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Abstract: The programming of industrial robots is traditionally a complex task that requires specialized knowledge,
limiting the flexibility and adoption of automation in various sectors. This paper presents the development
and validation of a programming by demonstration system to simplify this process, allowing an operator to
intuitively teach a task to a robotic arm. The methodology employs the MediaPipe library for real-time hand
gesture tracking, using a conventional camera to translate human movements into a robot-executable trajectory.
The system is designed to learn a manipulation task, such as ’pick and place’, and store it for autonomous
reproduction. The experimental validation, conducted through 50 consecutive cycles of the task, demonstrated
the high robustness and effectiveness of the approach, achieving a 98% success rate. Additionally, the results
confirmed the excellent precision and repeatability of the method, evidenced by a standard deviation of only
0.0126 seconds in the cycle time. A video demonstrating the system’s functionality is available for illustrative
purposes, separate from the quantitative validation data. It is concluded that the proposed approach is a viable
and effective solution for bridging the gap between human intention and robotic execution, contributing to the
democratization of automation by offering a more intuitive, accessible, and flexible programming method.

1 INTRODUCTION

The advancement of robotics has transformed various
sectors of society, from manufacturing to personal as-
sistance (Zick et al., 2024; John, 2011). The growing
need for autonomous or semi-autonomous systems,
capable of executing tasks with high precision, re-
peatability, and safety, has driven significant progress
in both hardware and software (Moustris et al., 2011).
This development seeks to optimize productivity and
reduce risks in operations that are complex or haz-
ardous for humans.

In the industrial context, robotic arms play a cen-
tral role in process automation. Their ability to exe-
cute complex movements with strength and accuracy,
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often superior to human capabilities, makes them in-
dispensable in tasks such as assembly, welding, and
painting (Javaid et al., 2021). The versatility of
this equipment allows for its integration into different
stages of production, contributing to the quality of the
final product and the competitiveness of companies.
However, the efficiency and adaptability of these sys-
tems are directly related to the quality of the control
interfaces (Zick et al., 2024).

Teleoperation emerges as a crucial approach for
the remote control of robotic arms. It allows hu-
man operators to manipulate the robot from a dis-
tance, in hostile, hazardous, or hard-to-reach envi-
ronments (Du et al., 2024). This modality is essen-
tial in situations that require human intervention for
complex decision-making or for the execution of non-
programmable tasks. Teleoperation ensures operator
safety and expands the scope of robotic operation to
scenarios where full autonomy is still a technical chal-
lenge (Martinelli et al., 2020).

Currently, the teleoperation methods employed
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range from programmatic interfaces, which demand
technical knowledge, to the use of physical devices
such as joysticks, keyboards, data gloves, and motion
capture systems (Zick et al., 2024; Martinelli et al.,
2020). Although these approaches have brought ad-
vancements, they often present limitations. These in-
clude the need for specific and costly hardware, a lack
of intuitiveness in real-time control, and the difficulty
in replicating fluid and natural movements. Such bar-
riers often restrict large-scale adoption and the op-
timization of interaction between humans and ma-
chines (Moniruzzaman et al., 2022).

To overcome these shortcomings, this paper pro-
poses an innovative control method for articulated
robotic arms. The proposed method utilizes real-time
recognition of the user’s hand position and move-
ments using a single camera. This eliminates the need
for complex and proprietary input devices, promoting
a more natural, intuitive, and cost-effective interac-
tion. This approach translates human gestures into
precise commands for the robot. A distinctive fea-
ture of this algorithm is its ability to store and repro-
duce movement sequences. This functionality is cru-
cial for repetitive tasks, as it significantly reduces the
need for continuous reprogramming, optimizing op-
erational efficiency and broadening the system’s ap-
plicability in scenarios that require high repeatability
and agility in task switching.

To validate the proposed method, an articulated
robotic arm was employed in a controlled experimen-
tal environment, which simulated realistic operating
conditions. The validation process focused on the
execution and repetition of a ’pick and place’ task.
Initially, a human operator demonstrated the move-
ment of picking up an object from an origin point and
depositing it at a destination, with their gestures be-
ing captured and stored by the system via MediaPipe
(Google, 2025) and subsequently reproduced repeat-
edly. This experimental setup allowed for the anal-
ysis of the precision, fluidity, and consistency of the
robotic control, as well as the verification of the ef-
fectiveness of the movement repetition functionality,
in which the arm autonomously reproduced the previ-
ously recorded action.

The remainder of this paper is structured as fol-
lows: Section 2 presents the proposed strategy, de-
tailing the computer vision system and the control al-
gorithm. Section 3 describes the validation and ex-
perimental tests, including the hardware and the ex-
perimental environment used. Finally, Section 4 con-
cludes the work and suggests directions for future re-
search.

1.1 Related Work

Teleoperation and the intuitive control of robotic arms
are topics of great interest in the scientific commu-
nity, with various approaches proposed to enhance
human-robot interaction. This section presents a re-
view of relevant works that address teleoperation sys-
tems, motion recognition interfaces, and the use of
different technologies for controlling robots.

A teleoperation system for multiple robots, which
utilizes an intuitive hand recognition interface, is pre-
sented by (Zick et al., 2024). This study focuses on
the ability to simultaneously control more than one
robot, using the recognition of the operator’s hand
movements to generate commands. The proposed ap-
proach seeks to simplify the inherent complexity of
managing multiple machines, offering a more natural
solution for interaction.

In the area of human-robot interfaces for remote
control using IoT communication, (Martinelli et al.,
2020) describe a system that employs deep learning
techniques for motion recognition. The work explores
how deep neural networks can be utilized to interpret
gestures and translate them into commands for the
robot, all with the convenience of communication us-
ing the Internet of Things (IoT). The focus is on pro-
viding efficient and responsive remote control, even
over long distances.

Finally, (Franzluebbers and Johnson, 2019) inves-
tigate the teleoperation of robotic arms through vir-
tual reality. The research explores how virtual envi-
ronments can offer an immersive experience that en-
hances the operator’s perception of the robot’s envi-
ronment, thereby facilitating precise control. The use
of virtual reality aims to overcome some of the limi-
tations of traditional teleoperation methods, providing
a more intuitive experience rich in visual and spatial
feedback for the user.

These works illustrate the diversity of technolog-
ical solutions aimed at facilitating robotic control,
ranging from physical sensors and neural networks
to immersive environments. In line with these initia-
tives, this work proposes an approach that combines
real-time hand gesture recognition, via a conventional
camera and MediaPipe, with movement recording and
playback functionality. The system aims to offer a
low-cost and high-usability alternative, suitable for
applications that require repeatability, simplicity of
implementation, and minimal additional infrastruc-
ture.
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2 PROPOSED STRATEGY

The proposed system aims to enable the intuitive and
real-time control of an articulated robotic arm through
hand gestures captured by a single RGB camera, us-
ing the MediaPipe library. The main innovation lies
in the combination of gesture recognition without ad-
ditional sensors and the ability to store and reproduce
previously demonstrated trajectories, enabling appli-
cations in repetitive tasks with low cost and high ac-
cessibility.

Figure 1 illustrates the overall architecture of the
system. It is composed of three main modules: (i)
gesture capture and interpretation, (ii) command map-
ping and transmission to the robot, and (iii) trajec-
tory recording and playback. The interaction occurs
in real time, allowing the operator to directly control
the robotic arm’s movements with their hand, without
physical contact or external devices.

Figure 1: System flowchart.

Figure 2: System usage.

First, hand motion capture is performed using
a standard RGB camera, positioned to record the
operator’s gestures in a frontal plane. For gesture
recognition, the MediaPipe Hands framework is used.
The positions extracted from the operator’s hand are
mapped to the robot’s workspace through a linear cal-
ibration function, which adjusts the normalized val-
ues from the camera to the manipulator’s real-world

coordinates. During manual operation, the sequential
positions of the robotic arm are recorded in a temporal
data structure. Once stored, the sequence can be au-
tomatically replayed by the robot, faithfully replicat-
ing the movements performed in the original demon-
stration. This mechanism allows for Programming by
Demonstration without the need for coding or com-
plex interfaces.

With the system architecture defined, it becomes
necessary to establish a suitable environment for its
implementation and validation. The following de-
scribes the aspects related to environment setup, im-
age acquisition and preprocessing, hand detection and
tracking, gesture mapping and control logic, and fi-
nally, the movement recording and playback module.

2.1 Environment Setup

The development and validation of the gesture con-
trol and Programming by Demonstration system were
conducted using the following hardware and software
configuration, detailed to ensure the clarity and poten-
tial reproducibility of the results.

The central hardware component is the Interbotix
PincherX-100 robotic arm, a manipulator with 4 de-
grees of freedom plus a gripper.

Figure 3: PincherX-100 Robot Arm (Trossen Robotics,
2025).

For this gesture control system, three main
joints (base, shoulder, elbow) are actively con-
trolled by hand gestures, while the wrist pitch joint
is maintained in a neutral position (0.0 radians).
The low-level communication and control of the
PincherX-100 are managed through the Robot Op-
erating System (ROS) (Open Source Robotics Foun-
dation, 2025). The high-level Python program-
ming interface with the robot is facilitated by the
interbotix xs modules library, which abstracts the
underlying ROS topics and services, allowing for sim-
plified joint command and gripper control from the
application script.

The image capture of the operator’s hand, which
is essential for the vision system, is performed by an
RGB camera.

The control software, including the vision pro-
cessing, the gesture mapping logic, and the movement
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recording/playback module, was entirely developed
in Python. This software ran on a Dell OptiPlex 5070
desktop computer, equipped with an Intel Core i7 9th
Gen processor and 16 GB of RAM, running on the
Ubuntu 20.04.6 LTS operating system.

The main Python libraries used in the develop-
ment of the system include:

• OpenCV (version 4.11.0) (Bradski, 2025): Used
for webcam frame acquisition, image preprocess-
ing (such as converting the color space from BGR
to RGB), and for displaying the visual feedback in-
terface to the user.

• MediaPipe (version 0.10.11) (Google, 2025):
Employed for the robust detection and real-time
tracking of the 21 three-dimensional landmarks of
the operator’s hand.

• NumPy (version 1.24.4): Used extensively for
efficient numerical operations, especially in ma-
nipulating landmark coordinates and distance cal-
culations.
This configuration enabled the implementation

and testing of the proposed system with low cost, high
responsiveness, and good stability in movement exe-
cution, serving as the basis for the experiments re-
ported in the next section.

2.2 Image Acquisition and
Preprocessing

The webcam interface and video frame management
are handled by the OpenCV library. In the context
of this project, the library was used to capture video
from the RGB camera, converting the frames to the
appropriate format for processing. Furthermore, it
was used to render graphical overlays of the detected
hand points onto the image shown to the operator, as
can be seen in Figure 4.

Figure 4: Hand points recognition with MediaPipe.

Once the video frame is captured and prepro-
cessed, it is subsequently sent to the vision process-
ing module. The primary function of this module is
the precise detection and real-time tracking of the op-
erator’s hand and its respective reference points (Am-
primo et al., 2024). For this purpose, the system uti-
lizes the MediaPipe Hands solution.

MediaPipe Hands is designed to identify the pres-
ence of hands within the camera’s field of view
and, for each detected hand, estimate the three-
dimensional coordinates of 21 landmarks (Gomase
et al., 2022). These landmarks represent key anatom-
ical points of the hand, including the finger joints
(metacarpophalangeal, proximal interphalangeal, and
distal interphalangeal), the fingertips, and the wrist
(Wagh et al., 2023), as shown in Figure 5.

Figure 5: Hand Landmarks. Extracted from (Google,
2025).

In the context of this research, the MediaPipe
Hands library is initialized to track a single hand, aim-
ing for a clear and direct gesture control interface for
the PincherX-100 robotic arm.

The set of these 21 three-dimensional landmarks
provides a detailed representation of the operator’s
hand pose, orientation, and configuration (Bensaadal-
lah et al., 2023). This information is fundamental and
serves as direct input for the gesture mapping module,
where the landmark data is interpreted to generate the
specific commands that will control the movements of
the robotic arm’s joints and gripper.

From the set of hand landmarks provided by Me-
diaPipe, as depicted in Figure 5, primary control vari-
ables that represent the operator’s movement inten-
tion are calculated. The key landmarks for this stage
include the wrist (landmark 0), the base of the middle
finger (landmark 9), the tip of the thumb (landmark
4), and the tip of the index finger (landmark 8).

To enable control of the robotic arm’s reach, sim-
ulating a forward and backward movement, a depth
variable, denoted as prof, is calculated. This variable
corresponds to the three-dimensional Euclidean dis-
tance between the wrist landmark (P0 = (x0,y0,z0))
and the landmark at the base of the middle finger
(P9 = (x9,y9,z9)). The formula for prof is given by:

prof =
√

(x9 − x0)2 +(y9 − y0)2 +(z9 − z0)2 (1)

This distance prof serves as an indicator of the
operator’s hand depth in relation to the camera. The
calculation of prof uses the coordinates of the wrist
(P0) and middle finger base (P9) landmarks, includ-
ing the ’z’ component provided by MediaPipe, which
estimates the relative depth of the landmarks. When
the hand moves away from the camera, due to the per-
spective effect, the hand’s projection in the image de-
creases in size. Consequently, the calculated distance

Real-Time Hand Gesture Control of a Robotic Arm with Programmable Motion Memory

295



prof tends to decrease. Conversely, moving the hand
closer to the camera tends to result in a larger value
for prof. Thus, prof functions as an indicator of
the hand’s distance from the camera, where smaller
values signify greater distance and larger values sig-
nify closer proximity. This variable is subsequently
mapped to control the robot’s shoulder joint, modu-
lating the reach of the end-effector.

The raw values of the control variables extracted
from the hand (centerX, centerY, prof), which are
in units of pixels or relative distances, need to be
converted to the appropriate angles (in radians) for
the corresponding joints of the PincherX-100 robot.

Table 1: Joint angles in radians for the PincherX-100 robot.
Joints Min Max
Waist −π +π

Shoulder −1.9 +1.8
Elbow −2.1 +1.6

This conversion is performed through a linear
mapping function, named map hand to robot in the
code, implemented according to the following equa-
tion:

Vrobot =
(Vhand −Vhand min)

(Vhand max −Vhand min)

× (Vrobot max −Vrobot min)+Vrobot min

(2)

The horizontal movement of the operator’s hand,
captured by centerX, controls the robot’s base
(waist) joint. As the hand moves from the left to
the right side of the camera’s field of view (from 0 to
640 pixels in width), the robot’s base rotates from +π

to −π radians.
The shoulder joint (shoulder) is modulated by

the depth variable prof. Based on empirical observa-
tions, the range of prof that represents a comfortable
control zone (from 60, for the hand furthest away, to
170, for the hand closest) is mapped to the shoulder
angles, ranging from −1.9 to +1.8 radians.

The vertical movement of the hand, represented
by centerY, commands the elbow joint (elbow). As
the operator’s hand moves from the top to the bottom
of the image (from 0 to 480 pixels in height), the el-
bow angle is adjusted from +1.6 to −2.1 radians.

It is important to note that, to simplify this ges-
ture control scheme, the wrist pitch (wrist angle),
which would be the fourth joint, is kept in a neutral
and fixed position of 0.0 radians. The robot’s fifth
joint, responsible for wrist rotation, is not controlled
by this system.

2.3 Command Activation and Sending

To ensure that the robot responds only to intentional
movements and to allow the operator to freely posi-
tion their hand in the camera’s field of view before
initiating control, the system requires a specific ”acti-
vation pose.” Robot control and movement recording
are enabled only when the tip of at least one of the
three central fingers — pinky, ring, or middle — is
positioned above the point where the finger meets the
palm of the hand. This condition, detected by analyz-
ing the relative position of these fingers’ landmarks,
signals the user’s explicit intention to control the ma-
nipulator.

Once control is activated, the robot’s gripper com-
mand is determined binarily (open or close) by the
distance between the tip of the thumb and the tip of
the index finger (finger distance). If this distance
is less than a threshold of 35 pixels, the command to
close the gripper is sent; otherwise, it is triggered to
open.

After calculating the desired angles for the robot’s
joints and defining the gripper’s state, these com-
mands are immediately transmitted to the PincherX-
100. The joint positions are sent as a vector, and the
arm’s control function is used with a movement time
of 0.3 seconds, which ensures a smooth transition be-
tween movements. It is crucial that the system does
not wait for the completion of each individual move-
ment before processing new camera information and
subsequent gestures. This feature enables continu-
ous and highly responsive control, which is crucial for
both manual operation and trajectory recording. The
gripper commands, in turn, are sent for immediate ex-
ecution, without delay.

2.4 Movement Recording and Playback
Module

To empower users without specialized knowledge in
robotic programming to define sequential tasks for
the robotic arm, a movement recording and playback
module was developed. This module allows the op-
erator to demonstrate a trajectory and gripper actions
using the gesture control system, record that demon-
stration, and subsequently command the robot to re-
play it autonomously.

The module operates based on a finite-state ma-
chine, with three main states that dictate the system’s
behavior:

• Idle State (STATE IDLE): In this state, the op-
erator can freely control the robot through hand
gestures. No movements are recorded. This is the
default state when the system starts and after the
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completion or interruption of recording or play-
back.

• Recording State (STATE RECORDING): When
the operator triggers the start of recording (by
pressing the ’R’ key), the system transitions to this
state. All joint position commands and gripper
states generated from the hand gestures are cap-
tured and stored sequentially in memory. Press-
ing ’R’ again ends the recording and returns the
system to the idle state.

• Playback State (STATE PLAYING): After a
movement sequence has been recorded, the oper-
ator can start the playback by pressing the ’P’ key.
The system then executes the stored movements.
Pressing ’P’ during playback stops the process
and returns the system to the idle state. Addi-
tionally, the ’L’ key allows the user to toggle the
loop playback functionality (loop playback),
enabling the recorded sequence to be repeated
continuously until interrupted.
Feedback on the system’s current state (Idle,

Recording, Playing), the number of recorded move-
ments, and the loop mode status is provided to the
user through console messages and text overlaid on
the camera’s visual interface.

The demonstrated movements are stored in mem-
ory as an ordered list, named recorded movements.
Each element of this list represents a discrete ”step”
of the trajectory and is a Python dictionary containing
two main keys:

• ’joints’: A list with the four angular val-
ues (in radians) commanded to the robot’s
joints ([waist, shoulder, elbow, 0.0]) at
that moment in the recording.

• ’gripper closed’: A boolean value that indi-
cates the commanded state of the gripper (True
for closed, False for open) at that same instant.
This structure allows for a simple and effec-

tive representation of the sequence of actions to be
replayed. With each new recording session, the
recorded movements list is reset.

During the STATE RECORDING state, whenever the
gesture control activation condition is met and a new
set of joint positions and gripper state is calculated,
this data set is encapsulated in the dictionary for-
mat described above and appended to the end of the
recorded movements list. The recording occurs at
the same frequency as the commands are sent to the
robot during manual control, capturing the dynamics
of the operator’s demonstration.

The playback of recorded movements follows a
structured logic to ensure the fidelity and safety of the
execution:

1. Movement to the Trajectory’s Initial Position:
Upon entering the STATE PLAYING state, and be-
fore executing the main sequence, the system
commands the robot to move to the joint con-
figuration of the first movement stored in the
recorded movements list. This step is crucial to
ensure that playback begins from a known and
reachable starting point, mitigating potential is-
sues with speed or joint limits that could occur
if the robot attempted to jump from an arbitrary
position to the start of the recorded trajectory.
This initial movement is executed with a relatively
long moving time (e.g., 2.0 to 10.0 seconds, ad-
justed empirically) and with blocking=True in
the bot.arm.set joint positions() call, en-
suring that the robot reaches this position before
proceeding. The initial gripper state is also ap-
plied.

2. Sequential Movement Execution: After the
initial positioning, the system iterates over the
recorded movements list. For each step:

• The stored joint angles are sent to the robot
using bot.arm.set joint positions(). To
ensure the complete and orderly execu-
tion of each step in the trajectory, the
blocking=True parameter is used, and a con-
sistent moving time (e.g., 0.5 to 0.7 seconds)
is set for each movement.

• The gripper state (open or closed) stored for
that step is commanded to the robot.

3. Loop Playback: If the loop playback variable
is set to True, at the end of the execution of all
movements in the recorded movements list, the
playback index (current play index) is reset to
the beginning of the list, and the process of mov-
ing to the initial position and executing the se-
quence is repeated.

This recording and playback module aims to
significantly simplify the programming of repetitive
robotic tasks, making the system accessible to opera-
tors without a background in programming.

3 EXPERIMENTAL VALIDATION

This section details the procedures and results of the
validation tests conducted to evaluate the effective-
ness, precision, and repeatability of the proposed sys-
tem1.

1The demonstration video can be accessed at https:
//www.youtube.com/watch?v=Zf2bXpjEzRs
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To validate the system, a ”pick and place” test
was developed. This test simulated a common task
in industrial robotics and demonstrated the system’s
ability to perform complex and repetitive movements
with precision. The experimental environment used
a 4 cm cube as the test object. The task required the
robotic arm to pick up the cube from an initial plat-
form, elevated 13 cm from the ground, and place it at
a destination point on a ground-level surface approxi-
mately 30 cm away.

The experiment consisted of:
1. Movement Definition: The ’pick and place’

movement was defined as the act of the robotic
arm picking up an object at an origin point and
releasing it at a specific destination point. This
movement was first performed and stored by the
system.

2. Movement Repetition: Following storage, the
system was set to repeat this movement 50 con-
secutive times without manual intervention.

3. Data Logging: During the 50 repetitions, the fol-
lowing metrics were monitored and recorded:
• Number of Successful Attempts: A count of

the times the robotic arm successfully picked
up the object and released it correctly at the des-
tination point. An attempt was considered suc-
cessful when the object was deposited within a
predefined area of ±1 cm from the target point
and without being dropped.

• Number of Failures: A count of the times the
robotic arm failed to complete the task. Failures
were categorized for later analysis (e.g., object
not picked, object dropped during transport, ob-
ject released outside the target area).

• Time per Cycle: The total time taken to com-
plete each ’pick and place’ cycle (from the start
of the picking motion to the completion of the
releasing motion) was recorded.

3.1 Results

The quantitative results obtained from the 50 repeti-
tions of the ’pick and place’ test are presented in Table
2. The evolution of the execution time over the cycles
is detailed in Figure 6.

Table 2: ”Pick and Place” Test Results (50 Repetitions).
Metric Value
Total Trials 50
Successful Trials 49
Failures 1
Success Rate 98%
Mean Cycle Time (s) 13.35
Time Std. Deviation (s) 0.0126

Figure 6: Execution time per cycle for 50 trials, with the
moving average in red.

3.2 Discussion of Results

The 98% success rate, as shown in Table 2, demon-
strates the high effectiveness and robustness of the
proposed system in performing repetitive movements
from a recorded gesture. The single recorded failure
occurred due to a minor slippage of the object in the
gripper, suggesting that future improvements could
focus on the actuator’s gripping mechanism rather
than on the control logic or the vision system.

The system’s operational efficiency is evidenced
by the mean cycle time of 13.35 seconds, with a
low standard deviation of 0.0126 seconds. This con-
sistency is visually corroborated by Figure 6, which
plots the execution time for each of the 50 cycles. The
red line, representing the moving average, remains
remarkably stable, indicating that there was no per-
formance degradation or increase in variability over
time. The minor fluctuations observed are to be ex-
pected in a physical-mechanical system.

Taken together, these results confirm that the sys-
tem is capable of interpreting hand movements, stor-
ing them, and replaying them with high precision and
repeatability, making it a viable and reliable solution
for robotic tasks that require intuitive interaction and
the automation of predefined movements

4 CONCLUSION

This work demonstrated the development and vali-
dation of a robotic programming by demonstration
system, based on human hand gesture capture with
the MediaPipe library. The proposed methodology
achieved its central objective: to validate an intuitive
approach for controlling a robotic arm that signifi-
cantly reduces the complexity associated with tradi-
tional programming. The obtained results confirm
that the system is capable of learning and reproduc-
ing manipulation tasks with high fidelity.

The quantitative analysis of the validation tests,
which consisted of 50 autonomous cycles of a ’pick
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and place’ task, serves as the primary evidence of the
system’s robustness. The 98% success rate (49 out
of 50 attempts) corroborates the effectiveness of the
processing chain, from motion capture to execution
by the actuator. Additionally, the low standard devi-
ation of 0.0126 seconds in cycle time attests to the
high precision and repeatability of the method, indis-
pensable characteristics for any industrial or research
application that demands consistency.

The implications of these results point to a notable
potential for application in real-world scenarios. In
the industrial sector, especially for small and medium-
sized enterprises, the technology can enable low-cost
automation for assembly, packaging, or quality con-
trol tasks, where flexibility and rapid reprogramming
are more critical than extreme speed. In the research
field, the system presents itself as a rapid prototyp-
ing platform for studies in Human-Robot Interaction
(HRI), allowing for the testing of new communication
and control modalities. Its educational value is also
considerable, serving as a practical tool for teaching
concepts in kinematics, automation, and computer vi-
sion in an applied and engaging manner.

In summary, the main contribution of this work
lies in the empirical validation of a solution that inte-
grates advanced computer vision to create an effective
and accessible human-robot interface. The research
demonstrates that it is feasible to abstract the com-
plexity of robotic programming, offering a control
method that is both powerful in its precision and sim-
ple in its use, representing a practical advancement in
the pursuit of more flexible and human-centered au-
tomation systems.

Future directions for this work focus on evolv-
ing the system beyond simple repetition, aiming for
greater intelligence and flexibility. The next step will
be the implementation of conditional operations, al-
lowing the robot to perform different actions based
on specific gestures. In parallel, the expansion of the
movement repertoire will be pursued to include more
complex tasks, such as contour following. A crucial
objective will also be the abstraction of the software
layer to ensure the solution’s portability, enabling its
adaptation to control different models of robotic arms
with minimal reconfiguration.
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