Semi-Automatic Domain Ontology Construction: LLMs, Modularization, and Cognitive Representation

Silvia Lucia Borowicc¹ and Solange Nice Alves-Souza^{1,2} b

¹School of Arts, Sciences and Humanities, Universidade de São Paulo, Arlindo Bettio 1000, São Paulo, Brazil

²Polytechnic School, Universidade de São Paulo, São Paulo, Brazil

Keywords: Semantic Mediation, Data Science, Data Integration, Ontology, Ontology Learning, Public Health.

Abstract:

Domain ontology construction is a complex and resource-intensive task, traditionally relying on extensive manual effort from ontology engineers and domain experts. While Large Language Models (LLMs) show promise for automating parts of this process, studies indicate they often struggle with capturing domainspecific nuances, maintaining ontological consistency, and identifying subtle relationships, frequently requiring significant human curation. This paper presents a semi-automatic method for domain ontology construction that combines the capabilities of LLMs with established ontology engineering practices, modularization, and cognitive representation. We developed a pipeline incorporating semantic retrieval from heterogeneous document collections, and prompt-guided LLM generation. Two distinct scenarios were evaluated to assess the influence of prior structured knowledge: one using only retrieved document content as input, and another incorporating expert-defined structured seed terms alongside document content. The approach was applied to the domain of Dengue surveillance and control, and the resulting ontologies were evaluated based on structural metrics and logical consistency. Results showed that the scenario incorporating expert-defined seed terms yielded ontologies with greater conceptual coverage, deeper hierarchies and improved cognitive representation compared to the scenario without prior structured knowledge. We also observed significant performance variations between different LLM models regarding their ability to capture semantic details and structure complex domains. This work demonstrates the viability and benefits of a hybrid approach for ontology construction, highlighting the crucial role of combining LLMs with human expertise for more efficient, consistent, and cognitively aligned ontology engineering. The findings support an iterative and incremental ontology development process and suggest LLMs are valuable assistants when guided by domain-specific inputs and integrated into a structured methodology.

1 INTRODUCTION

Ontologies are used to formally model knowledge domains. In computer science, an ontology is classically defined as an explicit specification of a shared conceptualization (Guarino et al., 2009). That is, it provides a formal description of the concepts within a domain and the relationships between them. Ontologies have been consolidating as resources that contribute to structuring and integrating knowledge in specific fields, promoting interoperability, enabling reasoning in complex systems, and enhancing explainability by bridging human conceptual understanding and machine processability (Borowicc and Alves-Souza, 2025; Lopes et al., 2024).

a https://orcid.org/0000-0001-7399-274X

b https://orcid.org/0000-0002-6112-3536

However, building domain ontologies is a complex task, which traditionally demands extensive manual effort from ontology engineers and domain experts. The classical process involves knowledge elicitation from expert interviews, document analysis, and successive modeling and validation iterations (Borowicc and Alves-Souza, 2025). Manual approaches tend to be difficult to update, given the evolution of domain knowledge, and susceptibility to errors and inconsistencies (Bakker and Scala, 2024; Babaei Giglou et al., 2023).

In recent years, techniques have emerged that partially or fully automate ontology creation from textual or structured data. Particularly, Large Language Models (LLMs) have emerged as promising tools to assist in knowledge extraction and organization from texts (Lopes et al., 2024). These models demonstrate

64

Borowicc, S. L. and Alves-Souza, S. N

Semi-Automatic Domain Ontology Construction: LLMs, Modularization, and Cognitive Representation

DOI: 10.5220/0013718000004000

Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 17th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2025) - Volume 2: KEOD and KMIS, pages 64-73

ISBN: 978-989-758-769-6; ISSN: 2184-3228

the ability to understand natural language and produce syntactically structured content, which suggests a potential for generating ontologies based on textual descriptions of a domain. Preliminary research shows that LLMs can identify relevant concepts and even propose hierarchies and relationships, offering an initial ontology draft from documents (Bakker and Scala, 2024).

Despite their potential, there are several challenges in using LLMs for reliable ontology construction. Studies report that unadapted LLMs often fail to capture subtleties of specific domains, tending to reproduce only previously seen linguistic patterns, frequently omitting important relationships between classes, and generating inconsistent or incorrect statements (Mai et al., 2025). Thus, there is a consensus that LLMs will not completely replace ontology engineers, but can act as assistants to expedite knowledge acquisition (Saeedizade and Blomqvist, 2024; Babaei Giglou et al., 2023). Exploring LLMs in conjunction with human expertise constitutes a promising semi-automatic approach, alleviating manual process bottlenecks without compromising the semantic quality of the resulting ontology (Babaei Giglou et al., 2023).

This paper presents a semi-automatic approach for domain ontology construction from heterogeneous document collections, combining the use of LLMs with expert knowledge, as shown in Figure 1. The aim is to systematically compare two key factors in the semi-automatic ontology construction process: the impacts of the presence or absence of expert-defined seed terms and the capabilities of different LLM models for capturing semantic details and structuring complex domains. The approach uses the domain of Dengue surveillance and control in Brazil. In both cases, a selected top ontology is used to support cognitive representation and interoperability.

Following ontology engineering methods, such as NeOn (Suárez-Figueroa et al., 2012), an ontology scope was defined based on competence questions (CQs), which are formal questions the ontology should be able to answer (Ondo et al., 2024). The results are evaluated based on structural metrics and logical consistency. Finally, we discuss the extent to which the modularization and inclusion of prior structured domain knowledge contribute to producing consistent ontologies, highlighting advantages and limitations of the proposed semi-automatic approach.

2 CONCEPTS AND PRIOR RESEARCH

The term ontology, inherited from philosophy, was adapted in computer science to designate knowledge modeling artifacts. A computational ontology can be understood as an explicit and formal specification of a shared conceptualization. In other words, typically in Web Ontology Language (OWL)¹, ontologies formalize the concepts, properties, and relationships of a domain, in addition to defining instances and axioms that capture rules or constraints of that domain. In this definition, (Guarino et al., 2009) emphasizes aspects that highlight the explicit conceptualization and the requirement of a shared view among multiple users. The shared nature is fundamental: an ontology should reflect a consensus on the meaning of terms, serving as a common reference.

In the context of information systems and Artificial Intelligence (AI), ontologies play multiple roles. They provide a controlled and standardized vocabulary that enables semantic integration of data from diverse sources. For example, by mapping heterogeneous data to a common ontology, a unified understanding is achieved, facilitating interoperability and enabling joint queries and analyses of previously isolated data. Ontologies also enable automatic reasoning: using classifiers and logical reasoners, new knowledge can be inferred from the defined axioms. Additionally, ontologies serve to document expert knowledge in a structured manner. By organizing concepts into taxonomies and relationships, ontologies promote semantic clarity, knowledge reuse, and effective communication between people and systems (Lopes et al., 2024; Borowicc and Alves-Souza, 2025).

2.1 Ontology Construction

Developing a domain ontology traditionally requires a methodological and systematic process, involving steps ranging from scope and requirements definition to ontology deployment and maintenance. Ontology engineering methods, such as NeOn, advocate the definition of the purpose and scope of the ontology as the first step, often aided by CQs. CQs help to make content requirements explicit: they determine which information and concepts are relevant and, together with the so-called ontology stories, descriptive narratives that capture ontology project requirements, it illustrates the context and objectives for the intended ontology development, guiding subsequent modeling

¹https://www.w3.org/OWL/

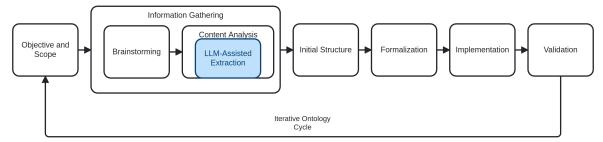


Figure 1: Domain Ontology Construction Process. Adapted from (Borowicc and Alves-Souza, 2025).

decisions (Saeedizade and Blomqvist, 2024).

With the scope and requirements in hand, the process moves to domain knowledge acquisition. This step involves eliciting important concepts, terms, and relationships from experts and available sources. A technique that can be used in this initial phase is brainstorming for eliciting and describing terms and concepts with domain experts. From discussions and interactive sessions, an initial list of candidate classes, properties, and relevant instances is defined, as well as familiarization with the terminology used in daily practice within the domain (Borowicc and Alves-Souza, 2025).

In addition to knowledge obtained via brainstorming, an analysis of documentary content is crucial. This includes reviewing legislation, standards, manuals, and any formal domain documents, as well as examining forms, database schemas, and even legacy source codes that contain information about the domain. Such documentary sources complement the perspective of the experts, providing definitions and implicit relationships in the data. The combined result of these elicitation activities is a comprehensive set of concepts and attributes about the knowledge domain (Borowicc and Alves-Souza, 2025).

The specification and formalization steps of the ontology is provided as follows. The collected terms are organized into an initial structure: terms representing general and specific concepts are identified, forming a hierarchy (Guarino et al., 2009). Attributes and relevant relationships between classes are also defined, for example, part-whole relationships. This conceptual modeling is iterative and heavily dependent on human knowledge: the ontology engineer interprets and consolidates the information obtained, refining the taxonomy and filtering out dispensable or inconsistent information (Babaei Giglou et al., 2023). Ontology construction tools, such as Protégé, are used to encode the concepts and relationships in formal languages such as OWL.

Historically, ontology construction has always required this intense participation from experts, becoming a bottleneck when scaling or updating ontologies

constantly (Babaei Giglou et al., 2023). Automated approaches seek to assist this process by automating parts of the information acquisition and ontology formalization process. However, even with AI support, human validation remains essential, given the need to ensure that the ontology adequately reflects the domain understanding and meets the established requirements, as there is knowledge that is not easily made explicit or identified among the documented concepts, terms, and relationships. In sum, ontology construction is a socio-technical process: it combines formal methodologies, knowledge acquisition techniques, such as brainstorming and document analysis, and increasingly, automation tools, but remains dependent on expert judgment to ensure the quality and utility of the final product (Saeedizade and Blomqvist, 2024).

2.1.1 Top-Level Ontologies

When developing a domain ontology, top-level ontologies should be leveraged; they are generic and domain-independent ontological models that define general conceptual categories and provide a unifying vocabulary and structure. This facilitates interoperability between different ontologies, increases consistency, and allows integrating diverse knowledge systems.

Among the top-level ontologies are the Basic Formal Ontology (BFO), a high-level ontology focusing on two categories: continuants (defining objects and spatial regions) and occurrents (covering knowledge gained over time), being widely used in biomedical fields due to its objectivity and conciseness; and the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) (Masolo et al., 2003), which is descriptively and cognitively inspired (Lopes et al., 2024).

The choice between top-level ontologies depends on the context and the objectives of the project. Studies show that aligning domain classes with definitions from these ontologies improves semantic consistency and facilitates mapping to other resources (Lopes et al., 2024). DOLCE focuses on capturing

concepts as perceived, which aligns with the idea of cognitive representation, necessary when we want the ontology to reflect not only formal structures, but also how humans conceptualize the domain. In this work, DOLCE was adopted as the reference top-level ontology, anchoring the classes of the domain ontology in its taxonomy, with the expectation of creating a structured and interoperable ontology. Note that using a top-level ontology does not eliminate the need for adjustments; contrariwise, it requires careful analysis of where each domain class fits into the upper hierarchy, an exercise that also serves as an additional conceptual validation.

2.2 LLMs and Ontology Learning

The convergence of ontologies and LLMs has motivated a new wave of research in ontology learning, or extraction, from text (Lopes et al., 2024). The task of Ontology Learning (OL) consists in starting from unstructured information and deriving a structured set of ontological axioms, encompassing identifying relevant terms, discovering hierarchical and non-hierarchical relationships between them, and eventually proposing complex constraints or axioms (Babaei Giglou et al., 2023). Traditionally, this task was divided into subtasks handled by specialized Natural Language Processing (NLP) and machine learning techniques, such as term extraction, synonym discovery, and hypernym discovery. With the advent of LLMs, which can understand natural language and generate coherent text, the possibility has emerged to treat ontology learning as a language generation problem, requiring that the model translates raw textual knowledge into an ontology expressed, for example, in the OWL language (Schaeffer et al., 2024).

Potential advantages of using LLMs include the ability to identify implicit concepts and relationships in text without manual work. LLMs have demonstrated the ability to extract knowledge triples (subject-predicate-object) from texts, forming basic knowledge graphs. Recent studies have applied LLMs to generate complete ontologies: for example, (Bakker and Scala, 2024) used GPT-4 to extract an ontology from a news article, obtaining relevant classes, individuals, and properties. This and other researches have shown that LLMs successfully capture many of the main concepts present in the text and can propose preliminary hierarchies, indicating an advance over previous methods that often produced only flat lists of terms. Furthermore, LLMs offer interaction flexibility: it is possible to use sophisticated prompts, decomposing the task into steps, for example, first extracting classes, then relationships, to improve the quality (Bakker and Scala, 2024). Prompt engineering techniques, such as Chain-of-Thought, or using CQs are being explored to guide LLMs in gradual construction processes that potentially improve the consistency of the ontology (Saeedizade and Blomqvist, 2024).

However, several challenges and limitations of LLMs for this purpose have been identified. A critical point is the lack of consistent ontological reasoning: LLMs tend to base their responses on statistical language patterns, without guaranteeing adherence to the required logical or ontological rules. For example, (Mai et al., 2025) demonstrated that when confronted with entirely new terms, pre-trained LLMs failed to correctly infer semantic relationships, merely reproducing known linguistic structures. This suggests that language models outside their training domain may not truly understand the concepts, unless they are finetuned with data from that domain.

Another practical observation is that LLMs may neglect certain parts of the ontology, particularly relationships. (Bakker and Scala, 2024) noted that, although GPT-4 identified important classes from a text, it often failed to include properties between classes or introduced inconsistent properties between instances. In their evaluations, the raw output of the LLM contained some logical errors and omissions, requiring manual supplementation. Generally, hallucinations – inferences not supported by the text – are also a risk: when generating ontologies, the LLM sometimes invented relationships not mentioned.

Therefore, the literature indicates that LLMs are useful as assistants, but do not replace human curation of the learned ontology (Saeedizade and Blomqvist, 2024). They can accelerate knowledge acquisition, serving as a first draft of the ontology or an extension of an existing one based on new information. However, the intervention of an ontology engineer is necessary to verify and correct errors, add missing relationships, and ensure axiomatic consistency. A recommendation is to integrate LLMs into a hybrid workflow, whereby the model automates candidate proposal steps, and the human performs validation and fine-tuning. Additionally, adapting LLMs to the domain via fine-tuning or few-shot learning can significantly improve quality: (Babaei Giglou et al., 2023) showed that adapted models achieve significantly better performance in tasks such as term typification, taxonomy discovery, and relationship extraction, being useful as assistants to alleviate the knowledge acquisition bottleneck in ontology construction. Advanced prompting techniques are also important for optimizing the relevance and feasibility of using LLMs (Schaeffer et al., 2024).

In summary, LLMs create possibilities for semiautomating ontology engineering, increasing the productivity of engineers. They can generate initial ontologies that cover a significant portion of the expected elements, reproducing human modeling patterns in many cases. However, their results still fall short in complex or very specific situations, in which ontologies developed entirely by humans better represent the domain nuances (Val-Calvo et al., 2025). Therefore, the most recommended strategy is to combine them with human expertise and solid ontological frameworks, such as top-level ontologies, combining the speed and linguistic knowledge of the LLMs with the accuracy and quality control of the experts.

Despite the advances in research in this field, the literature reveals some important gaps:

- Fragmented Focus: Most studies focus on Ontology Learning subtasks such as term or relationship extraction without offering an integrated framework that combines extraction, modular reuse, and cognitive modeling (Schaeffer et al., 2024; Babaei Giglou et al., 2023).
- Insufficient Modular Reuse: Few of these works systematically address the reuse of established ontological components for constructing complete ontologies, which is important to ensure consistency and interoperability.
- Cognitive Representation: Despite recognizing the importance of building ontologies with the support of domain experts, few approaches systematically explore alignment with mental models using cognitive representations, for the user to understand.
- Adaptation to Specific Domains: As pointed out by (Mai et al., 2025), LLMs face challenges in adapting to specific domains, especially when terms and concepts are not common in the training corpus, requiring techniques that allow for a deeper integration between textual data and formal structures.

Thus, in this work, the proposed approach for semi-automatic domain ontology construction combines:

- **Knowledge Extraction via LLMs:** Use of NLP and prompting techniques to extract classes, relationships, and axioms directly from content related to the specific domain.
- Modular Reuse: Systematic integration of established ontological components to enrich and lend consistency to the ontology.
- Cognitive Representation: Incorporation of methods to align the ontology more closely with

the mental models of experts, facilitating its interpretation.

This approach aims to reduce manual effort, increase scalability, and improve the quality and consistency of the ontologies generated, overcoming the limitations of traditional methods, as discussed in previous work, and leveraging the potential of LLMs.

3 METHODOLOGY

The methodology consists of a semi-automatic approach for constructing and evaluating domain ontologies using LLMs. It integrates established ontology engineering practices, as proposed by (Noy et al., 2001), with automation techniques. The methodology comprises the following phases:

- **Definition of Scope and Requirements:** Delimiting the domain and objectives of the ontology. Formulating CQs to guide the selection of relevant concepts.
- Knowledge Collection and Preparation: Gathering representative domain documentary content.
- Ontology Generation via LLM: Using multiple LLMs to generate the ontology drafts from the content provided. Two scenarios are employed to verify the impacts of the presence or absence of expert-defined seed terms to guide the model in the task.
- Alignment with Top-Level Ontology: Mapping classes created by the LLM to the corresponding top-level ontology categories.
- Validation and Evaluation: Verifying logical consistency with the HermiT reasoner. Instantiating examples for testing the CQs via SPARQL queries. Collecting quantitative ontology metrics, such as number of classes, depth, width, ratio of relationships per class; and qualitative analysis.
- Experimental Execution: For comparative analysis, both scenarios were implemented and evaluated using multiple LLMs.

4 DOMAIN ONTOLOGY GENERATION

Ontology construction with LLM support requires a methodology that encompasses textual preparation by validating the results generated. This section describes a semi-automatic pipeline developed to operationalize the process. The pipeline organizes the steps into phases of pre-processing, semantic retrieval, prompt-guided generation, and consolidation. By controlling variables such as the presence of expert-defined seed terms or the volume of context provided, the approach allows evaluating the impact of these factors on the structure and semantic quality of the ontologies generated. The complete source code of the pipeline will be made available via a shared repository².

4.1 Data Preprocessing

Textual preprocessing plays a fundamental role in semi-automatic ontology construction, as it ensures that the content extracted from documents is relevant, clean, and semantically consistent. This step includes the removal of noise and segmentation of texts into chunks, facilitating vector indexing and subsequent efficient semantic retrieval of the most relevant domain-specific passages. Inadequate preprocessing can introduce ambiguity, redundancy, or omit essential information, negatively impacting both the quality of embeddings and the accuracy of ontologies generated by language models. We chose not to apply textual preprocessing techniques such as lowercasing, stopword removal, and lemmatization, as these, according to (Lopes et al., 2024), can remove structural integrity relevant to the semantic understanding of the

The input dataset consisted exclusively of publicly available technical documents in PDF format, including norms and guidelines, as well as mosquito vector control manuals and disease notifications. The pipeline performs the following preprocessing steps:

- **Text Extraction:** Each PDF document D_i is converted into raw text T_i using OCR tools, such as pdfplumber or pypdf.
- **Text Cleaning:** Page breaks, footers, and other non-informative elements are removed using regular expressions, producing clean texts \tilde{T}_i .
- Chunking: Each clean text is segmented into controlled-size chunks C_{ij} by a recursive splitting method, with overlap for semantic context preservation. Formally,

$$C_{ij} = \text{Chunk}(\tilde{T}_i, \text{size}, \text{overlap})$$
 (1)

where *size* is the maximum number of characters and *overlap* is the number of characters shared between adjacent chunks.

• **Vector Indexing:** Each chunk C_{ij} is converted into a dense vector \vec{e}_{ij} using pre-trained embedding models, for example, all-MiniLM-L6-v2³. The vector index I is built using the FAISS library (Johnson et al., 2021):

$$I = \{\vec{e}_{ij}\}_{i,j} \tag{2}$$

comprising the embeddings \vec{e}_{ij} of all chunks j extracted from documents i.

4.2 Semantic Retrieval and Prompt Construction

Considering the limitation of the context window of language models, as well as the need to ensure greater thematic focus and modularity in the validation process, the domain of interest was segmented into subdomains. Each corresponds to a thematic grouping of concepts and processes, such as *epidemiological notifications and events* or *dengue vector control*. This modular approach allows the LLM model to operate on more restricted and semantically cohesive contexts, facilitating the precision and relevance of the extracted concepts.

Segmentation by subdomains offers several benefits: (i) it enables more specific queries, optimizing the retrieval of relevant context via vector search; (ii) it reduces the probability of ambiguity and polysemy inherent to very broad contexts; and (iii) it enables the incremental consolidation of the ontology, with conceptual merging and harmonization steps at the end of the process.

Two approaches are evaluated:

- Scenario (I), without seed: As context, the LLM model receives the most semantically relevant chunks identified via vector search.
- Scenario (II), with seed terms: In addition to the relevant chunks, the model also receives expert-defined structured seed terms, represented in OWL.

Given a textual query q_k , its vector representation \vec{q}_k is compared with all the vectors in the index using cosine similarity, retrieving the K most relevant chunks to compose the LLM prompt context. This selection is defined according to:

$$TopK(q_k) = \underset{C_{ij}}{\operatorname{argmax}}_K \cos(\vec{q}_k, \vec{e}_{ij})$$
 (3)

The equations 4 and 5 define the prompt P_k for scenarios (I) and (II), respectively.

$$P_k = \text{Instructions} + \text{CQs} + \text{Chunks}$$
 (4)

$$P_k = \text{Instructions} + \text{CQs} + \text{Seed} + \text{Chunks}$$
 (5)

²https://git.disroot.org/borowicc/vetor

 $^{^3}$ https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

4.3 Ontology Generation and Consolidation

The LLM is invoked with the prompt P_k for each subdomain, producing OWL/Turtle descriptions aligned with the DOLCE top-level ontology. Following generation for the subdomains, the results are consolidated in an additional round that performs merging, redundancy removal, and conceptual alignment, generating the final unified ontology.

Optionally, the model is also requested to create a set of example instances and SPARQL queries for each CQ, enabling practical validation of the ontology.

Model selection was based on the widespread adoption of the GPT family in recent studies for LLM-assisted ontology learning tasks (Bakker and Scala, 2024; Babaei Giglou et al., 2023; Saeedizade and Blomqvist, 2024). For comparison, we used the Gemini-2.5-flash model, belonging to the same technological generation and available via API.

Smaller models such as GPT-4.1-nano and Gemini 2.5-flash-lite were tested preliminarily, but showed significantly lower performance in the metrics evaluated, such as number of classes, hierarchical depth, and property definition. These models failed to adequately capture relationships between concepts, resulting in shallow and fragmented ontologies with less generalization capacity.

5 EXPERIMENTAL RESULTS

Quantitative metrics extracted from the resulting ontologies are presented in Table 1:

Table 1: Comparison of Metrics for Scenario (I) without Seed and Scenario (II) with Seed, for the GPT-4.1 Mini and Gemini 2.5-flash models.

Metric	Scenario (I)		Scenario (II)	
	GPT	Gemini	GPT	Gemini
Classes	57	240	40	142
Subclasses	6	192	19	120
Properties*	71	108	52	103
Axioms	403	1181	403	975

^{* (}ObjectProperties + DataProperties).

The two models generated a more formal and denser ontology for Scenario (II). This approach favors inferences and queries, promoting interoperability and reuse. Conversely, Scenario (I) resulted in an ontology with greater detail with subclasses, but less standardized and with less formalization of constraints.

The analysis of the results shows that the Gemini model, in both scenarios evaluated, was capable of mapping the semantic context in a considerably more comprehensive manner than GPT. As shown in Table 1, the ontologies generated by Gemini showed a higher number of classes, greater hierarchical depth (subclasses), as well as a significantly higher number of axioms. These indicators suggest a greater capacity of the model to interpret and structure the concepts described in the input texts.

In addition to the volume of structural elements, Gemini was observed to be more effective in identifying implicit relationships, generating specialized subclasses, and organizing described actions and processes in a manner semantically coherent with the domain of dengue surveillance and control. These results suggest that different LLMs may exhibit significant variations in their ability to capture semantic nuances and model complex domains, even under similar input conditions.

Given these results, to illustrate the analysis of each scenario in Figures 2 and 3, we used fragments of the results generated with the Gemini 2.5-flash, as it presented greater semantic consistency and more robust conceptual coverage in the ontologies produced.

Despite the formalization limitations observed in Scenario (I), the model was capable of capturing semantically valid hierarchical relationships based solely on the structure of the input texts. For example, the class Control and Prevention Action was correctly associated with subsets such as Vector Control and Education Communication Social Mobilization, reflecting descriptions present in the analyzed normative documents (Fig. 2).

However, the absence of properties, constraints, and connections to more abstract concepts limits the potential for ontological reasoning and reuse. A deeper and more abstract structure, as resulting in Scenario II (Fig. 3), supports clearer distinctions among concepts such as operational strategies, techniques, and institutional actions. This highlights how descriptive textual content can guide conceptual structuring, reinforcing the benefit of combining automated analysis with structured domain knowledge, particularly in complex domains.

6 DISCUSSION

The results allow us to reflect on several aspects of semi-automatic ontology construction assisted by LLMs. Firstly, the comparison of scenarios highlights the value of combining human knowledge

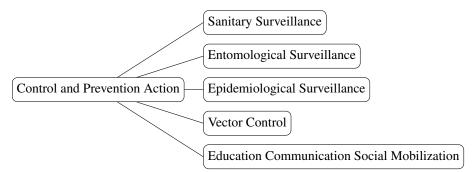


Figure 2: Fragment of the control and prevention actions hierarchy (Scenario I, Gemini-2.5-flash model).

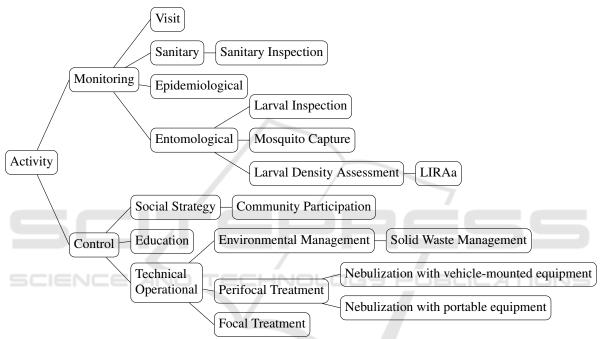


Figure 3: Fragment of the Dengue monitoring and control activities hierarchy (Scenario II, Gemini-2.5-flash model).

and AI. The ontologies differ significantly in scope and construction. The ontology resulting from Scenario (II), which incorporates expert-defined structured seed terms, is larger and more complex. It exhibits a more structured hierarchy, extensive reuse of the top-level ontology, and greater coverage of domain-specific details (Figure 3). In contrast, Scenario (I), without the seed terms, yields a shallower structure with less cognitive representation and fewer axioms beyond basic definitions (Figure 2).

The ontologies produced demonstrated a reasonable structure, showing that LLMs can identify named entities and important terms. Furthermore, the model created basic hierarchical links, indicating some semantic generalization capability. These results support the idea that LLMs bring a new perspective to ontology learning, integrating the identification of classes, properties, and instances in a single step, un-

like approaches that treat each component in isolation, such as term extraction techniques. As observed by (Bakker and Scala, 2024), this provides more complete ontologies in a single process, albeit with errors.

In the scenario where we provided keywords, the LLM could work guided by the central notions of the domain from the outset, producing an initial ontology of higher quality. This reinforces findings from recent research emphasizing that LLMs should hardly be used in isolation for ontology engineering, but rather as co-pilots for engineers (Saeedizade and Blomqvist, 2024).

Note that the use of proprietary models yields promising results for supporting ontology engineering, but being closed-source, not all generation parameters can be queried or adjusted, and successive provider updates may alter behavior without prior notice. Additionally, dependence on paid services imposes cost and access barriers.

The inaccessibility to source code and internal hyperparameters limits the transparency and reproducibility of experiments, reinforcing the need to gradually migrate to open-source alternatives, as well as to explore specific fine-tuning, although the creation of training datasets and datasets to address ontology stories and competence questions remains a significant challenge (Saeedizade and Blomqvist, 2024).

Evidently, the construction of robust domain ontologies requires collaborative mechanisms for organizing and documenting knowledge, as already highlighted by (Borowicc and Alves-Souza, 2025). The adoption of instruments such as collaborative metadata repositories is important for consolidating and making content available, promoting versioning, incremental validation, and instrumentalizing the participation of experts in the evolution of ontologies.

Our experiments showed, in practice, that the expert-provided structured knowledge operates as a kind of semantic prompt engineering; that is, it establishes a context that guides the model and prevents some errors. For example, by listing fundamental terms directly in the prompt, it prevented the model from not describing critical concepts or from naming concepts inappropriately. This aligns with the concept of few-shot prompting, in which examples or hints in the prompt improve the output (Schaeffer et al., 2024). In the absence of these terms, the model generated incomplete coverage of some aspects – a behavior consistent with the observation of (Mai et al., 2025) that untrained LLMs may not fully adapt to specific domains and miss certain relationships. Identifying relationships requires a deeper understanding of the context, or world knowledge, which the model did not apply on its own.

7 CONCLUSION

This work explored a semi-automatic approach for domain ontology construction that integrated Large Language Models (LLMs) with established ontology engineering practices, including modularization and cognitive representation. Two key aspects were examined: the impact of expert-defined seed terms and the varying capabilities of different LLMs in capturing semantic nuances and structuring complex domains. The use of a top-level ontology supported semantic alignment and interoperability, while modularization and cognitive structuring enhanced interpretability and maintainability.

The results confirm the feasibility of the approach

and its ability to generate coherent ontologies. The scenario enriched with expert-defined terms produced ontologies with broader conceptual coverage, deeper hierarchies, and reduced post-processing needs, underscoring the importance of prior structured knowledge. In contrast, the scenario without seed terms demonstrated automation potential but required more intensive expert curation. Additionally, the evaluation of multiple LLMs revealed notable differences in their performance when modeling semantic structures.

By positioning LLMs as guided assistants, the method balances efficiency with semantic quality, providing a viable alternative to both manual and fully automated approaches. The iterative reuse of the reviewed ontology as a seed for further refinement suggests a practical path for incremental development. Future work will explore the generalizability of this approach in different domains and with alternative upper ontologies.

ACKNOWLEDGEMENTS

The authors are grateful for the support given by the São Paulo Research Foundation (FAPESP). Grant #2023/10080-3.

REFERENCES

Babaei Giglou, H., D'Souza, J., and Auer, S. (2023). LLMs4OL: Large Language Models for Ontology Learning. In Payne, T. R., Presutti, V., Qi, G., Poveda-Villalón, M., Stoilos, G., Hollink, L., Kaoudi, Z., Cheng, G., and Li, J., editors, *The Semantic Web – ISWC 2023*, volume 14265, pages 408–427. Springer Nature Switzerland, Cham. Series Title: Lecture Notes in Computer Science.

Bakker, R. M. and Scala, D. L. D. (2024). Ontology Learning from Text: an Analysis on LLM Performance. In *Proceedings of the 3rd International Workshop on Natural Language Processing for Knowledge Graph Creation*, Amsterdam, The Netherlands.

Borowicc, S. and Alves-Souza, S. (2025). Domain Ontology for Semantic Mediation in the Data Science Process:. In *Proceedings of the 27th International Conference on Enterprise Information Systems*, pages 234–242, Porto, Portugal. SCITEPRESS - Science and Technology Publications.

Guarino, N., Oberle, D., and Staab, S. (2009). What Is an Ontology? In Staab, S. and Studer, R., editors, *Handbook on Ontologies*, pages 1–17. Springer Berlin Heidelberg, Berlin, Heidelberg.

Johnson, J., Douze, M., and Jégou, H. (2021). Billion-scale similarity search with gpus. *IEEE Transactions on Big Data*, 7(3):535–547.

- Lopes, A., Carbonera, J., Rodrigues, F., Garcia, L., and Abel, M. (2024). How to classify domain entities into top-level ontology concepts using large language models: A study across multiple labels, resources, and languages. In *Proceedings of the Joint Ontology Workshops (JOWO)*, Enschede, The Netherlands.
- Mai, H. T., Chu, C. X., and Paulheim, H. (2025). Do LLMs Really Adapt to Domains? An Ontology Learning Perspective. In Demartini, G., Hose, K., Acosta, M., Palmonari, M., Cheng, G., Skaf-Molli, H., Ferranti, N., Hernández, D., and Hogan, A., editors, *The Se-mantic Web – ISWC 2024*, volume 15231, pages 126– 143. Springer Nature Switzerland, Cham. Series Title: Lecture Notes in Computer Science.
- Masolo, C., Borgo, S., Gangemi, A., Guarino, N., and Oltramari, A. (2003). Wonderweb deliverable d18: Ontology library (final). Technical report, ISTC-CNR, Laboratory For Applied Ontology, Trento, Italy.
- Noy, N. F., McGuinness, D. L., et al. (2001). Ontology development 101: A guide to creating your first ontology.
- Ondo, A., Capus, L., and Bousso, M. (2024). Optimization of methods for querying formal ontologies in natural language using a neural network. In *Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management-KEOD*, pages 119–126.
- Saeedizade, M. J. and Blomqvist, E. (2024). Navigating Ontology Development with Large Language Models. In Meroño Peñuela, A., Dimou, A., Troncy, R., Hartig, O., Acosta, M., Alam, M., Paulheim, H., and Lisena, P., editors, *The Semantic Web*, volume 14664, pages 143–161. Springer Nature Switzerland, Cham. Series Title: Lecture Notes in Computer Science.
- Schaeffer, M., Sesboüé, M., Charbonnier, L., Delestre, N., Kotowicz, J.-P., and Zanni-Merk, C. (2024). On the Pertinence of LLMs for Ontology Learning. In Proceedings of the 3rd International Workshop on Natural Language Processing for Knowledge Graph Creation.
- Suárez-Figueroa, M. C., Gomez-Perez, A., and Fernández-López, M. (2012). *The NeOn Methodology for Ontol*ogy Engineering, pages 9–34. Springer.
- Val-Calvo, M., Egaña Aranguren, M., Mulero-Hernández, J., Almagro-Hernández, G., Deshmukh, P., Bernabé-Díaz, J. A., Espinoza-Arias, P., Sánchez-Fernández, J. L., Mueller, J., and Fernández-Breis, J. T. (2025). OntoGenix: Leveraging Large Language Models for enhanced ontology engineering from datasets. *Information Processing & Management*, 62(3):104042.