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Abstract: Domain ontology construction is a complex and resource-intensive task, traditionally relying on extensive
manual effort from ontology engineers and domain experts. While Large Language Models (LLMs) show
promise for automating parts of this process, studies indicate they often struggle with capturing domain-
specific nuances, maintaining ontological consistency, and identifying subtle relationships, frequently requir-
ing significant human curation. This paper presents a semi-automatic method for domain ontology construc-
tion that combines the capabilities of LLMs with established ontology engineering practices, modularization,
and cognitive representation. We developed a pipeline incorporating semantic retrieval from heterogeneous
document collections, and prompt-guided LLM generation. Two distinct scenarios were evaluated to assess
the influence of prior structured knowledge: one using only retrieved document content as input, and another
incorporating expert-defined structured seed terms alongside document content. The approach was applied to
the domain of Dengue surveillance and control, and the resulting ontologies were evaluated based on struc-
tural metrics and logical consistency. Results showed that the scenario incorporating expert-defined seed terms
yielded ontologies with greater conceptual coverage, deeper hierarchies and improved cognitive representation
compared to the scenario without prior structured knowledge. We also observed significant performance vari-
ations between different LLM models regarding their ability to capture semantic details and structure complex
domains. This work demonstrates the viability and benefits of a hybrid approach for ontology construction,
highlighting the crucial role of combining LLMs with human expertise for more efficient, consistent, and cog-
nitively aligned ontology engineering. The findings support an iterative and incremental ontology development
process and suggest LLMs are valuable assistants when guided by domain-specific inputs and integrated into
a structured methodology.

1 INTRODUCTION

Ontologies are used to formally model knowledge do-
mains. In computer science, an ontology is classically
defined as an explicit specification of a shared con-
ceptualization (Guarino et al., 2009). That is, it pro-
vides a formal description of the concepts within a do-
main and the relationships between them. Ontologies
have been consolidating as resources that contribute
to structuring and integrating knowledge in specific
fields, promoting interoperability, enabling reason-
ing in complex systems, and enhancing explainabil-
ity by bridging human conceptual understanding and
machine processability (Borowicc and Alves-Souza,
2025; Lopes et al., 2024).

a https://orcid.org/0000-0001-7399-274X
b https://orcid.org/0000-0002-6112-3536

However, building domain ontologies is a com-
plex task, which traditionally demands extensive
manual effort from ontology engineers and domain
experts. The classical process involves knowledge
elicitation from expert interviews, document anal-
ysis, and successive modeling and validation itera-
tions (Borowicc and Alves-Souza, 2025). Manual
approaches tend to be difficult to update, given the
evolution of domain knowledge, and susceptibility to
errors and inconsistencies (Bakker and Scala, 2024;
Babaei Giglou et al., 2023).

In recent years, techniques have emerged that par-
tially or fully automate ontology creation from tex-
tual or structured data. Particularly, Large Language
Models (LLMs) have emerged as promising tools to
assist in knowledge extraction and organization from
texts (Lopes et al., 2024). These models demonstrate

64
Borowicc, S. L. and Alves-Souza, S. N.
Semi-Automatic Domain Ontology Construction: LLMs, Modularization, and Cognitive Representation.
DOI: 10.5220/0013718000004000
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2025) - Volume 2: KEOD and KMIS, pages
64-73
ISBN: 978-989-758-769-6; ISSN: 2184-3228
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



the ability to understand natural language and pro-
duce syntactically structured content, which suggests
a potential for generating ontologies based on tex-
tual descriptions of a domain. Preliminary research
shows that LLMs can identify relevant concepts and
even propose hierarchies and relationships, offering
an initial ontology draft from documents (Bakker and
Scala, 2024).

Despite their potential, there are several chal-
lenges in using LLMs for reliable ontology construc-
tion. Studies report that unadapted LLMs often fail
to capture subtleties of specific domains, tending to
reproduce only previously seen linguistic patterns,
frequently omitting important relationships between
classes, and generating inconsistent or incorrect state-
ments (Mai et al., 2025). Thus, there is a consensus
that LLMs will not completely replace ontology en-
gineers, but can act as assistants to expedite knowl-
edge acquisition (Saeedizade and Blomqvist, 2024;
Babaei Giglou et al., 2023). Exploring LLMs in con-
junction with human expertise constitutes a promis-
ing semi-automatic approach, alleviating manual pro-
cess bottlenecks without compromising the semantic
quality of the resulting ontology (Babaei Giglou et al.,
2023).

This paper presents a semi-automatic approach
for domain ontology construction from heterogeneous
document collections, combining the use of LLMs
with expert knowledge, as shown in Figure 1. The
aim is to systematically compare two key factors
in the semi-automatic ontology construction process:
the impacts of the presence or absence of expert-
defined seed terms and the capabilities of different
LLM models for capturing semantic details and struc-
turing complex domains. The approach uses the do-
main of Dengue surveillance and control in Brazil. In
both cases, a selected top ontology is used to support
cognitive representation and interoperability.

Following ontology engineering methods, such
as NeOn (Suárez-Figueroa et al., 2012), an ontol-
ogy scope was defined based on competence ques-
tions (CQs), which are formal questions the ontology
should be able to answer (Ondo et al., 2024). The
results are evaluated based on structural metrics and
logical consistency. Finally, we discuss the extent to
which the modularization and inclusion of prior struc-
tured domain knowledge contribute to producing con-
sistent ontologies, highlighting advantages and limi-
tations of the proposed semi-automatic approach.

2 CONCEPTS AND PRIOR
RESEARCH

The term ontology, inherited from philosophy, was
adapted in computer science to designate knowledge
modeling artifacts. A computational ontology can be
understood as an explicit and formal specification of
a shared conceptualization. In other words, typically
in Web Ontology Language (OWL)1, ontologies for-
malize the concepts, properties, and relationships of a
domain, in addition to defining instances and axioms
that capture rules or constraints of that domain. In this
definition, (Guarino et al., 2009) emphasizes aspects
that highlight the explicit conceptualization and the
requirement of a shared view among multiple users.
The shared nature is fundamental: an ontology should
reflect a consensus on the meaning of terms, serving
as a common reference.

In the context of information systems and Artifi-
cial Intelligence (AI), ontologies play multiple roles.
They provide a controlled and standardized vocabu-
lary that enables semantic integration of data from
diverse sources. For example, by mapping hetero-
geneous data to a common ontology, a unified un-
derstanding is achieved, facilitating interoperability
and enabling joint queries and analyses of previ-
ously isolated data. Ontologies also enable auto-
matic reasoning: using classifiers and logical reason-
ers, new knowledge can be inferred from the defined
axioms. Additionally, ontologies serve to document
expert knowledge in a structured manner. By organiz-
ing concepts into taxonomies and relationships, on-
tologies promote semantic clarity, knowledge reuse,
and effective communication between people and sys-
tems (Lopes et al., 2024; Borowicc and Alves-Souza,
2025).

2.1 Ontology Construction

Developing a domain ontology traditionally requires
a methodological and systematic process, involving
steps ranging from scope and requirements defini-
tion to ontology deployment and maintenance. Ontol-
ogy engineering methods, such as NeOn, advocate the
definition of the purpose and scope of the ontology as
the first step, often aided by CQs. CQs help to make
content requirements explicit: they determine which
information and concepts are relevant and, together
with the so-called ontology stories, descriptive nar-
ratives that capture ontology project requirements, it
illustrates the context and objectives for the intended
ontology development, guiding subsequent modeling

1https://www.w3.org/OWL/
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Figure 1: Domain Ontology Construction Process. Adapted from (Borowicc and Alves-Souza, 2025).

decisions (Saeedizade and Blomqvist, 2024).
With the scope and requirements in hand, the pro-

cess moves to domain knowledge acquisition. This
step involves eliciting important concepts, terms, and
relationships from experts and available sources. A
technique that can be used in this initial phase is
brainstorming for eliciting and describing terms and
concepts with domain experts. From discussions and
interactive sessions, an initial list of candidate classes,
properties, and relevant instances is defined, as well
as familiarization with the terminology used in daily
practice within the domain (Borowicc and Alves-
Souza, 2025).

In addition to knowledge obtained via brainstorm-
ing, an analysis of documentary content is crucial.
This includes reviewing legislation, standards, man-
uals, and any formal domain documents, as well as
examining forms, database schemas, and even legacy
source codes that contain information about the do-
main. Such documentary sources complement the
perspective of the experts, providing definitions and
implicit relationships in the data. The combined result
of these elicitation activities is a comprehensive set of
concepts and attributes about the knowledge domain
(Borowicc and Alves-Souza, 2025).

The specification and formalization steps of the
ontology is provided as follows. The collected terms
are organized into an initial structure: terms repre-
senting general and specific concepts are identified,
forming a hierarchy (Guarino et al., 2009). Attributes
and relevant relationships between classes are also
defined, for example, part-whole relationships. This
conceptual modeling is iterative and heavily depen-
dent on human knowledge: the ontology engineer in-
terprets and consolidates the information obtained, re-
fining the taxonomy and filtering out dispensable or
inconsistent information (Babaei Giglou et al., 2023).
Ontology construction tools, such as Protégé, are used
to encode the concepts and relationships in formal
languages such as OWL.

Historically, ontology construction has always re-
quired this intense participation from experts, becom-
ing a bottleneck when scaling or updating ontologies

constantly (Babaei Giglou et al., 2023). Automated
approaches seek to assist this process by automat-
ing parts of the information acquisition and ontology
formalization process. However, even with AI sup-
port, human validation remains essential, given the
need to ensure that the ontology adequately reflects
the domain understanding and meets the established
requirements, as there is knowledge that is not eas-
ily made explicit or identified among the documented
concepts, terms, and relationships. In sum, ontology
construction is a socio-technical process: it combines
formal methodologies, knowledge acquisition tech-
niques, such as brainstorming and document analysis,
and increasingly, automation tools, but remains de-
pendent on expert judgment to ensure the quality and
utility of the final product (Saeedizade and Blomqvist,
2024).

2.1.1 Top-Level Ontologies

When developing a domain ontology, top-level on-
tologies should be leveraged; they are generic and
domain-independent ontological models that define
general conceptual categories and provide a unifying
vocabulary and structure. This facilitates interoper-
ability between different ontologies, increases consis-
tency, and allows integrating diverse knowledge sys-
tems.

Among the top-level ontologies are the Basic For-
mal Ontology (BFO), a high-level ontology focus-
ing on two categories: continuants (defining objects
and spatial regions) and occurrents (covering knowl-
edge gained over time), being widely used in biomed-
ical fields due to its objectivity and conciseness; and
the Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE) (Masolo et al., 2003), which
is descriptively and cognitively inspired (Lopes et al.,
2024).

The choice between top-level ontologies depends
on the context and the objectives of the project. Stud-
ies show that aligning domain classes with defini-
tions from these ontologies improves semantic con-
sistency and facilitates mapping to other resources
(Lopes et al., 2024). DOLCE focuses on capturing

KEOD 2025 - 17th International Conference on Knowledge Engineering and Ontology Development

66



concepts as perceived, which aligns with the idea of
cognitive representation, necessary when we want the
ontology to reflect not only formal structures, but also
how humans conceptualize the domain. In this work,
DOLCE was adopted as the reference top-level ontol-
ogy, anchoring the classes of the domain ontology in
its taxonomy, with the expectation of creating a struc-
tured and interoperable ontology. Note that using a
top-level ontology does not eliminate the need for ad-
justments; contrariwise, it requires careful analysis of
where each domain class fits into the upper hierarchy,
an exercise that also serves as an additional concep-
tual validation.

2.2 LLMs and Ontology Learning

The convergence of ontologies and LLMs has moti-
vated a new wave of research in ontology learning,
or extraction, from text (Lopes et al., 2024). The
task of Ontology Learning (OL) consists in start-
ing from unstructured information and deriving a
structured set of ontological axioms, encompassing
identifying relevant terms, discovering hierarchical
and non-hierarchical relationships between them, and
eventually proposing complex constraints or axioms
(Babaei Giglou et al., 2023). Traditionally, this task
was divided into subtasks handled by specialized Nat-
ural Language Processing (NLP) and machine learn-
ing techniques, such as term extraction, synonym dis-
covery, and hypernym discovery. With the advent of
LLMs, which can understand natural language and
generate coherent text, the possibility has emerged to
treat ontology learning as a language generation prob-
lem, requiring that the model translates raw textual
knowledge into an ontology expressed, for example,
in the OWL language (Schaeffer et al., 2024).

Potential advantages of using LLMs include the
ability to identify implicit concepts and relation-
ships in text without manual work. LLMs have
demonstrated the ability to extract knowledge triples
(subject-predicate-object) from texts, forming basic
knowledge graphs. Recent studies have applied
LLMs to generate complete ontologies: for exam-
ple, (Bakker and Scala, 2024) used GPT-4 to extract
an ontology from a news article, obtaining relevant
classes, individuals, and properties. This and other
researches have shown that LLMs successfully cap-
ture many of the main concepts present in the text and
can propose preliminary hierarchies, indicating an ad-
vance over previous methods that often produced only
flat lists of terms. Furthermore, LLMs offer inter-
action flexibility: it is possible to use sophisticated
prompts, decomposing the task into steps, for exam-
ple, first extracting classes, then relationships, to im-

prove the quality (Bakker and Scala, 2024). Prompt
engineering techniques, such as Chain-of-Thought,
or using CQs are being explored to guide LLMs in
gradual construction processes that potentially im-
prove the consistency of the ontology (Saeedizade and
Blomqvist, 2024).

However, several challenges and limitations of
LLMs for this purpose have been identified. A crit-
ical point is the lack of consistent ontological reason-
ing: LLMs tend to base their responses on statistical
language patterns, without guaranteeing adherence to
the required logical or ontological rules. For example,
(Mai et al., 2025) demonstrated that when confronted
with entirely new terms, pre-trained LLMs failed to
correctly infer semantic relationships, merely repro-
ducing known linguistic structures. This suggests that
language models outside their training domain may
not truly understand the concepts, unless they are fine-
tuned with data from that domain.

Another practical observation is that LLMs may
neglect certain parts of the ontology, particularly re-
lationships. (Bakker and Scala, 2024) noted that, al-
though GPT-4 identified important classes from a text,
it often failed to include properties between classes or
introduced inconsistent properties between instances.
In their evaluations, the raw output of the LLM con-
tained some logical errors and omissions, requiring
manual supplementation. Generally, hallucinations –
inferences not supported by the text – are also a risk:
when generating ontologies, the LLM sometimes in-
vented relationships not mentioned.

Therefore, the literature indicates that LLMs are
useful as assistants, but do not replace human curation
of the learned ontology (Saeedizade and Blomqvist,
2024). They can accelerate knowledge acquisition,
serving as a first draft of the ontology or an exten-
sion of an existing one based on new information.
However, the intervention of an ontology engineer
is necessary to verify and correct errors, add miss-
ing relationships, and ensure axiomatic consistency.
A recommendation is to integrate LLMs into a hy-
brid workflow, whereby the model automates candi-
date proposal steps, and the human performs valida-
tion and fine-tuning. Additionally, adapting LLMs to
the domain via fine-tuning or few-shot learning can
significantly improve quality: (Babaei Giglou et al.,
2023) showed that adapted models achieve signifi-
cantly better performance in tasks such as term typi-
fication, taxonomy discovery, and relationship extrac-
tion, being useful as assistants to alleviate the knowl-
edge acquisition bottleneck in ontology construction.
Advanced prompting techniques are also important
for optimizing the relevance and feasibility of using
LLMs (Schaeffer et al., 2024).
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In summary, LLMs create possibilities for semi-
automating ontology engineering, increasing the pro-
ductivity of engineers. They can generate initial on-
tologies that cover a significant portion of the ex-
pected elements, reproducing human modeling pat-
terns in many cases. However, their results still fall
short in complex or very specific situations, in which
ontologies developed entirely by humans better rep-
resent the domain nuances (Val-Calvo et al., 2025).
Therefore, the most recommended strategy is to com-
bine them with human expertise and solid ontological
frameworks, such as top-level ontologies, combining
the speed and linguistic knowledge of the LLMs with
the accuracy and quality control of the experts.

Despite the advances in research in this field, the
literature reveals some important gaps:

• Fragmented Focus: Most studies focus on On-
tology Learning subtasks – such as term or re-
lationship extraction – without offering an inte-
grated framework that combines extraction, mod-
ular reuse, and cognitive modeling (Schaeffer
et al., 2024; Babaei Giglou et al., 2023).

• Insufficient Modular Reuse: Few of these works
systematically address the reuse of established on-
tological components for constructing complete
ontologies, which is important to ensure consis-
tency and interoperability.

• Cognitive Representation: Despite recognizing
the importance of building ontologies with the
support of domain experts, few approaches sys-
tematically explore alignment with mental mod-
els using cognitive representations, for the user to
understand.

• Adaptation to Specific Domains: As pointed
out by (Mai et al., 2025), LLMs face challenges
in adapting to specific domains, especially when
terms and concepts are not common in the train-
ing corpus, requiring techniques that allow for a
deeper integration between textual data and for-
mal structures.

Thus, in this work, the proposed approach for
semi-automatic domain ontology construction com-
bines:

• Knowledge Extraction via LLMs: Use of NLP
and prompting techniques to extract classes, re-
lationships, and axioms directly from content re-
lated to the specific domain.

• Modular Reuse: Systematic integration of estab-
lished ontological components to enrich and lend
consistency to the ontology.

• Cognitive Representation: Incorporation of
methods to align the ontology more closely with

the mental models of experts, facilitating its inter-
pretation.

This approach aims to reduce manual effort, in-
crease scalability, and improve the quality and con-
sistency of the ontologies generated, overcoming the
limitations of traditional methods, as discussed in pre-
vious work, and leveraging the potential of LLMs.

3 METHODOLOGY

The methodology consists of a semi-automatic ap-
proach for constructing and evaluating domain on-
tologies using LLMs. It integrates established ontol-
ogy engineering practices, as proposed by (Noy et al.,
2001), with automation techniques. The methodology
comprises the following phases:

• Definition of Scope and Requirements: Delim-
iting the domain and objectives of the ontology.
Formulating CQs to guide the selection of rele-
vant concepts.

• Knowledge Collection and Preparation: Gath-
ering representative domain documentary content.

• Ontology Generation via LLM: Using multiple
LLMs to generate the ontology drafts from the
content provided. Two scenarios are employed to
verify the impacts of the presence or absence of
expert-defined seed terms to guide the model in
the task.

• Alignment with Top-Level Ontology: Mapping
classes created by the LLM to the corresponding
top-level ontology categories.

• Validation and Evaluation: Verifying logical
consistency with the HermiT reasoner. Instanti-
ating examples for testing the CQs via SPARQL
queries. Collecting quantitative ontology metrics,
such as number of classes, depth, width, ratio of
relationships per class; and qualitative analysis.

• Experimental Execution: For comparative anal-
ysis, both scenarios were implemented and evalu-
ated using multiple LLMs.

4 DOMAIN ONTOLOGY
GENERATION

Ontology construction with LLM support requires
a methodology that encompasses textual prepara-
tion by validating the results generated. This sec-
tion describes a semi-automatic pipeline developed

KEOD 2025 - 17th International Conference on Knowledge Engineering and Ontology Development

68



to operationalize the process. The pipeline orga-
nizes the steps into phases of pre-processing, seman-
tic retrieval, prompt-guided generation, and consol-
idation. By controlling variables such as the pres-
ence of expert-defined seed terms or the volume of
context provided, the approach allows evaluating the
impact of these factors on the structure and seman-
tic quality of the ontologies generated. The complete
source code of the pipeline will be made available via
a shared repository2.

4.1 Data Preprocessing

Textual preprocessing plays a fundamental role in
semi-automatic ontology construction, as it ensures
that the content extracted from documents is rele-
vant, clean, and semantically consistent. This step in-
cludes the removal of noise and segmentation of texts
into chunks, facilitating vector indexing and subse-
quent efficient semantic retrieval of the most relevant
domain-specific passages. Inadequate preprocessing
can introduce ambiguity, redundancy, or omit essen-
tial information, negatively impacting both the quality
of embeddings and the accuracy of ontologies gen-
erated by language models. We chose not to apply
textual preprocessing techniques such as lowercasing,
stopword removal, and lemmatization, as these, ac-
cording to (Lopes et al., 2024), can remove structural
integrity relevant to the semantic understanding of the
text.

The input dataset consisted exclusively of publicly
available technical documents in PDF format, includ-
ing norms and guidelines, as well as mosquito vec-
tor control manuals and disease notifications. The
pipeline performs the following preprocessing steps:

• Text Extraction: Each PDF document Di is con-
verted into raw text Ti using OCR tools, such as
pdfplumber or pypdf.

• Text Cleaning: Page breaks, footers, and other
non-informative elements are removed using reg-
ular expressions, producing clean texts T̃i.

• Chunking: Each clean text is segmented into
controlled-size chunks Ci j by a recursive splitting
method, with overlap for semantic context preser-
vation. Formally,

Ci j = Chunk(T̃i,size,overlap) (1)

where size is the maximum number of characters
and overlap is the number of characters shared be-
tween adjacent chunks.

2https://git.disroot.org/borowicc/vetor

• Vector Indexing: Each chunk Ci j is converted
into a dense vector e⃗i j using pre-trained embed-
ding models, for example, all-MiniLM-L6-v23.
The vector index I is built using the FAISS library
(Johnson et al., 2021):

I = {⃗ei j}i, j (2)
comprising the embeddings e⃗i j of all chunks j ex-
tracted from documents i.

4.2 Semantic Retrieval and Prompt
Construction

Considering the limitation of the context window of
language models, as well as the need to ensure greater
thematic focus and modularity in the validation pro-
cess, the domain of interest was segmented into sub-
domains. Each corresponds to a thematic grouping of
concepts and processes, such as epidemiological noti-
fications and events or dengue vector control. This
modular approach allows the LLM model to oper-
ate on more restricted and semantically cohesive con-
texts, facilitating the precision and relevance of the
extracted concepts.

Segmentation by subdomains offers several ben-
efits: (i) it enables more specific queries, optimizing
the retrieval of relevant context via vector search; (ii)
it reduces the probability of ambiguity and polysemy
inherent to very broad contexts; and (iii) it enables the
incremental consolidation of the ontology, with con-
ceptual merging and harmonization steps at the end of
the process.

Two approaches are evaluated:
• Scenario (I), without seed: As context, the LLM

model receives the most semantically relevant
chunks identified via vector search.

• Scenario (II), with seed terms: In addition
to the relevant chunks, the model also receives
expert-defined structured seed terms, represented
in OWL.
Given a textual query qk, its vector representation

q⃗k is compared with all the vectors in the index us-
ing cosine similarity, retrieving the K most relevant
chunks to compose the LLM prompt context. This
selection is defined according to:

TopK(qk) = argmaxK
Ci j

cos(⃗qk, e⃗i j) (3)

The equations 4 and 5 define the prompt Pk for
scenarios (I) and (II), respectively.

Pk = Instructions+CQs+Chunks (4)
Pk = Instructions+CQs+Seed+Chunks (5)

3https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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4.3 Ontology Generation and
Consolidation

The LLM is invoked with the prompt Pk for each sub-
domain, producing OWL/Turtle descriptions aligned
with the DOLCE top-level ontology. Following gen-
eration for the subdomains, the results are consoli-
dated in an additional round that performs merging,
redundancy removal, and conceptual alignment, gen-
erating the final unified ontology.

Optionally, the model is also requested to create
a set of example instances and SPARQL queries for
each CQ, enabling practical validation of the ontol-
ogy.

Model selection was based on the widespread
adoption of the GPT family in recent studies for
LLM-assisted ontology learning tasks (Bakker and
Scala, 2024; Babaei Giglou et al., 2023; Saeedizade
and Blomqvist, 2024). For comparison, we used the
Gemini-2.5-flash model, belonging to the same tech-
nological generation and available via API.

Smaller models such as GPT-4.1-nano and
Gemini 2.5-flash-lite were tested preliminarily,
but showed significantly lower performance in the
metrics evaluated, such as number of classes, hier-
archical depth, and property definition. These mod-
els failed to adequately capture relationships between
concepts, resulting in shallow and fragmented ontolo-
gies with less generalization capacity.

5 EXPERIMENTAL RESULTS

Quantitative metrics extracted from the resulting on-
tologies are presented in Table 1:

Table 1: Comparison of Metrics for Scenario (I) without
Seed and Scenario (II) with Seed, for the GPT-4.1 Mini and
Gemini 2.5-flash models.

Metric Scenario (I) Scenario (II)
GPT Gemini GPT Gemini

Classes 57 240 40 142
Subclasses 6 192 19 120
Properties* 71 108 52 103
Axioms 403 1181 403 975

∗ (ObjectProperties + DataProperties).

The two models generated a more formal and
denser ontology for Scenario (II). This approach fa-
vors inferences and queries, promoting interoperabil-
ity and reuse. Conversely, Scenario (I) resulted in
an ontology with greater detail with subclasses, but
less standardized and with less formalization of con-
straints.

The analysis of the results shows that the Gem-
ini model, in both scenarios evaluated, was capable of
mapping the semantic context in a considerably more
comprehensive manner than GPT. As shown in Ta-
ble 1, the ontologies generated by Gemini showed a
higher number of classes, greater hierarchical depth
(subclasses), as well as a significantly higher number
of axioms. These indicators suggest a greater capac-
ity of the model to interpret and structure the concepts
described in the input texts.

In addition to the volume of structural elements,
Gemini was observed to be more effective in iden-
tifying implicit relationships, generating specialized
subclasses, and organizing described actions and pro-
cesses in a manner semantically coherent with the do-
main of dengue surveillance and control. These re-
sults suggest that different LLMs may exhibit signifi-
cant variations in their ability to capture semantic nu-
ances and model complex domains, even under simi-
lar input conditions.

Given these results, to illustrate the analysis of
each scenario in Figures 2 and 3, we used fragments
of the results generated with the Gemini 2.5-flash,
as it presented greater semantic consistency and more
robust conceptual coverage in the ontologies pro-
duced.

Despite the formalization limitations observed in
Scenario (I), the model was capable of capturing
semantically valid hierarchical relationships based
solely on the structure of the input texts. For ex-
ample, the class Control and Prevention Action
was correctly associated with subsets such as Vector
Control and Education Communication Social
Mobilization, reflecting descriptions present in the
analyzed normative documents (Fig. 2).

However, the absence of properties, constraints,
and connections to more abstract concepts limits the
potential for ontological reasoning and reuse. A
deeper and more abstract structure, as resulting in
Scenario II (Fig. 3), supports clearer distinctions
among concepts such as operational strategies, tech-
niques, and institutional actions. This highlights
how descriptive textual content can guide conceptual
structuring, reinforcing the benefit of combining au-
tomated analysis with structured domain knowledge,
particularly in complex domains.

6 DISCUSSION

The results allow us to reflect on several aspects
of semi-automatic ontology construction assisted by
LLMs. Firstly, the comparison of scenarios high-
lights the value of combining human knowledge
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Control and Prevention Action

Education Communication Social Mobilization

Vector Control

Epidemiological Surveillance

Entomological Surveillance

Sanitary Surveillance

Figure 2: Fragment of the control and prevention actions hierarchy (Scenario I, Gemini-2.5-flash model).

Activity

Control

Technical
Operational

Focal Treatment

Perifocal Treatment
Nebulization with portable equipment

Nebulization with vehicle-mounted equipment

Environmental Management Solid Waste ManagementEducation

Social Strategy Community Participation

Monitoring

Entomological

Larval Density Assessment LIRAa

Mosquito Capture

Larval Inspection

Epidemiological

Sanitary Sanitary Inspection

Visit

Figure 3: Fragment of the Dengue monitoring and control activities hierarchy (Scenario II, Gemini-2.5-flash model).

and AI. The ontologies differ significantly in scope
and construction. The ontology resulting from Sce-
nario (II), which incorporates expert-defined struc-
tured seed terms, is larger and more complex. It
exhibits a more structured hierarchy, extensive reuse
of the top-level ontology, and greater coverage of
domain-specific details (Figure 3). In contrast, Sce-
nario (I), without the seed terms, yields a shallower
structure with less cognitive representation and fewer
axioms beyond basic definitions (Figure 2).

The ontologies produced demonstrated a reason-
able structure, showing that LLMs can identify named
entities and important terms. Furthermore, the model
created basic hierarchical links, indicating some se-
mantic generalization capability. These results sup-
port the idea that LLMs bring a new perspective to
ontology learning, integrating the identification of
classes, properties, and instances in a single step, un-

like approaches that treat each component in isola-
tion, such as term extraction techniques. As observed
by (Bakker and Scala, 2024), this provides more com-
plete ontologies in a single process, albeit with errors.

In the scenario where we provided keywords, the
LLM could work guided by the central notions of the
domain from the outset, producing an initial ontology
of higher quality. This reinforces findings from recent
research emphasizing that LLMs should hardly be
used in isolation for ontology engineering, but rather
as co-pilots for engineers (Saeedizade and Blomqvist,
2024).

Note that the use of proprietary models yields
promising results for supporting ontology engineer-
ing, but being closed-source, not all generation pa-
rameters can be queried or adjusted, and successive
provider updates may alter behavior without prior no-
tice. Additionally, dependence on paid services im-
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poses cost and access barriers.
The inaccessibility to source code and internal

hyperparameters limits the transparency and repro-
ducibility of experiments, reinforcing the need to
gradually migrate to open-source alternatives, as well
as to explore specific fine-tuning, although the cre-
ation of training datasets and datasets to address
ontology stories and competence questions remains
a significant challenge (Saeedizade and Blomqvist,
2024).

Evidently, the construction of robust domain on-
tologies requires collaborative mechanisms for orga-
nizing and documenting knowledge, as already high-
lighted by (Borowicc and Alves-Souza, 2025). The
adoption of instruments such as collaborative meta-
data repositories is important for consolidating and
making content available, promoting versioning, in-
cremental validation, and instrumentalizing the par-
ticipation of experts in the evolution of ontologies.

Our experiments showed, in practice, that the
expert-provided structured knowledge operates as a
kind of semantic prompt engineering; that is, it es-
tablishes a context that guides the model and prevents
some errors. For example, by listing fundamental
terms directly in the prompt, it prevented the model
from not describing critical concepts or from naming
concepts inappropriately. This aligns with the concept
of few-shot prompting, in which examples or hints
in the prompt improve the output (Schaeffer et al.,
2024). In the absence of these terms, the model gen-
erated incomplete coverage of some aspects – a be-
havior consistent with the observation of (Mai et al.,
2025) that untrained LLMs may not fully adapt to spe-
cific domains and miss certain relationships. Identi-
fying relationships requires a deeper understanding of
the context, or world knowledge, which the model did
not apply on its own.

7 CONCLUSION

This work explored a semi-automatic approach for
domain ontology construction that integrated Large
Language Models (LLMs) with established ontology
engineering practices, including modularization and
cognitive representation. Two key aspects were ex-
amined: the impact of expert-defined seed terms and
the varying capabilities of different LLMs in captur-
ing semantic nuances and structuring complex do-
mains. The use of a top-level ontology supported
semantic alignment and interoperability, while mod-
ularization and cognitive structuring enhanced inter-
pretability and maintainability.

The results confirm the feasibility of the approach

and its ability to generate coherent ontologies. The
scenario enriched with expert-defined terms produced
ontologies with broader conceptual coverage, deeper
hierarchies, and reduced post-processing needs, un-
derscoring the importance of prior structured knowl-
edge. In contrast, the scenario without seed terms
demonstrated automation potential but required more
intensive expert curation. Additionally, the evaluation
of multiple LLMs revealed notable differences in their
performance when modeling semantic structures.

By positioning LLMs as guided assistants, the
method balances efficiency with semantic quality,
providing a viable alternative to both manual and fully
automated approaches. The iterative reuse of the re-
viewed ontology as a seed for further refinement sug-
gests a practical path for incremental development.
Future work will explore the generalizability of this
approach in different domains and with alternative up-
per ontologies.
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