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The problem of H.. state estimation is considered for uncertain polytopic retarded linear discrete-time stochas-

tic systems. We first bring the solution of the estimation problem for the nominal case based on a previously
developed BRL for state-delayed stochastic systems. We then extend our solution to the robust uncertain
polytopic case where a vertex-dependent approach is applied. The latter is achieved via the application of a
modified version of the Finsler lemma. The use of this lemma enable us to derive a solution which is less
conservative comparing to the “quadratic” solution where a single Lyapunov function is applied over all the
uncertain polytope. The solution obtained for the robust case is composed of a set of LMIs based on only two
tuning parameters. The theory presented is demonstrated by a numerical example.

1 INTRODUCTION

We address the problem of state-estimation of lin-
ear stochastic state-multiplicative systems which are
state-delayed and may contain large uncertainties. In
our study we make use of a general-type filter and
we first bring the solution of the estimation problem
for nominal systems via a single LMI condition based
on a Bounded Real Lemma (BRL) for these systems
(Gershon and Shaked, 2013),(Fridman, 2014). Based
on the latter solution, we solve the estimation prob-
lem for polytopic-type uncertain systems where we
apply a special version of the Finsler lemma. This
lemma enable us to assign a different Lyapunov func-
tion to each vertex of the uncertain polytope, thus
greatly reducing the over-design which is inherent to
the quadratic solution, which, in turn, is based on as-
signing the same Lyapunov function over all the un-
certain polytope.

The field of control and estimation of stochastic
state-multiplicative noisy systems has been greatly
developed since the onset of the H. control theory
in the early 80°s (see (Gershon and Shaked, 2013),
(Gershon et al., 2005) and the references therein).
Within a span of more than four decades, many ap-
proaches to the study of the various stochastic con-
trol and filtering problems, including those that en-
sure a worst case performance bound in the H., sense,
have been derived for both: delay-free systems (Ger-
shon et al., 2005), (Dragan and Stoica, 1998),(Dragan
and Morozan, 1997a), (Dragan and Morozan, 1997b),
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(Dragan et al., 1992), (Hinriechsen and Pritchard,
1998), (Bouhtouri et al., 1999) and state-delayed, lin-
ear, stochastic systems (Gershon et al., 2007), (Ger-
shon and Shaked, 2011), (Verriest and Florchinger,
1995), (Mao, 1996), (Xu et al., 2005), (Chen et al.,
2005), (Gao and Chen, 2007), (Yue et al., 2009).
Delay-free systems with parameter uncertainties
that are modeled as white noise processes in a
linear setting have been treated in (Gershon and
Shaked, 2013), (Gershon et al., 2005), (Dragan and
Stoica, 1998) for both the continuous-time and the
discrete-time cases. Such models of uncertainty are
encountered in many areas of applications such as:
nuclear fission and heat transfer, population models
and immunology. In control theory, such models are
encountered in gain scheduling when the scheduling
parameters are corrupted with measurement noise.

The study of both continuous-time and discrete-
time retarded systems has been developed extensively
since the emergence of optimal control theory.
In the field of control and estimation theory, the
input-output approach has been applied, in the last
two decades, to both continuous and discrete-time
retarded systems. The input-output approach is
based on the representation of the system’s delay
action by delay-free linear operators which allows
one to replace the underlying system with one that
possesses a norm-bounded uncertainty, and therefore
may be treated by the theory of norm bounded uncer-
tain, non-retarded systems with state-multiplicative

399

In Proceedings of the 22nd International Conference on Informatics in Control, Automation and Robotics (ICINCO 2025) - Volume 1, pages 399-405

ISBN: 978-989-758-770-2; ISSN: 2184-2809

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.



ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics

noise (Gershon et al.,, 2005). Based on the latter
approach, the stability and BRL issues of stochastic
state-multiplicative systems were obtained (Ger-
shon and Shaked, 2013), followed by the solution
of various control problems that include, among
others, state-feedback control, filtering and static and
dynamic output-feedback control. We note that the
robust solution of both the state-feedback control and
filtering problems for uncertain systems in (Gershon
and Shaked, 2013), rely on assigning a single Lya-
punov function over all the uncertainty polytope (the
so called “quadratic” solution) thus leading to the
most conservative solution type (see (Gershon and
Shaked, 2013) and the references therein). Obviously,
the latter handicap can be relaxed by resorting to
vertex-dependent solution which is the merit of the
present work.

Similarly to the systems treated in (Gershon and
Shaked, 2013), in the present theory, our systems may
encounter a time-varying delay where the uncertain
stochastic parameters multiply both the delayed and
the non delayed states in the dynamics state-space
model of the systems as well as the non-delayed states
in the system measurement. We treat both the nomi-
nal case and the uncertain case where the system ma-
trices encounter polytopic type uncertainties. In the
latter case, we apply the Finsler lemma which leads
to a less conservative solution compared to the sim-
ple “quadratic” solution where the same decision vari-
ables are assigned to all the vertices of the polytope.

The paper is organized as follows: Following
the problem formulation in Section 2, we bring
a preliminary result in Section 3. Based on the
latter result, we bring the solution of the improved
robust vertex-dependant H,, filter in Section 4. In
Section 5 an example is given that demonstrates the
applicability and tractability of the various solution
methods derived in this work.

Notation: Throughout the paper the superscript
‘T’ stands for matrix transposition, X" denotes the n
dimensional Euclidean space and ®"*™ is the set of
all n x m real matrices. For a symmetric P € R"*",
P > 0 means that it is positive definite. We de-
note expectation by Z{-} and we provide all spaces
R¥, k> 1 with the usual inner product < -,- > and
with the standard Euclidean norm || - ||. By ||f(¢)||%
we denote the product of f7(t)Rf(t). We denote by
L?(Q, R¥) the space of square-integrable R *— valued
functions on the probability space (Q, F,?P), where
Q is the sample space, F is a ¢ algebra of a sub-
sets of Q called events and 2 is the probability mea-
sure on ¥ . By (%);~0 we denote an increasing
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family of c-algebras % C . We also denote by
L2([0,00); R¥) the space of nonanticipative stochas-
tic processes f(-) = (f(#))ie[o,) In R¥ with respect
to (F1)icjo,) satisfying

FOIR, =2 A0 |Par) =

|2l <o

and by Co{Q,Q,,...,Qn} the convex hull of the ma-
trices Q;, i = 1,...,N. Stochastic differential equa-
tions will be interpreted to be of /¢é type (Hinriechsen
and Pritchard, 1998).

2 PROBLEM FORMULATION

We consider the following nominal linear stochastic
retarded system:

dx=[Aox(t) +A1x(t —t(¢)) + Byw(1)]dr+

Hx(t —(t))dv(t)+Gx(t)dB(t), x(8)=0, 6<0,
y(t) = Cox(t) + Dain(t) + Fx(¢)d{(t),

z(t) = Cx(t),

(la-c)
where x(t) € R" is the state vector, w(t) €
Z,Z%([O,OO);K‘I) is an exogenous disturbance, y(t) €
R'™ is the measurement vector, n(t) € I:_?E ([0,00); R )
is an additive measurement noise, z(¢) € R” is the ob-
jective vector, Ag, A1, B, C, Co, D1 and F, G, H are
time-invariant matrices of the appropriate dimension.
T(¢) is an unknown time-delay which satisfies:

0<t(t)<h, t(t)<d<]l. (2a,b)

The zero-mean real scalar Wiener

B(r). (1), L(r) satisfy:

process

E{L(t)C(s)} =min(t,s), E{B(t)B(s)} =min(t,s),
E{v(t)v(s)} =min(t,s),
E{B(t)v(s)} =0, E{v(1)E(r)} =0, E{B(r)C(s)} =0
In the uncertain case, we assume that the system

matrices in (la-c), lie within the following polytope:

Q2[A A BI C G Dy F G HJ,
3
which is described by the vertices:
Q:CO{Ql,Qz,...,QN}, (4)

= A
where Q; =

[Ao') AD B i ) pl EO GW H(i)]
(©)



and where N is the number of vertices. In other
words:

N

Y fi=1, fiz0. (6

i=1

Q=Y Q.

'MZ

Il
-

4

We treat the following problem:

i) Robust H.. Filtering:

We consider the system of (la-c) where the system
matrices lie within the polytope Q of (3). We consider
an estimator of the following general form:

di(t) = A &(t)dt + B.y(t),

3(t) = CA(1). (7a,b)

We denote

e(t)=x()—2x(r) and zZ(t)=2z()—2(s), (8)

and consider the following cost function:

=PUwOIIE, +lInOIZ,) - ©

Given Yy > 0 , we seek an estimate C.£(t) of
Cx(t) over the infinite time horizon [0,c0) such
that Jr given by (9) is negative for all nonzero

w(t) € L2([0,): R7), n(t) € L*([0,0); RP).

A
e 2102,

3 PRELIMINARY RESULT

In this section we bring the solution of the continuous-
time robust quadratic filtering problem of uncer-
tain polytopic systems with state-multiplicative noise.
The result in the sequel was obtained in (Gershon and
Shaked, 2013), Chapter 2, Theorem 2.12).

Denoting  E7(1) = () 2(0)"), W' (1) 4
w(t)T n(t)T] we obtain the following augmented
system:

d&(r) = [Ao(t) + Bww(r))dr + A1 &(r —x(t))dt
+HE(t —(1))d ()+G§(t)dﬁ(t)+F§(f)dC(f),
&(8) =0, over[—h 0],
z(t) = C&(1),
(10)

where

N Ay O _ [ B 0

0 [BCCQ AJ’ _{0 BCDZI}’

L [A 0] L_[H O
1o o' "o ol

=9 %= Y=o ¢
(5 0] o[ ] emtei-eo
(an
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where the system matrices lie within the polytope
Q of (3). We obtain the following lemma:

Lemma 1. (Gershon and Shaked, 2013) Con-
sider the system of (la-c) where the system matri-
ces lie within the polytope Q of (3). For a prescribed
scalar Y > 0 and tuning scalar €, there exists a filter
of the structure (7) that achieves (9) for all nonzero

we ZZ([O_,OO);K"), ne iz([O,OO_);?{f’), if there exist
matrices X >0, Y > 0, Ko, U, Ry, M, Z, that satisfy
(13).
[ Ti,ll Y‘i,l2 M Y‘i,l4 Y}‘,15
x  —R; 0 0 Yios
* * 78ny 0 78thT
* * * 77212(1 T,’745
F’i = * * * * —£f)_(y
* * * * *
* * * * *
* * * * *
* * * * *
) (12)
Yie Yir Yiis 0 7
0 0 0 Y
0 0 0 0
0 0 0 0
0 0 0 0 |<0 13
—1I, 0 0 0
o —Xy 0 0
* * —Xy 0
* * x  —Xy
Vi, i=1,2,....,N, where
- XA +A]'X

i =

T‘1111/1
YAL+UC, + Ko+ A X Yiqw |
+MA+MT+ 2R,

—t

itte = XA+ ASTY + CYTUT + KT
Yiip = YA +UC, + Ay Y +-C5TUT

- XA, XA .
i12 = —M,

YAL YA}

. XB, 0

Yi,14 = i i 3
YB, UD),
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- AR A v+cTUT kS|
Yos=ehl| Do 0 g | M7
Ag X ;U
- G'X Gy 7 . 0 Fy?
i,17 = |: Gi'rTX G"VTY :l y 1i18 = |: 0 Fi,TUT :|
Y h AUX AT +e,hM”
i,25 = € iT s i € 5
; f AI’TX AI’TY f
. H'X H'Ty . 7
Yi,29 - Hi’TX Hi’TY ) Yi745 = thYi,14a
14
. CciT _ 7T (14)
and Y 16 = { _ciT . In the latter case the filter

parameters can be extracted as follows:

Ac=NTKXM ' B.=N"TU,C.=ZXM .
(15)
Proof: see (Gershon and Shaked, 2013), Section

2.6.1.

4 ROBUST /.. FILTERING

The solution of the filtering problem for uncer-
tain systems has already appeared in (Gershon and
Shaked, 2013) for the most conservative case where
the same Lyapunov function is assigned all over the
uncertainty polytope. In this section we show that
relying on Lemma 1, one can manipulate the re-
sulting LMI condition of the latter lemma in such
a way that a vertex-dependent solution is obtained
for a minimal number of tuning parameters. Even-
tually, the quadratic solution can be derived from
our new vertex-dependent solution as a special case.
We consider the result of Lemma 1 and we denote
e_| b 0

*In In
and Jg = diag{E, E, E, I, E, I, E, E, E}. We then
consider the inequality of fi < 0 where,

UESASY S
[T T ™ Tiw Tis Tie Yiir Tis 0]
* —R; 0 0 Yios 0 0 0 Y9
* + Tz 0 Tz 0 0 0 0
* * x I Tius 0 0 0 0
* * * * Y,-‘33 0 0 0 0
* * * * * —1I, 0 0 0
* * * * * * Y,-‘33 0 0
* * * * * * * YA', 33 0
* * * * * * * * Ti3s
(16)
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1
a 1lq
Yiss = —epdiag{X', AT}, Tiz5 = —e;hM"

Ry =ERET, M=EMET [ = { I_‘fl 0 }

. XAl —NAT

Y= NAL 1L B.CI AAT
I R s
XAl —NAT)  or s

*{[AiAngBccg AIAT }‘LM) ok

. XA, 01 .
Yinn= -M,

+M

A'AL 0
= | VB KB
" A'Bi  —A'Bi+B.Dj, |’
F e AGTRE AN BT —ATAT
i15 = &f iTpi AP AT
0 —Ag AT - AA!
+£thT7
YA B Ci,T _|_AICLT . B Gi’TXi Gi,TAi
MOT 1 pciT _picT |0 T 0
N 0 FiTBT 7 . AV ALVTAT
1= |, Yips=¢gph| ! !
i18 [0 0 ] 25 =¢&f 0 0
T HiTX  HLTAL
8 ) -- = )
Ui i,29 0 0
and ;45 =esh¥7),. a7

Remark 1: As given in (Gershon and Shaked,
2013), Section 2.6.1, since YX + NT"M = I we chose
N =1 and obtained that Ky = —A.A where A=Y — X.
We also have then that U = B, and that MX = —A.

We also denote:

A £ diag{Ai, A, 05,24, A, Opyry AV, 03, AT,

A A . . _. _. _.
i2 i i i i
X'= dl(lg{X ) 05n+2q7 X ; On+h X ) 03/!7 X y 0"}7
i __
D, =
r[o —af 0 0 o 0 0.
Ay Al A0 2n B, -Bj
02y 02y 02y 021,24
02, 02, 02, 021,24
024,20 024,21 029,20 024
0 0 0 0 0 0
ol Lol el o] e ey Gy
0r2n 0r.2n (U 0729
0 0
{ G 0 ] 02p 02p 020,29
02 02 02, 021,24
0 0
L 02y [ H 0 ] 025 020,29




ol 5] [%] e

02 021, 021,61

02, 02, 021,61

024,20 024, 024,6n

02p, 021, 021,6n

0r,2¢ 0r Or.6n

021 O2n,r 02n,6n

02, 02, 021,61

02n 02n,r 021,61
e |
[ @Y @i, 02 @y 02n O2penir ]
02, 02, 02, 0202 020 O2pgpsr
02, 02 02, 0202 020 O2p6pir
024,20 024,20 02420 02924 0220 O2g6n+r
(bil 1 q)ilz 025, q)i14 02, 02n,6n+r
02, 0721 020 0Op2g  0r20 Opgngr
2 02, 020 O2nog 020 O2nnir
02, 02, 02, 0O202¢ 020 02y 6p4r
02, {gp 8] 02, 0200 020 02y 6pir

(18a-d)

where

; Al 0 ; Al 0
CD“:[OO 0]’ @12:{01 0}’

; Bi —Bi ; G 0
q)114:|:01 0 1]’ (1)171:|:() 0]7
where 0,, and 0y, , are the m X m and m X r matri-

ces of zeros, respectively.
We also define:

B=Ji — A — DA - Rl X (19)
and build below the following requirement by apply-
ing the Finsler lemma

o+ A} + LA Rk + DRI <0 (20)

Denoting:

S:l = diag{S1, S1, 05p42¢, S1; Onsry S1, 034, S1},
Sy = diag{S>, 05u42¢, S2, Ontr, S2, 03, 2, 0, },
Hy = diag{e,51, S1, Isn+2g, Hi, Opsr, Hy, O30, Hi},
H, = diag{H>, Is; 124, H2, Inir, Hy, B3y, Ha, Oy},

where € is a positive tuning parameter. We thus

obtain the following theorem:
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Theorem 1: Consider the system of (la-c) where
the system matrices lie within the polytope Q
of (3). For a prescribed scalar Y > 0 and tun-
ing positive scalars €7, €1, there exists a filter of
the structure (7) that achieves (9) for all nonzero
w € L*([0,%);RY), n € L*([0,00);RP), if there
exist a matrix B, and positive definite matrices:
A, X' i=1,..,N, H,H,, S and S, that, for
i=1,...,N, solve the following set of inequalities:
[‘P’ Q&

% —2dlag{l-11,1:124 <O, lzl,...,N (21)

where:
i ] & @ @ i, ; N
‘{‘é{ﬂ)+[51 Sz]{¢§:|+|:q)AT @XT}LQ;]}:
r¥n %o M ¥ Yiis Yite Wiz Wing 0 7
* —R 0 0 W05 0 0 0 W29
* X 0 e’ 0 0 0 0
* * PR W, 45 0 0 0 0
% * * % Xi, 0 0 0 0
* * * * * —I 0 0 0
* * * * * * Xii 0 0
* * * * * * * Xgi 0
L * * * * * * * * Xgi |
(22)
with: [ = [ ly 0 ] Xi, = —grdiag{X', A"}
_Iq Iq s AN ) )
SHA} —A~L .
: = . . ~ M
b1l [ Sty +BCy A *
S2A6 _AF nT 1 5
( A M R
N [{S1A6+BCC§ ar' | M gk
$HAT 07
Wi = ; -M,
SIA1 0 ‘
W, |:SzBll -8B ]
i,14 — i i i ;
S\Bi —S|B+B.Dl,
ALTS,  ALTS 4+ CTBT AT .
Yi15=¢rh 0 0 iT2 LAT F +8thT
0 —ABTs — AT
w | +CF _[GTS, G,
l‘.léi —2Cl7T —CAIT;: ) i.17 - 0 O i
R 0 Fi,TBZ Ai,TS2 Ai7TSI
P18 = Yirs=gh| ! 1
i,18 |: 0 0 :| s Li25 f 0 0
o HTS, H'TS;
+erhM" W29 = 0 0 ,

lI’l'745 = th\Pz?:M? (23)
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and where we denoted Ap =A.S; and ép =CS1.

o =
[ A AT H GTH ]
Qlll |: _XiTI_lll |: On ! 02n,n
0, .
ol thAllTHl 0, HZTHI
21 O O (5
OZn 02(1T OZn,n On
— . B H
Qill th I: _éilTI_III :| 02n,n 02n,n
_ . 0,
QISI |:Ai_1sl :l 0211,n 021,
Qél 0’:" Or,n Or.ﬁ
0
02n 02n,n |:Ai_nS] :| 02n~n
0
L 0411,211 O4n,n O4n,n |:Ai3_n‘gvl :| ]
where
o _[A=851  aAfls
11 _7€1AF 'AlflerE]AF ’
o — 0, €AlS,
2700, 0, ]
Ql’ _ 0q7n EIBllTSI
41 I Oq’n _elBllTSl )
_ . 0 0
i n n
QSl B 8|AF —81AF

Qf = [ElcF 0],

is the matrix that is obtained by deleting in the ma-
trix A' — 51 + CID’AT H, the 9n+2g + r columns that are
identically zero, and

[ ATH XS, Al H, GTH, 0, T
0, 0, 0, 0,
AllTHQ thA’lTHZ 0, H{THQ
QSn.n 0A3n7n 03n,n 0311,n
s sl o) o
i i
oi —Bi f?l H Og,n Og,n
= X' =8
2 02n,n |: 0 2 :| 02n,n 02n,n
n
O Or,n B Qr,n Or,n
0, 0, X'—8 0y
03n,n 03n.n 03n,n _03n,n
On On On Xi—$2
L On On On Op

is the matrix that is obtained by deleting the 10n+
r+2q zero columns in X' — S + CIDS(THz.
H, = diag{e,S:,51,H,,H,,H, },
and
H2 = diag{Hz,Hz,Hz,Hz}.

Proof: The result of (21) is obtained by applying the
Finsler lemma twice. We first apply the latter to:
S+ A + dTA < 0, where J, = J) + X'di +
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iT i
Py X' . .
and obtain the requirement:

[J%S@H@fﬁl A-Si+ A _,

* —2H,;

To the (1,1) block of the latter inequality we apply
again the Finsler lemma and readily obtain (21).

Remark 2: In the above, we consider S;AL ES AE

and S;CL 2 CF in the LMI of (21) to be decision vari-
ables.

S EXAMPLE

We consider the system (la,c) which is described by:

Ao = { _Zlia f)l }’Al [ :0%5 Pl ]
G = H = /0.1h, with
B,=0,D;=0,CG=[1 2],
F=[0.03 0.02 ], Dy =0.0! and
C,=100], Clz[ —05 1 ],d:O,Wherea:OQ.

We assume that the stochastic multiplicative noise

processes in both the delayed and the non delayed
states are uncorrelated. Considering the nomi-
nal case where a=0 and taking & = 0.1 and applying
the results of Theorem 2.10 in (Gershon and Shaked,
2013) for the near minimum attenuation level of y =
0.136 is obtained.
Considering the uncertain case and applying the var-
ious solution methods, the results of Table 1 are ob-
tained. There, the quadratic H.. solution method was
calculated by assigning a single Lyapunov function
over the uncertainty polytope and is given in Lemma
1. We note that in the case where & = 0.8 the H.,
attenuation level is Y = 41.16 whereas the quadratic
approach of Lemma 1 fails to solve the problem. We
note also the significant reduction in the H. system
norm, in the improved vertex-dependent case, com-
pared to the quadratic solution.

The resulting filter parameters for the robust case
are:

Ac —25.8337 10.2329 } Be= { —0.3239 } ,

~ | —20.8500 0.4604 —2.5225
Cc = [24.6821 —14.0506).



Table 1: The results of the various solution methods in Ex-
ample 1. The nominal solution for the H., case was obtained
in (Gershon and Shaked, 2013), Chapter 2, Theorem 2.10.
The “Robust Vertex-dependent” (RVd) result refers to the
application of the Finsler lemma in the solution of the ro-
bust case [Theorem 1].

Solution Method Y
Nominal 0.136, (Theorem 2.10. )
Quadratic 0.61, (Lem. 1)
RVd 0.48,&; =0.001, g = 5,[Thm. 1]

6 CONCLUSIONS

In this paper the theory of robust linear H., estima-
tion of state-multiplicative noisy systems is developed
and extended for state-delayed continuous-time un-
certain systems with multiplicative noise, that is en-
countered in both the dynamic and the measurement
matrices in the state space model of the system. Suf-
ficient conditions are derived for the estimation prob-
lem of uncertain polytopic-type systems by applying
a vertex-dependent Lyapunov function, based on the
Finsler lemma. This approach enables us to apply a
unique Lyapunov function to each vertex of the uncer-
tain polytope. As shown in the example, the vertex-
dependent approach performs better the the solution
which is based on a single Lyapunov function over all
the uncertain polytope. We note also that our solution
depends only on two tuning parameters that can be
readily determined.
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