delta \theta}{\max(d, \varepsilon)} \tag{4}$$

where ε is a small positive constant used to prevent division by zero at short distances.

To respect the robot's physical turning limits, the curvature is clamped to a maximum value $\kappa_{\text{max}} = \frac{1}{R_{\text{min}}}$, where R_{min} is the minimum turning radius (Thrun et al., 2005):

$$\kappa \leftarrow \text{clip}(\kappa, -\kappa_{\text{max}}, \kappa_{\text{max}})$$
 (5)

The final angular velocity command ω is computed by scaling curvature with the linear velocity v:

$$\omega = \kappa \cdot v \tag{6}$$

This formulation ensures that the robot never exceeds its curvature constraints while continuously adjusting its heading toward the waypoint. It also allows the robot to follow smooth trajectories without the need for stopping or in-place rotation, which is particularly important given its limited turning capabilities.

6.3 Behavior at Stop Points

When the controller detects that the robot has reached a waypoint with an assigned speed of zero, it enters the PAUSE state. Here, it initiates a service call to trigger a predefined manipulation action—such as triggering the actuator to place a cone—and begins a countdown timer. The duration of the pause is configured as a static parameter. Once the pause concludes, the controller transitions back to the ALIGN state and proceeds toward the next waypoint.

The controller has been implemented as presented by (Algorithm 1).

```
Data: Current robot pose (x, y, \theta), waypoint
         (x_w, y_w), min. turning radius R_{\min}
Result: Velocity command (v, \omega)
Compute dx \leftarrow x_w - x, dy \leftarrow y_w - y;
Compute d \leftarrow \sqrt{dx^2 + dy^2};
Compute desired heading \theta_d \leftarrow \text{atan2}(dy, dx);
Compute yaw error
  \Delta\theta \leftarrow atan2(\sin(\theta_d - \theta), \cos(\theta_d - \theta));
if state = ALIGN then
     if |\Delta\theta| < heading_tolerance then
      state \leftarrow GOTO;
     end
     else
          v \leftarrow 0.1;
          curv \leftarrow \Delta\theta / \max(d, 0.1);
          curv \leftarrow
            \operatorname{clip}(\operatorname{curv}, -1/R_{\min}, +1/R_{\min});
          \omega \leftarrow curv \cdot v;
          return (v, \omega);
     end
else if state = GOTO then
     if d < position\_tolerance then
          if speed = 0.0 then
               state \leftarrow PAUSE, start timer, stop
                 robot:
          end
          else
               state \leftarrow ALIGN, index \leftarrow index
                 +1;
          end
     end
     else
          v \leftarrow \min(\text{linear\_speed}, speed);
          curv \leftarrow \Delta\theta / \max(d, 0.1);
          curv \leftarrow
            clip(curv, -1/R_{min}, +1/R_{min});
          \omega \leftarrow curv \cdot v;
          return (v, \omega);
     end
else if state = PAUSE then
     if not yet triggered then
          Call trigger service;
     end
     if pause duration elapsed then
          if more waypoints then
               state \leftarrow ALIGN, index \leftarrow index
                 +1;
          end
          else
               state \leftarrow IDLE, stop robot;
     end
```

Algorithm 1: Curvature-based motion control.

7 EXPERIMENTS AND EVALUATION

To validate the proposed curvature-constrained trajectory execution system and assess the effectiveness of the custom Foxglove-based operator interface, we conducted two main experiments. The first was carried out in simulation to verify controller behavior under idealized conditions, while the second involved deploying the system on a physical robot platform equipped with a traffic cone manipulation mechanism.

7.1 Simulation-Based Validation

The initial evaluation phase was conducted in a custom-built simulator designed to emulate the motion dynamics of the real robot. This simulator subscribed to velocity commands published on the /cmd_vel ROS 2 topic and generated corresponding tf transformations, effectively mimicking the behavior of the physical platform in a controlled ROS 2 environment. This setup enabled the rapid iterative development of the controller logic and tuning of key parameters, including linear speed, angular gain, and heading and position tolerances, without the risk or time constraints associated with physical trials.

The simulator confirmed that the curvature-constrained controller is capable of accurately following waypoint sequences with non-zero turning radii. After several rounds of tuning, the robot successfully executed multi-segment paths while complying with the minimum turning radius constraint. The ALIGN, GOTO, and PAUSE state transitions behaved as expected, and the robot consistently stopped and resumed at designated zero-speed waypoints. This stage also allowed us to refine speed profiling strategies and verify that orientation interpolation across interpolated poses yielded smooth heading transitions.

7.2 Deployment on Real Robot

Following successful simulation trials, the complete system, including the custom Foxglove panel, GNSS-RTK localization, and the motion controller was deployed on the physical robot. The platform was equipped with a manipulator capable of placing standard traffic cones retrieved from predefined onboard storage locations. Field tests were conducted in outdoor environments with unobstructed GNSS visibility and a stable RTK base station connection.

In practice, the system demonstrated reliable performance on simple track layouts such as straight lines and broad arcs. Using the Foxglove panel, the operator interactively defined and published cone placement trajectories, which the robot executed with minimal supervision. The use of a triangular speed profile for interpolated segments enabled smooth deceleration near stopping points, contributing to consistent placement accuracy.

To assess the overall system accuracy, including the robot platform and the point-to-point PID controller, the robot's ability to follow goal points was evaluated. Figure 5 illustrates three test scenarios: a straight line of five waypoints spaced 3m apart, a gentle arc defined by five points, and a zig-zag pattern consisting of four waypoints. In the figure, the red line represents the executed trajectory, while green dots denote target waypoints, each surrounded by a yellow circle with a 0.5m radius for visual clarity.

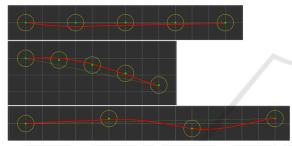


Figure 5: Test waypoint constellations (straight line, slight arc, zig-zag pattern).

These constellations were repeated multiple times, and after reaching 25 waypoints in total, the achieved accuracy has been evaluated. The results are presented by Table 1.

Table 1: Waypoint following accuracy metrics.

Metric	Value (m)
Mean Absolute Error (MAE)	0.117
Root Mean Square Error (RMSE)	0.146
Standard Deviation	0.089
Maximum Error	0.260
Minimum Error	0.000
Median	0.080

7.3 Limitations and Edge Cases

The described mobile robot for traffic cone placement defines a number of requirements in order to be operational. These requirements include good GNSS coverage and the availability of an RTK base. While the system reliably executes cone placement routines under nominal conditions, certain edge cases pose challenges. The controller assumes that all waypoints are reachable via curvature-feasible paths. If the operator places a cone behind the robot or defines tightly

spaced waypoints that violate the robot's minimum turning radius, the robot may be unable to execute the intended motion. Currently, such scenarios require trajectory redefinition. Similarly, closely spaced cones may result in overlapping manipulation zones, as the dimensions of the robot platform are not taken into consideration automatically. Solving these edge cases was out of the scope of this work, and currently are mitigated by defining policies for traffic cone placement.

8 CONCLUSION AND FUTURE WORK

This paper presented a fully integrated robotic system designed for automatic traffic cone manipulation in semi-structured outdoor environments. The platform combines a high-load skid-steer mobile base, GNSS-RTK localization, a curvature-constrained motion controller, and a browser-based planning interface to achieve precise waypoint tracking and context-aware task execution. The system emphasizes modularity and real-world feasibility by leveraging ROS 2, real-time communication networks, and industrial-grade components such as CAN-driven ESCs and an on-board robotic manipulator.

Our experimental results demonstrate that the proposed control and planning architecture is capable of reliably executing waypoint-defined cone manipulation tasks even under curvature constraints imposed by the platform's limited turning capabilities. The combination of a customized Foxglove Studio panel and a curvature-aware trajectory controller enables seamless operator interaction and safe execution of manipulation routines.

Future work will focus on several enhancements aimed at increasing the system's reliability while addressing the previously identified edge cases. First, we plan to integrate dual-antenna GNSS-RTK hardware to obtain accurate heading estimates that are independent of magnetic disturbances and IMU drift, even at low speeds or during standstill. Secondly, we intend to develop a software module to systematically handle edge cases arising from suboptimal or infeasible cone placement. By assigning unique indices to each cone and maintaining an execution queue, the robot will be able to defer manipulation tasks that are temporarily unreachable—such as cones located at sharp backward angles or within physically constrained regions—and proceed with constructing the remainder of the track. Deferred tasks can then be revisited once a more favorable pose or configuration is reached. This approach will explicitly account for the

physical dimensions and kinematic constraints of the robot platform. In the longer term, we aim to enhance the graphical user interface by introducing a module that automatically assigns cone positions based on input parametric drawings and high-level parameters such as desired inter-cone spacing. We also envision a dynamic placement strategy that enables the robot to deploy cones while in motion, thereby eliminating the need for full stops and improving overall operational efficiency and task throughput.

ACKNOWLEDGEMENTS

This research was supported by the European Union within the framework of the National Laboratory for Autonomous Systems (RRF-2.3.1-21-2022-00002).

- trol techniques for self-driving urban vehicles. *IEEE Transactions on Intelligent Vehicles*, 1(1):33–55.
- Pfrommer, J., Bömer, T., Akizhanov, D., and Meyer, A. (2024). Sorting multibay block stacking storage systems.
- Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2009). *Robotics: Modelling, Planning and Control.* Springer, London.
- Thrun, S., Burgard, W., and Fox, D. (2005). *Probabilistic Robotics*. MIT Press, Cambridge, MA.
- ZalaZONE Research and Innovation (2023). Innovation in motion autonomous systems national laboratory demonstration day. https://research-and-innovation.zalazone.hu/en/innovation-in-motion-autonomous-systems-national-laboratory-demonstration-day/. Accessed: 2025-05-30.

REFERENCES

- Foxglove (2024). Foxglove studio. Accessed: 2025-06-07. Fragapane, G., de Koster, R., Sgarbossa, F., and Strandha-
- Fragapane, G., de Koster, R., Sgarbossa, F., and Strandhagen, J. O. (2021). Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. *European Journal of Operational Research*, 294(2):405–426.
- Hanžič, F., Jezernik, K., and and, S. C. (2013). Mechatronic control system on a finite-state machine. *Automatika*, 54(1):126–138.
- Hartzer, J. and Saripalli, S. (2020). Autocone: An omnidirectional robot for lane-level cone placement. In 2020 IEEE Intelligent Vehicles Symposium (IV), page 1663–1668. IEEE.
- Hollósi, J., Markó, N., and Ballagi, Á. (2021). Forgalomtechnikai terelő bója észlelésen alapuló pozíció és orientáció meghatározása [determining the position and orientation of traffic cones based on detection]. In Digitális Járműipari Kutatások a Széchenyi István Egyetemen Konferenciakiadvány 2021 [Digital Automotive Research at Széchenyi István University Conference Proceedings 2021], pages 56–63.
- Hong Kong Highways Department (2019). Robot system for placement and collection of traffic cones and warning lanterns at high speed roads. Accessed: 2025-05-28
- Krecht, R. and Ballagi, Á. (2022). Tesztpálya kiszolgálására alkalmas autonóm robotplatform gépészeti tervezése [mechanical design of an autonomous robot platform for test track support]. In Mobilitás és környezet: Jövőformáló járműipari kutatások konferenciakiadvány [Mobility and Environment: Conference Proceedings on Future-Shaping Automotive Research], pages 220–232. 2022. novemberi konferen-
- Paden, B., Čáp, M., Yong, S. Z., Yershov, D., and Frazzoli, E. (2016). A survey of motion planning and con-