# From Observations to Causations: A GNN-Based Probabilistic Prediction Framework for Causal Discovery

Rezaur Rashid<sup>®</sup> and Gabriel Terejanu<sup>®</sup>

Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC, U.S.A.

Keywords: Causal Discovery, Directed Acyclic Graph, Probabilistic Model, Graph Neural Network.

Abstract:

Causal discovery from observational data is challenging, especially with large datasets and complex relationships. Traditional methods often struggle with scalability and capturing global structural information. To overcome these limitations, we introduce a novel graph neural network (GNN)-based probabilistic framework that learns a probability distribution over the entire space of causal graphs, unlike methods that output a single deterministic graph. Our framework leverages a GNN that encodes both node and edge attributes into a unified graph representation, enabling the model to learn complex causal structures directly from data. The GNN model is trained on a diverse set of synthetic datasets augmented with statistical and information-theoretic measures, such as mutual information and conditional entropy, capturing both local and global data properties. We frame causal discovery as a supervised learning problem, directly predicting the entire graph structure. Our approach demonstrates superior performance, outperforming both traditional and recent non-GNN-based methods, as well as a GNN-based approach, in terms of accuracy and scalability on synthetic and real-world datasets without further training. This probabilistic framework significantly improves causal structure learning, with broad implications for decision-making and scientific discovery across various fields.

# 1\_INTRODUCTION

Causal inference from observational data is a fundamental task in many disciplines (Koller and Friedman, 2009; Pearl, 2019; Peters et al., 2017; Sachs et al., 2005; Ott et al., 2003) and forms the backbone of many practical decision-making procedures as well as theoretical developments. Classical causal discovery algorithms test hypotheses of conditional independences to learn causal structure (Spirtes et al., 2001). Score-based causal discovery algorithms optimize fit scores over various graph structures (Chickering, 2002). While effective in many situations, these approaches suffer from exponential run-times and combinatorial explosions in statistic complexity as the data sets grow (Heckerman et al., 1995). Advancements in machine learning, such as the NOTEARS algorithm, employ continuous optimization to enforce acyclicity, enhancing computational efficiency (Zheng et al., 2018). These approaches typically identify a single best causal graph rather than a probability distribution over multiple possible graphs,

<sup>a</sup> https://orcid.org/0000-0003-1343-5364

<sup>b</sup> https://orcid.org/0000-0002-8934-9836

which can limit its ability to account for uncertainty in the causal discovery process.

The emergence of graph neural networks (GNNs) has revolutionized the field of predictive learning on graph-structured data, enabling powerful representations and insights from complex networks and relationships. From social network analysis to molecular property prediction (Kipf and Welling, 2016; Velickovic et al., 2017), Graph Convolutional Networks (GCN) and other sophisticated variants such as Graph Attention Networks (GAT), have successfully exploited node and edge features to learn deep and hierarchical representations (Zhou et al., 2020; Waikhom and Patgiri, 2023). Despite their success in areas such as network analysis and bioinformatics (Hamilton et al., 2017; Lacerda et al., 2012), these methods have vet to be fully integrated into causal discovery frameworks. Such developments strongly motivate and justify the idea of utilizing GNNs for causal learning tasks (Brouillard et al., 2020; Peters et al., 2017). For example, DAG-GNN (Yu et al., 2019), focuses on deterministic structure learning, while our methods use a probabilistic framework to better capture the inherent uncertainties in causal relationships. Furthermore, Li et al. (2020) framed causal discovery

as a supervised learning problem, directly predicting the entire DAG structure from observational data using neural networks. Similarly, the CausalPairs approach (Fonollosa, 2019; Rashid et al., 2022) introduced a predictive framework for pairwise causal discovery.

Building on these advancements, this paper proposes a novel GNN-based probabilistic framework for causal discovery based on supervised learning that addresses the limitations of existing methods, including the work by Rashid et al. (2022) on causal pairs, by capturing global information directly from the data in the graph structure.

Our work makes several key contributions:

- We introduce a novel probabilistic causal discovery framework based on GNNs that learns a probability distribution over causal graphs instead of producing a single deterministic graph.
- Our model is trained once on diverse synthetic datasets and can generalize to new datasets without requiring retraining, ensuring efficiency and broad applicability.
- We show that our approach performs better compared to traditional and recent causal discovery methods on both synthetic and real-world datasets.

Our approach surpasses benchmark methods, including traditional techniques: PC (Spirtes et al., 2001), GES (Chickering, 2002); recent non-GNN-based methods: LiNGAM (Shimizu et al., 2006), NOTEARS-MLP (Zheng et al., 2018), DiBS (Lorch et al., 2021), DAGMA (Bello et al., 2022); and GNN-based method: DAG-GNN (Yu et al., 2019), in terms of accuracy on synthetic datasets generated from nonlinear structural equation models (SEMs), while also performing favorably compared to DAG-GNN and NOTEARS-MLP, and outperforming LiNGAM and GES for real-world dataset.

The next section reviews the related work, followed by the problem formulation and a detailed explanation of our causal discovery approach using GNNs in the 'Methodology' section. The 'Experiments' section presents the empirical evaluation of our methods. Finally, the 'Conclusions' section summarizes our findings and discusses potential future improvements.

# 2 RELATED WORK

Structure learning from observational data typically follows either constraint-based or score-based methodologies. Constraint-based approaches, like

the PC algorithm (Spirtes et al., 2001), start by employing conditional independence tests to map out the underlying causal graph's skeleton. Alternatively, score-based strategies, such as those implemented by GES (Chickering, 2002), involve assigning scores to potential causal graphs according to specific scoring functions (Bouckaert, 1993; Heckerman et al., 1995), and then systematically exploring the graph space to identify the structure that optimizes the score (Tsamardinos et al., 2006; Gámez et al., 2011). However, the challenge of pinpointing the optimal causal graph is NP-hard, largely due to the combinatorial nature of ensuring acyclicity in the graph (Mohammadi and Wit, 2015; Mohan et al., 2012). As a result, the practical reliability of these methods remains uncertain, especially when dealing with the complexities of real-world data.

Another approach focuses on identifying cause-effect pairs using statistical techniques from observational data. Fonollosa's work on the JARFO model (Fonollosa, 2019) is a notable effort in this direction to infer causal relationships from pairs of variables. Despite the promise of these pairwise methods, they often fail to leverage global structural information, limiting their effectiveness in constructing comprehensive causal graphs.

Recent advancements, such as the NOTEARS algorithm (Zheng et al., 2020), incorporate continuous optimization techniques to ensure the acyclicity of the learned graph without requiring combinatorial constraint checks, representing a significant improvement in computational efficiency and scalability. However, experiments indicate that this method is highly sensitive to data scaling (Reisach et al., 2021).

On the other hand, geometric deep learning, specifically GNNs, has revolutionized learning paradigms in domains dealing with graph-structured data (Kipf and Welling, 2016; Hamilton et al., 2017; Velickovic et al., 2017). Despite the success of GNNs in various domains, their application in causal discovery is still emerging, but recent studies highlight rapid progress in both methodology and real-world impact (Behnam and Wang, 2024; Zhao et al., 2024; Job et al., 2025). A few pioneering works have begun exploring this avenue, each with its own perspective (Gao et al., 2024; Zečević et al., 2021; Singh et al., 2017). Li et al. (2020) propose a probabilistic approach for whole DAG learning using permutation equivariant models. This method demonstrates how supervised learning can be applied to structure discovery in graphs. Lorch et al. (2022) uses domainspecific supervised learning to generate inductive biases for causal discovery by characterizing all direct causal effects in that domain. DAG-GNN (Yu et al.,

2019) uses a variational autoencoder parameterized by GNNs to learn directed acyclic graphs (DAGs), focusing on deterministic structure learning and primarily utilizing node features. Our methods, in contrast, emphasize a probabilistic framework, incorporating both node and edge features. Interestingly, our algorithm can complement DAG-GNN by providing a probabilistic distribution over possible DAGs, potentially refining its causal structure learning. Another study presents a gradient-based method for causal structure learning with a graph autoencoder framework, accommodating nonlinear structural equation models and vector-valued variables, and outperforming existing methods on synthetic datasets (Ng et al., 2019). Furthermore, the Gem framework provides model-agnostic, interpretable explanations for GNNs by formulating the explanation task as a causal learning problem, achieving superior explanation accuracy and computational efficiency compared to state-ofthe-art alternatives (Lin et al., 2021).

Despite promising advances, existing methods have yet to fully exploit the capabilities of GNNs for causal discovery, particularly in modeling complex causal structures from observational data in a scalable and uncertainty-aware manner. Many prior approaches either focus on deterministic outputs or omit edge-level features and probabilistic modeling, limiting their ability to generalize. Compared to traditional algorithms like PC, which iteratively apply conditional independence tests to construct a causal graph for each dataset, our framework predicts a probability distribution over DAGs directly from feature-rich edge representations using a GNN. This predictive shift enables generalization across datasets, removes the need for dataset-specific optimization, and allows for uncertainty quantification. Unlike DAG-GNN and NOTEARS, which optimize a structure per instance, our method is trained once and can infer causal graphs in a single forward pass. As noted by Jiang et al. (2023), GNN-based causal discovery remains underexplored, especially in probabilistic settings, a gap our work seeks to fill.

#### 3 METHODOLOGY

Assuming we have n i.i.d. observations in the data matrix  $\mathbf{X} = [\mathbf{x_1} \dots \mathbf{x_d}] \in \mathbb{R}^{n \times d}$ , causal discovery attempts to estimate the underlying causal relations encoded by the di-graph, G = (V, E). V consists of nodes associated with the observed random variables  $X_i$  for  $i = 1 \dots d$  and the edges in E represent the causal relations encoded by G. In other words, the presence of the edge  $i \rightarrow j$  corresponds to a direct

causal relation between  $X_i$  (cause) and  $X_i$  (effect).

Our approach uses a graph neural network model to predict the probability  $p(e_{ij}|f)$  of an edge  $e_{ij}$  between nodes  $X_i$  and  $X_j$  given their feature representations.

$$p(e_{ij}|\mathbf{h}_i, \mathbf{h}_j, \mathbf{e}_{ij}) = f([\mathbf{h}_i, \mathbf{h}_j, \mathbf{e}_{ij}]), \text{ for } i < j \ (1)$$
 Here,

- h<sub>i</sub> and h<sub>j</sub> represent the feature vectors of nodes X<sub>i</sub> and X<sub>j</sub> after the GNN's message passing and aggregation operations.
- $\mathbf{e}_{ij}$  represents the feature vector of the edge  $e_{ij}$  between nodes  $X_i$  and  $X_j$ .
- [h<sub>i</sub>, h<sub>j</sub>, e<sub>ij</sub>] denotes the concatenation of the feature vectors of nodes X<sub>i</sub> and X<sub>j</sub> and the edge features e<sub>ij</sub>.
- The function f represents the GNN classifier that outputs the probability  $p(e_{ij}|\mathbf{h}_i,\mathbf{h}_j,\mathbf{e}_{ij})$  of there being an edge  $e_{ij} \in [-1,0,1]$ .

$$e_{ij} = \begin{cases} -1: & j \to i, \text{ causal relation exists from } X_j \text{ to } X_i \\ 0: & i \not\to j \text{ and } j \not\to i, \\ & \text{no direct causal relation between } X_i \text{ and } X_j \\ 1: & i \to j, \text{ causal relation exists from } X_i \text{ to } X_j \end{cases}$$

# 3.1 Feature Engineering and Graph Construction

We first construct a fully connected graph  $\mathcal{G}=(V,E)$ , where V is the set of all attributes in the observational dataset, and E is the set of edges between nodes (attributes) such that every node is connected with every other node which leads to d(d-1)/2 edges in the graph for a dataset with d attributes. We then extract statistical and information-theoretic measures on the attributes in the observational dataset to represent each node with 13 features and each edge with 114 features between node pairs in the graph.

Node features encode statistical properties such as entropy, skewness, and kurtosis, summarizing the distribution of each variable. Edge features aggregate information-theoretic and statistical relationships between variable pairs (e.g., mutual information, conditional entropy, polynomial fit error, Pearson correlation) to capture both linear and nonlinear dependencies. We also incorporate the probability distribution over the edge direction using the causal-pairs model (Rashid et al., 2022) as 3 additional edge features, resulting in a total of 114 edge features per edge in the graph. A complete list of all node and edge features can be found in Appendix 5.

A simplified illustration is shown in Figure 1. The intuition behind this approach is that by creating a

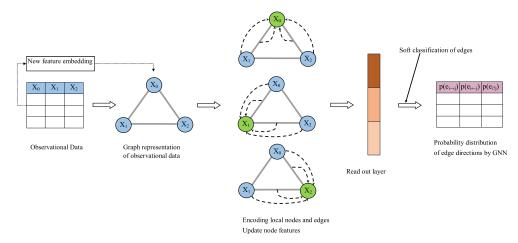


Figure 1: Schematic of the proposed framework. Each node is initialized with statistical features, and each edge with aggregated information-theoretic, statistical, and causal-pairs features (Rashid et al., 2022). The GNN predicts edge directions, capturing both local and global dependencies to infer the underlying causal graph.

comprehensive feature set that includes both node and edge features, we can capture a rich representation of the underlying dependencies and interactions between variables. The fully connected graph ensures that all possible relationships are considered, allowing the model to learn from a wide range of potential causal connections. Furthermore, incorporating the probability distribution from the causal-pairs model adds another layer of probabilistic reasoning, enhancing the model's ability to infer causal directions accurately. This multi-faceted feature representation enables the GNN to leverage both local and global information, leading to more accurate and reliable causal predictions.

# 3.2 Developing the Graph Neural Network (GNN) Model

Graph neural networks (GNNs) are a family of architectures that leverage graph structure, node features, and edge features to learn dense graph representations. GNNs employ a neighborhood aggregation strategy, iteratively updating node representations by aggregating information from neighboring nodes. For example, a basic operator for neighborhood information aggregation is the element-wise mean.

In our study, we utilize a GNN model as an edge classifier by training it on synthetic datasets with underlying causal graphs to infer the probability distribution over edge directions through supervised learning. Although recent works propose more sophisticated GNN variants, we specifically adopt Graph-SAGE as our backbone due to its scalability and efficient sampling-based message passing, which is particularly well-suited for large, fully connected graphs.

This choice strikes a balance between computational efficiency, ease of implementation, and empirical robustness, rather than architectural novelty.

Starting with a fully connected complete graph, GraphSAGE enables efficient learning by sampling and aggregating messages from a subset of neighbors, improving scalability in message-passing iterations without compromising model accuracy. This aligns with our intuition regarding the importance of local neighborhoods in characterizing conditional independences - a key aspect of causal discovery. Although GraphSAGE is primarily designed to update node features based on neighboring node features, we extend it to incorporate edge features into the message-passing process, allowing the model to better capture pairwise dependencies relevant to causal inference. The model learns a mapping from the edge features (e.g., mutual information, conditional entropy) to edge direction probabilities, using training graphs with known causal structure. This replaces the need for datasetspecific search or constraint satisfaction.

To integrate both node and edge features, we define the message  $m_{uv}^{(k)}$  as a combination of the feature vectors of nodes u and v at layer (k-1), along with the edge feature vector  $e_{uv}$ . The updated equations for message passing and node feature updates are as follows:

$$m_{uv}^{(k)} = \text{CONCAT}(h_u^{(k-1)}, h_v^{(k-1)}, e_{uv})$$
 (2)

$$m_{\nu}^{(k+1)} = \frac{1}{|N(\nu)|} \sum_{u \in N(\nu)} m_{u\nu}^{(k)}$$
(3)

$$h_{\nu}^{(k+1)} = \sigma\left(W \cdot \text{CONCAT}(h_{\nu}^{(k)}, m_{\nu}^{(k+1)})\right) \quad (4)$$

Here,

- For each neighboring node u of node v, we calculate a message  $m_{uv}^{(k)}$  by concatenating the feature vectors of node u and node v at layer k-1 along with the edge feature vector  $e_{uv}$ .
- The messages  $m_{uv}^{(k)}$  from all neighbors  $u \in N(v)$  are aggregated by summing them and normalizing by the number of neighbors |N(v)|. This normalization ensures that contributions from all neighbors are equally weighted.
- The aggregated message  $m_v^{(k+1)}$  is concatenated with the current feature vector of node  $v(h_v^{(k)})$ .
- The concatenated vector is then passed through a linear transformation defined by the learnable weight matrix W, followed by a non-linear activation function  $\sigma$  (e.g., ReLU).

This model captures both local and global dependencies in the graph structure, enhancing the accuracy of inferred causal relations between nodes considering their relationships with neighbors. After multiple rounds of message passing, the final node embeddings represent each node and edge in the graph, allowing for the prediction of edge direction probabilities (forward, reverse, or no edge) between any pair of nodes.

## 3.3 Probabilistic Inference

The edge probabilities predicted by the GNN model define a distribution over all possible graphs, rather than directly yielding a single acyclic structure  $p(\mathcal{G}_{DAG})$ . This probabilistic formulation captures the inherent uncertainty in causal relationships, allowing for a more comprehensive representation of potential causal structures instead of committing to a single deterministic graph.

To extract meaningful graph representations from this probabilistic space, we consider four approaches as presented in Rashid et al. (2022): (1) Probability of Graph (PG), which represents the full probability distribution over directed graphs and can be used to sample a digraph; (2) Maximum Likelihood Digraph (MLG), which selects the most probable edge directions to form a representative structure; (3) Probability of DAG (PDAG), which refines the probability distribution by incorporating acyclicity constraints and enables sampling of DAGs; and (4) Maximum Likelihood DAG (MLDAG), which provides a deterministic estimate of the most probable acyclic structure. The transition from PG/MLG to PDAG/MLDAG is crucial: while the first two approaches allow cycles, the latter two explicitly enforce the acyclicity assumption required for valid causal graphs. These methods progressively refine the estimated causal graph, ensuring structural validity while balancing probabilistic inference with computational efficiency. This probabilistic formulation supports multiple inference strategies, enabling both flexible sampling and strict acyclicity enforcement. It contrasts with deterministic methods like PC or GES, which return only a single output graph without uncertainty estimates and require full recomputation per dataset. For clarity, we briefly outline each approach below and refer to Rashid et al. (2022) for detailed algorithmic derivations and proofs.

**Sample Digraph (PG).** The first and most intuitive approach is to construct the probability distribution of a digraph  $\mathcal{G}$  using the maximum entropy principle. After computing the probability distributions of causal relationships between node pairs or edge directions, this method assumes that edge directions are independent, resulting in a straightforward formulation (Eq. 5).

$$p(\mathcal{G}|f) = \prod_{i < j} p(e_{ij}|f)$$
 (5)

Maximum Likelihood Digraph (MLG). Given the above naive distribution over digraphs, one can extract a single representative structure by selecting the edge directions with the highest probabilities. This leads to the maximum likelihood digraph, which represents the most likely structure according to Eq. 6.

$$G_{\text{ML}} = \arg \max_{G} p(G|f)$$
 (6)

Note that the samples from the probability distribution, Eq. 5, and the maximum likelihood digraph in Eq. 6, are digraphs with no guarantees of acyclicity.

**Sample DAG (PDAG).** A more principled approach refines the naive distribution by explicitly ensuring acyclicity of the generated graphs. Rather than independently sampling edge directions, this method incorporates DAG constraints by marginalizing over the topological ordering  $\pi$  of vertices, as shown in Eq. 7:

$$p(\mathcal{G}|f, \text{DAG}) = \sum_{\pi} p(\mathcal{G}|f, \text{DAG}, \pi) p(\pi|f)$$
 (7)

Due to the computational intractability of marginalizing over  $\pi$ , we approximate the probability of DAGs by conditioning on the maximum likelihood topological ordering,  $\pi_{ML}$ . This leads to the following approximation:

$$p(\mathcal{G}|f, \text{DAG}, \pi_{\text{ML}}) = \prod_{\pi_{\text{ML}}^{-1}[i] < \pi_{\text{ML}}^{-1}[j]} p(e_{i \to j}|f)$$
 (8)

Furthermore, we approximate the maximum likelihood topological ordering,  $\pi_{ML}$ , by performing a topological sort on the Maximum Spanning DAG (MSDAG) (Schluter, 2014), which is computed from the induced weighted graph  $\mathcal{G}_A$ , defined by the probabilities of causal relations:

$$\pi_{\mathrm{ML}} = \arg \max_{\pi} p(\pi|f) \approx \mathrm{toposort}(\mathrm{MSDAG}(\mathcal{G}_{A}))$$
 (9)

In practice, to compute the topological ordering from the MSDAG of  $\mathcal{G}_A$ , we follow the procedure introduced by McDonald and Pereira (2006): first constructing a maximum spanning tree, then incrementally adding edges in descending order of weights while ensuring acyclicity at each step.

Maximum Likelihood DAG (MLDAG). Extending the MLG approach to enforce acyclicity, the maximum likelihood DAG provides a deterministic representation of the most probable causal structure. Instead of selecting the highest-probability edges independently, this method ensures acyclicity by incorporating the DAG constraints introduced in the previous approach. In other words, edges are selected in order of probability, but only if they do not introduce a cycle with respect to the current partial ordering. Thus the resulting graph is constructed by selecting the most probable edges while maintaining a valid topological ordering, as formulated in Eq. 10.

$$G_{DAG} \approx \arg \max_{G} p(G|f, DAG, \pi_{ML})$$
 (10)

# 4 EXPERIMENTS

To evaluate the effectiveness of our proposed probabilistic inference methods, we conduct experiments on synthetic, benchmark, and real-world datasets. We compare our approaches, GNN-PG (sample digraph from the probability distribution), GNN-MLG (maximum likelihood estimate digraph), GNN-PDAG (sample DAG from the probability distribution), and GNN-MLDAG (DAG using the maximum likelihood estimate), against both traditional and recent causal discovery methods.

Specifically, we benchmark our methods against classical algorithms such as PC (Spirtes et al., 2001) and GES (Chickering, 2002), as well as recent approaches including LiNGAM (Shimizu et al., 2006), DAG-GNN (Yu et al., 2019), NOTEARS-MLP (Zheng et al., 2020), DiBS (Lorch et al., 2021), and DAGMA (Bello et al., 2022). For PC, GES, and LiNGAM, we use publicly available implemen-

tations<sup>1,2,3</sup>, while for DAG-GNN, NOTEARS-MLP, DiBS, and DAGMA, we follow the implementations provided by the respective authors<sup>4,5,6,7</sup>. We use default hyperparameter settings for all methods to ensure a fair comparison.

#### 4.1 Datasets

**Synthetic Data.** We generated synthetic data to train our GNN model on causal graph estimation, producing 200 graphs with 72 different combinations of nodes (d = [10, 20, 50, 100]), edges (e = [1d, 2d, 4d]), data samples per node (n = [500, 1000, 2000]), and graph models (Erdos-Renyi and Scale-Free). Nonlinear data samples were generated similarly to the NOTEARS-MLP implementation, with random graph structures and ground truth for training. The process for generating synthetic test data follows the methodology outlined in Rashid et al. (2022), where 160 types of graph combinations were considered, each with varying numbers of nodes, edges, graph types, and data samples per node.

CSuite Data. In addition to our synthetic test datasets, we employed five benchmark datasets from Microsoft CSuite, a collection designed for evaluating causal discovery and inference algorithms (Geffner et al., 2022). The CSuite data is generated from well-defined hand-crafted structural equation models (SEMs), which serve to test various aspects of causal inference methodologies. The five datasets utilized in our study are: <code>large\_backdoor</code> (9 nodes, 10 edges); <code>weak\_arrows</code> (9 nodes, 15 edges); <code>mixed\_simpson</code> (4 nodes, 4 edges); <code>symprod\_simpson</code> (4 nodes, 4 edges); <code>symprod\_simpson</code> (4 nodes, 4 edges);. Each dataset includes 6000 data samples, and a corresponding ground truth graph, providing a basis for performance evaluation.

**Real-World Data.** We used the dataset from Sachs et al. (2005), based on protein expression levels. This dataset is widely used due to its consensus ground truth of the graph structure, consisting of 11 protein nodes and 17 edges representing the protein signaling network. We aggregated 9 data files, resulting in a sample size of 7466 for our experiments.

<sup>&</sup>lt;sup>1</sup>PC: https://github.com/keiichishima/pcalg

<sup>&</sup>lt;sup>2</sup>GES: https://github.com/juangamella/ges

<sup>&</sup>lt;sup>3</sup>LiNGAM: https://lingam.readthedocs.io/en/latest

<sup>&</sup>lt;sup>4</sup>DAG-GNN: https://github.com/fishmoon1234/DAG-GNN

<sup>&</sup>lt;sup>5</sup>NOTEARS-MLP: https://github.com/xunzheng/notears

<sup>&</sup>lt;sup>6</sup>DiBS: https://github.com/larslorch/dibs

<sup>&</sup>lt;sup>7</sup>DAGMA: https://github.com/kevinsbello/dagma

# 4.2 Metrics

We evaluate the quality of the inferred causal graphs using True Positive Rate (TPR), False Positive Rate (FPR), and Structural Hamming Distance (SHD). A lower SHD and FPR indicate better performance, while a higher TPR is preferable. To ensure a fair comparison, these metrics are computed consistently across all methods, following the procedures used in prior evaluations of PC, GES, and NOTEARS-MLP. GNN-based and CausalPairs-based methods adhere to the implementation framework described in Rashid et al. (2022).

#### 4.3 Results

Table 1 showcases the performance of our GNN-based methods on 80 Scale-Free (SF) and 80 Erdos-Renyi (ER) graph structures. Our methods consistently outperform traditional and recent approaches, demonstrating improved recovery of causal structures through reduced Structural Hamming Distance (SHD) and increased True Positive Rate (TPR). Key observations across both graph structures include:

- Our GNN-based methods, especially GNN-PDAG and GNN-MLDAG, consistently achieve lower SHD and higher TPR values compared to CausalPairs methods; traditional methods such as PC and GES; and DiBS. They also perform favorably or better than advanced methods such as LiNGAM, DAG-GNN, NOTEARS-MLP, and DAGMA. Notably, they significantly improve TPR while maintaining low SHD.
- The GNN-MLG method significantly minimizes false positive causal relationships, but at the cost of a lower TPR. Other GNN-based methods balance TPR and FPR.
- Enforcing DAG constraints in GNN-PDAG and GNN-MLDAG improves performance metrics relative to GNN-PG and GNN-MLG, highlighting the benefit of integrating global structural information to enhance accuracy.

Figure 2 presents a comprehensive comparison of the Structural Hamming Distance (SHD), True Positive Rate (TPR), and False Positive Rate (FPR) performance metrics for different methods on 160 SF and ER graphs with node-to-edge ratios of 1:1 and 1:4.

Our GNN-based methods, specifically GNN-PDAG and GNN-MLDAG, consistently achieve lower SHD values than traditional methods (PC and GES), CausalPairs methods, and advanced methods (NOTEARS-MLP, DAG-GNN, and DAGMA). Notably, our proposed methods (GNN-PG, GNN-PDAG,

and GNN-MLDAG) demonstrate significantly higher TPRs than all other methods, indicating improved accuracy in identifying true causal relationships. GNN-PDAG and GNN-MLDAG exhibit robust performance across both sparse (1:1) and dense (1:4) graphs, showcasing their ability to accurately recover causal structures with fewer errors. The improvement is more pronounced in denser graphs (1:4 node-to-edge ratio), showing promise in handling complex, highly connected networks.

Tables 2 present the results of applying our methods to five datasets from the Microsoft CSuite. Our methods achieve significantly lower SHD, higher TPR, and lower FPR compared to all other methods, demonstrating the robustness and generalizability of our GNN-based framework across diverse datasets. Compared to the synthetic datasets presented in Table 1, the Microsoft CSuite datasets have fewer nodes and edges. Additionally, the three smaller datasets from Microsoft CSuite allow us to demonstrate the method's capability to recover various graph structures learned directly from data.

In these datasets, which include graphs with four nodes and four edges, our methods accurately identified V structures such as  $A \rightarrow B \leftarrow C$ . This ability to capture fork or collider structures highlights the method's precision in determining causal directions and understanding interactions between variables. We also observed that in datasets like mixed\_simpson and nonlin\_simpson, with confounder structures such as  $B \leftarrow A \rightarrow C$ , our methods demonstrated the ability to recognize common causes affecting multiple outcomes. Chain structures like  $A \rightarrow B \rightarrow C$  were also accurately recovered, showcasing the capability to model sequential causal relationships. For instance, among two of these datasets, our GNN-based methods achieved a SHD score of 0 and a TPR score of 1, perfectly identifying the true graph, and validating our methods' effectiveness in learning complex causal structures.

Notably, as shown in Figure 3, our GNN-based methods not only identified the true graph structure but also avoided predicting extraneous edges. In contrast, while CausalPairs methods were able to identify the true edges, they also predicted all possible edges, leading to higher false positives. This underscores the precision of our GNN-based approach in distinguishing true causal relationships from spurious ones.

In Table 3, our methods, particularly GNN-PG and GNN-MLDAG, demonstrate strong performance on the real-world protein network dataset, accurately predicting edge counts. Notably, they outperform LiNGAM, DiBS and GES in terms of correct edge predictions, and even match or surpass

Table 1: Comparison of edge probability model trained on GNN framework. The means and standard errors of the performance metrics are based on the 80 Scale-Free (SF) and 80 Erdos-Renyi (ER) graph structures in the test data.

| Dataset Name →                          | Scale-Free (SF) |                 |                 | Erdos-Renyi (ER) |                 |               |  |
|-----------------------------------------|-----------------|-----------------|-----------------|------------------|-----------------|---------------|--|
| $Method \downarrow Metrics \rightarrow$ | SHD/d           | TPR             | FPR             | SHD/d            | TPR             | FPR           |  |
| GNN PG                                  | $1.88 \pm 0.08$ | 0.51±0.02       | $0.30\pm0.01$   | 2.08±0.11        | $0.52 \pm 0.02$ | 0.52±0.06     |  |
| GNN MLG                                 | 1.85±0.13       | 0.20±0.02       | $0.01\pm0.00$   | 2.17±0.17        | 0.25±0.02       | 0.01±0.00     |  |
| GNN PDAG                                | 1.55±0.07       | $0.56\pm0.02$   | $0.19\pm0.01$   | 1.75±0.11        | 0.61±0.03       | 0.28±0.03     |  |
| GNN MLDAG                               | 1.40±0.11       | $0.48\pm0.03$   | $0.08\pm0.01$   | 1.66±0.15        | $0.54\pm0.03$   | 0.13±0.02     |  |
| CausalPairs PG                          | 2.02±0.12       | 0.31±0.01       | $0.26{\pm}0.02$ | 2.38±0.14        | $0.39 \pm 0.02$ | 0.72±0.10     |  |
| CausalPairs MLG                         | 1.97±0.13       | 0.12±0.01       | $0.03\pm0.01$   | 2.32±0.17        | 0.15±0.02       | 0.07±0.01     |  |
| CausalPairs PDAG                        | 1.96±0.12       | 0.30±0.01       | $0.21\pm0.02$   | 2.30±0.15        | $0.38 \pm 0.02$ | 0.61±0.09     |  |
| CausalPairs MLDAG                       | $1.88\pm0.13$   | 0.20±0.01       | $0.09\pm0.01$   | 2.18±0.16        | $0.28 \pm 0.02$ | 0.29±0.05     |  |
| PC                                      | 1.93±0.15       | 0.17±0.02       | $0.08\pm0.01$   | 2.40±0.21        | $0.17\pm0.02$   | 0.22±0.04     |  |
| GES                                     | 1.43±0.11       | 0.51±0.03       | $0.26 \pm 0.04$ | 1.78±0.13        | $0.48 \pm 0.02$ | 0.87±0.15     |  |
| LiNGAM                                  | $1.68\pm0.11$   | 0.35±0.02       | $0.34\pm0.04$   | 1.97±0.13        | 0.43±0.02       | 1.04±0.17     |  |
| DAG-GNN                                 | 1.75±0.12       | 0.24±0.02       | $0.02 \pm 0.00$ | 2.10±0.17        | 0.27±0.02       | $0.06\pm0.00$ |  |
| NOTEARS                                 | 1.36±0.11       | 0.47±0.02       | $0.12\pm0.02$   | 1.33±0.10        | $0.58 \pm 0.02$ | 0.32±0.06     |  |
| DiBS                                    | 2.51±0.08       | $0.32 \pm 0.02$ | 0.91±0.25       | 2.78±0.10        | $0.34{\pm}0.02$ | 0.38±0.06     |  |
| DAGMA                                   | 1.39±0.09       | $0.54\pm0.02$   | $0.21 \pm 0.02$ | 1.80±0.11        | 0.51±0.02       | 0.65±0.10     |  |

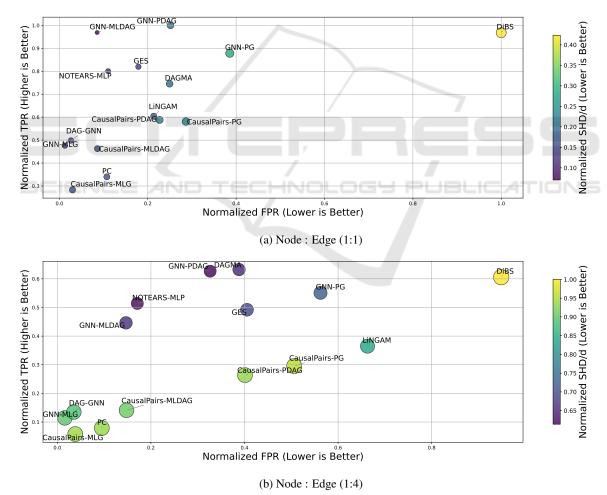


Figure 2: Comparison of normalized Structural Hamming Distance (SHD/d), True Positive Rate (TPR), and False Positive Rate (FPR) across methods on Erdos-Renyi (ER) and Scale-Free (SF) graphs, evaluated for both sparse (1:1) and dense (1:4) node-to-edge ratios. Metrics are computed as the mean and standard error over 80 randomly generated graphs for each condition.

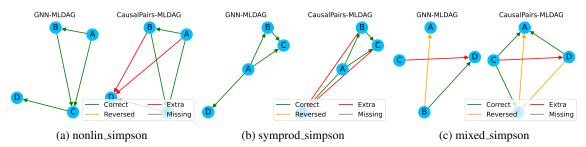


Figure 3: Performance comparison between GNN-based methods and CausalPairs methods on smaller CSuite datasets: (a) nonlin\_simpson, (b) symprod\_simpson, and (c) mixed\_simpson. The plots illustrate the number of correct, reversed, extra, and missing edges for each method with respect to the ground truth graphs.

Table 2: Comparison of GNN-based edge probability model (trained on synthetic train data) on the Microsoft CSuite datasets.

| Dataset Name →                              | large_backdoor |      |      | weak_arrows |      |      |  |
|---------------------------------------------|----------------|------|------|-------------|------|------|--|
| Method $\downarrow$ — Metrics $\rightarrow$ | SHD/d          | TPR  | FPR  | SHD/d       | TPR  | FPR  |  |
| GNN PG                                      | 0.59           | 0.42 | 0.20 | 0.56        | 0.66 | 0.24 |  |
| GNN MLG                                     | 0.68           | 0.32 | 0.17 | 0.82        | 0.51 | 0.09 |  |
| GNN PDAG                                    | 0.56           | 0.44 | 0.19 | 0.67        | 0.60 | 0.29 |  |
| GNN MLDAG                                   | 0.55           | 0.44 | 0.18 | 0.66        | 0.60 | 0.28 |  |
| CausalPairs PG                              | 2.42           | 0.88 | 0.80 | 2.24        | 0.85 | 0.93 |  |
| CausalPairs MLG                             | 1.77           | 0.88 | 0.55 | 1.89        | 0.82 | 0.68 |  |
| CausalPairs PDAG                            | 2.28           | 0.97 | 0.75 | 2.06        | 0.95 | 0.85 |  |
| CausalPairs MLDAG                           | 2.14           | 0.96 | 0.70 | 1.97        | 0.94 | 0.81 |  |
| PC                                          | 1.00           | 0.53 | 0.29 | 0.89        | 0.44 | 0.22 |  |
| GES                                         | 1.33           | 0.67 | 0.67 | 0.88        | 0.88 | 0.37 |  |
| LiNGAM                                      | 2.22           | 0.20 | 0.91 | 1.67        | 0.22 | 0.56 |  |
| DAG-GNN                                     | 0.89           | 0.53 | 0.05 | 0.67        | 0.44 | 0.04 |  |
| NOTEARS                                     | 1.00           | 0.47 | 0.19 | 0.89        | 0.44 | 0.19 |  |
| DiBS                                        | 3.33           | 0.50 | 0.94 | 3.11        | 0.43 | 0.97 |  |
| DAGMA                                       | 1.22           | 0.33 | 0.37 | 1.78        | 0.20 | 0.52 |  |

Table 3: Comparison of GNN-based edge probability model (trained on synthetic train data) on the protein network datasets (Sachs et al., 2005). DAG-GNN (Yu et al., 2019) and NOTEARS-MLP (Zheng et al., 2020) results for non-standardized data are reported from the original manuscripts.

| Dataset Type →                              | Standardized |         |          | Non-standardized |         |          |
|---------------------------------------------|--------------|---------|----------|------------------|---------|----------|
| Method $\downarrow$ — Metrics $\rightarrow$ | Predicted    | Correct | Reversed | Predicted        | Correct | Reversed |
| GNN PG                                      | 19.68        | 6.60    | 6.98     | 19.40            | 5.86    | 7.79     |
| GNN MLG                                     | 12.07        | 5.13    | 5.64     | 13.81            | 5.48    | 6.86     |
| GNN PDAG                                    | 17.09        | 6.96    | 5.81     | 16.74            | 4.14    | 8.62     |
| GNN MLDAG                                   | 14.12        | 6.96    | 5.81     | 12.54            | 4.71    | 7.77     |
| CausalPairs PG                              | 36.14        | 6.70    | 7.77     | 38.01            | 6.21    | 8.26     |
| CausalPairs MLG                             | 9.82         | 3.04    | 4.26     | 10.41            | 1.52    | 4.04     |
| CausalPairs PDAG                            | 33.16        | 7.42    | 6.62     | 34.81            | 6.47    | 7.49     |
| CausalPairs MLDAG                           | 18.48        | 4.91    | 5.41     | 20.60            | 4.71    | 6.32     |
| GES                                         | 34.00        | 5.50    | 9.50     | 34.00            | 5.50    | 9.50     |
| LiNGAM                                      | 36.00        | 4.00    | 11.00    | 36.00            | 4.00    | 11.00    |
| DAG-GNN                                     | 6.00         | 1.00    | 5.00     | 18.00            | 8.00    | 3.00     |
| NOTEARS                                     | 42.33        | 5.83    | 7.18     | 13.00            | 7.00    | 3.00     |
| DiBS                                        | 46.00        | 7.00    | 7.00     | 50.00            | 8.00    | 9.00     |
| DAGMA                                       | 11.00        | 3.00    | 5.00     | 7.00             | 5.50    | 1.50     |

the performance of recent methods like NOTEARS-MLP, DAG-GNN, and DAGMA. The incorporation of global structural information through GNNs enables accurate edge prediction, while our approach also shows improved directional accuracy, as evident from the lower number of reversed edges achieved by GNN-MLDAG and GNN-PG.

A notable aspect is that DAG-GNN and NOTEARS-MLP exhibit sensitivity to data scaling,

with performance variations between standardized and non-standardized data. This sensitivity arises because their continuous optimization processes can be disrupted by changes in data magnitude and distribution. Additionally, LiNGAM, which is designed for non-Gaussian linear models, may struggle with the non-linear relationships present in the protein network dataset. In contrast, our GNN-based methods show consistent performance across both standardized and non-standardized datasets, demonstrating robustness to data scaling. This robustness is attributed to the effective capture and utilization of both local and global structural information by GNNs.

# 5 CONCLUSIONS

In this work, we introduce a probabilistic causal discovery framework that leverages Graph Neural Networks (GNNs) within a supervised learning paradigm. Our approach, trained exclusively on synthetic datasets, effectively generalizes to real-world datasets without requiring additional training.

By exploiting global structural information, our method addresses key limitations of traditional causal discovery techniques, significantly enhancing precision in learning causal graphs. Through integrated node and edge features, our GNN-based model captures complex dependency structures, facilitating more accurate and reliable causal inference.

Future research directions will include explicitly incorporating acyclicity constraints into the GNN framework to potentially enhance the robustness and accuracy of inferred causal structures. Additionally, investigating advanced GNN architectures may further optimize our method's performance.

# **ACKNOWLEDGEMENTS**

The research was sponsored by the Army Research Office and was accomplished under Grant Number W911NF-22-1-0035. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

## REFERENCES

- Behnam, A. and Wang, B. (2024). Graph neural network causal explanation via neural causal models. In *European Conference on Computer Vision*, pages 410–427. Springer.
- Bello, K., Aragam, B., and Ravikumar, P. (2022). DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization. In Advances in Neural Information Processing Systems.
- Bouckaert, R. R. (1993). Probabilistic network construction using the minimum description length principle. In *European conference on symbolic and quantitative approaches to reasoning and uncertainty*, pages 41–48. Springer.
- Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., and Drouin, A. (2020). Differentiable causal discovery from interventional data. *Advances in Neural Information Processing Systems*, 33:21865–21877.
- Chickering, D. M. (2002). Optimal structure identification with greedy search. *Journal of machine learning research*, 3(Nov):507–554.
- Fonollosa, J. A. (2019). Conditional distribution variability measures for causality detection. *Cause Effect Pairs* in Machine Learning, pages 339–347.
- Gámez, J. A., Mateo, J. L., and Puerta, J. M. (2011). Learning bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood. *Data Mining and Knowledge Discovery*, 22:106–148.
- Gao, H., Yao, C., Li, J., Si, L., Jin, Y., Wu, F., Zheng, C., and Liu, H. (2024). Rethinking causal relationships learning in graph neural networks. In *Proceedings of* the AAAI Conference on Artificial Intelligence, volume 38, pages 12145–12154.
- Geffner, T., Antoran, J., Foster, A., Gong, W., Ma, C., Kiciman, E., Sharma, A., Lamb, A., Kukla, M., Pawlowski, N., Allamanis, M., and Zhang, C. (2022). Deep end-to-end causal inference. arXiv preprint arXiv:2202.02195.
- Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large graphs. *Advances in neural information processing systems*, 30.

- Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning bayesian networks: The combination of knowledge and statistical data. *Machine learning*, 20:197–243.
- Jiang, W., Liu, H., and Xiong, H. (2023). When graph neural network meets causality: Opportunities, methodologies and an outlook. arXiv preprint arXiv:2312.12477.
- Job, S., Tao, X., Cai, T., Xie, H., Li, L., Li, Q., and Yong, J. (2025). Exploring causal learning through graph neural networks: An in-depth review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 15(2):e70024.
- Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks. *arXiv* preprint arXiv:1609.02907.
- Koller, D. and Friedman, N. (2009). *Probabilistic graphical models: principles and techniques*. MIT press.
- Lacerda, G., Spirtes, P. L., Ramsey, J., and Hoyer, P. O. (2012). Discovering cyclic causal models by independent components analysis. arXiv preprint arXiv:1206.3273.
- Li, H., Xiao, Q., and Tian, J. (2020). Supervised whole dag causal discovery. *arXiv preprint arXiv:2006.04697*.
- Lin, W., Lan, H., and Li, B. (2021). Generative causal explanations for graph neural networks. In *International Conference on Machine Learning*, pages 6666–6679. PMLR.
- Lorch, L., Rothfuss, J., Schölkopf, B., and Krause, A. (2021). Dibs: Differentiable bayesian structure learning. Advances in Neural Information Processing Systems, 34.
- Lorch, L., Sussex, S., Rothfuss, J., Krause, A., and Schölkopf, B. (2022). Amortized inference for causal structure learning. Advances in Neural Information Processing Systems, 35:13104–13118.
- McDonald, R. and Pereira, F. (2006). Online learning of approximate dependency parsing algorithms. In 11th Conference of the European Chapter of the Association for Computational Linguistics, pages 81–88.
- Mohammadi, A. and Wit, E. C. (2015). Bayesian structure learning in sparse gaussian graphical models.
- Mohan, K., Chung, M., Han, S., Witten, D., Lee, S.-I., and Fazel, M. (2012). Structured learning of gaussian graphical models. *Advances in neural information processing systems*, 25.
- Ng, I., Zhu, S., Chen, Z., and Fang, Z. (2019). A graph autoencoder approach to causal structure learning. *arXiv* preprint arXiv:1911.07420.
- Ott, S., Imoto, S., and Miyano, S. (2003). Finding optimal models for small gene networks. In *Biocomputing* 2004, pages 557–567. World Scientific.
- Pearl, J. (2019). The seven tools of causal inference, with reflections on machine learning. *Communications of the ACM*, 62(3):54–60.
- Peters, J., Janzing, D., and Schölkopf, B. (2017). *Elements of causal inference: foundations and learning algorithms*. The MIT Press.

- Rashid, R., Chowdhury, J., and Terejanu, G. (2022). From causal pairs to causal graphs. In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), pages 802–807. IEEE.
- Reisach, A., Seiler, C., and Weichwald, S. (2021). Beware of the simulated dag! causal discovery benchmarks may be easy to game. *Advances in Neural Information Processing Systems*, 34:27772–27784.
- Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A., and Nolan, G. P. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. *Science*, 308(5721):523–529.
- Schluter, N. (2014). On maximum spanning dag algorithms for semantic dag parsing. In *Proceedings of the ACL 2014 Workshop on Semantic Parsing*, pages 61–65.
- Shimizu, S., Hoyer, P. O., Hyvärinen, A., Kerminen, A., and Jordan, M. (2006). A linear non-gaussian acyclic model for causal discovery. *Journal of Machine Learning Research*, 7(10).
- Singh, K., Gupta, G., Vig, L., Shroff, G., and Agarwal, P. (2017). Deep convolutional neural networks for pairwise causality. *arXiv preprint arXiv:1701.00597*.
- Spirtes, P., Glymour, C., and Scheines, R. (2001). *Causation, prediction, and search*. MIT press.
- Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The max-min hill-climbing bayesian network structure learning algorithm. *Machine learning*, 65:31–78.
- Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al. (2017). Graph attention networks. *stat*, 1050(20):10–48550.
- Waikhom, L. and Patgiri, R. (2023). A survey of graph neural networks in various learning paradigms: methods, applications, and challenges. *Artificial Intelligence Review*, 56(7):6295–6364.
- Yu, Y., Chen, J., Gao, T., and Yu, M. (2019). Dag-gnn: Dag structure learning with graph neural networks. In *International Conference on Machine Learning*, pages 7154–7163. PMLR.
- Zečević, M., Dhami, D. S., Veličković, P., and Kersting, K. (2021). Relating graph neural networks to structural causal models. *arXiv preprint arXiv:2109.04173*.
- Zhao, S., Prapas, I., Karasante, I., Xiong, Z., Papoutsis, I., Camps-Valls, G., and Zhu, X. X. (2024). Causal graph neural networks for wildfire danger prediction. *arXiv* preprint arXiv:2403.08414.
- Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P. (2018). Dags with no tears: Continuous optimization for structure learning. Advances in neural information processing systems, 31.
- Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing, E. (2020). Learning sparse nonparametric dags. In *International Conference on Artificial Intelligence and Statistics*, pages 3414–3425. Pmlr.
- Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M. (2020). Graph neural networks: A review of methods and applications. *AI open*, 1:57–81.

# **APPENDIX**

# **List of Node and Edge Features**

#### **Node Features**

The following features are extracted for each node in the graph, capturing individual statistical properties that are independent of relationships with other nodes.

- Min, Max
- Numerical Type
- Number of Unique Samples
- Ratio of Unique Samples
- Log of Number of Samples
- Normalized Entropy
- Normalized Entropy Baseline
- Uniform Divergence
- Discrete Entropy
- Normalized Discrete Entropy
- Skewness, Kurtosis

# **Edge Features**

This section provides a comprehensive list of edge features used in our framework, grouped by type, which capture statistical and information-theoretic relationships between pairs of nodes, emphasizing causal relationships or dependencies.

#### **Information-Theoretic Features**

#### Mutual Information and Related Measures:

- Discrete Joint Entropy between nodes
- Normalized Discrete Joint Entropy between nodes
- Discrete Mutual Information between nodes
- Adjusted Mutual Information between nodes
- Normalized Discrete Mutual Information

#### Conditional Entropy:

Discrete Conditional Entropy for each node pair

## • Divergence Measures:

- Uniform Divergence for individual nodes
- Subtracted Divergence between nodes

## **Regression-Based Features**

#### • Polynomial Fitting:

- Polynomial Fit between nodes
- Polynomial Fit Error between nodes
- Subtracted Polynomial Fit between nodes

#### • Error Metrics:

- Normalized Error Probability for each node pair
- Subtracted Normalized Error Probability between nodes

#### **Statistical Distribution Metrics**

#### • Moment-Based Metrics:

- Second-order moments (Moment21) between nodes
- Third-order moments (Moment31) between nodes
- Subtracted moments and their absolute values

## • Conditional Distribution Metrics:

- Entropy variance across node pairs
- Skewness variance across node pairs
- Kurtosis variance across node pairs

#### **Correlation Measures**

# • Pearson Correlation:

- Pearson Correlation Coefficient between nodes
- Absolute Pearson Correlation

# **Node Pair Comparisons**

#### • Sample-Based Comparisons:

 Maximum, minimum, and difference in the number of unique samples between nodes

# • Entropy Comparisons:

Maximum, minimum, and difference in normalized entropy between nodes

#### **Other Features**

- Hilbert-Schmidt Independence Criterion (HSIC) between nodes
- Subtracted Information-Geometric Causal Inference (IGCI) values
- Absolute differences in kurtosis between nodes
- Other advanced metrics derived from normalized probabilities and variance measures