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Abstract: Continuous, piecewise quadratic (CPQ) Lyapunov functions are frequently used to assert stability for switched,
cone-wise linear systems. It is advantageous to construct such Lyapunov functions in two steps: first a function
is parameterized that is decreasing along all system trajectories, then it is verified whether this function is
positive definite. Usually these steps have been performed using linear matrix inequalities (LMIs), but recently
a linear programming (LP) approach for the first step has been suggested. In this paper we present a new
algorithm to verify the positivity of CPQ Lyapunov function candidates, parameterized either with LMIs or
LP. Further, we prove that the algorithm is non-conservative and will always be able to either assert positive
definiteness of a CPQ Lyapunov function candidate or find a point where it is negative.

1 INTRODUCTION

Switched, cone-wise linear systems have received
much interest in the control engineering community,
in particular since the seminal works of Mikael Jo-
hansson and Anders Rantzer (Johansson and Rantzer,
1998; Johansson, 1999). For these systems, the sta-
bility of the origin has been, inter alia, asserted by us-
ing continuous and piecewise affine (CPA) Lyapunov
functions, see e.g. (Andersen et al., 2023b; Ander-
sen et al., 2023a), or by using continuous and piece-
wise quadratic (CPQ) Lyapunov functions as in the
works of Johansson and Rantzer. Such systems have,
for example, been successfully used to study hybrid
integrator-gain systems (HIGS), see e.g. (van den Ei-
jnden et al., 2020; Deenen et al., 2021; van den Eijn-
den et al., 2022).

Recently an algorithm different to the usual lin-
ear matrix inequality (LMI) approach for the com-
putation of CPQ Lyapunov functions was presented,
where linear programming (LP) is used instead of
semi-definite optimization to parameterize CPQ Lya-
punov functions, see (Palacios Roman et al., 2024;
Andersen et al., 2024). Just as in the LMI approach,
it is advantageous to construct the CPQ Lyapunov
function in two steps; see Section 4.8 in (Johansson,
1999). First, a CPQ real-valued function V from the
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state-space is parameterized, that is decreasing along
all system trajectories; this function is referred to as
Lyapunov function candidate. In a second step it is
verified whether V is positive definite or not. If V
is positive definite, i.e. V (000) = 0 and V (x) > 0 for
all x ∈ Rn \ {000}, then V is a Lyapunov function for
the system and the origin is asymptotically stable. If
there exists an x ∈ Rn \{000} such that V (x) < 0, then
the origin is unstable. Both of these properties follow
from the fact that V is decreasing along all system tra-
jectories. In more detail: If V is positive definite, then
all solution trajectories must approach the minimum
at the origin. If there is an x ∈ Rn \ {000} such that
V (x)< 0, then V (ax)< 0 for all a > 0, and solutions
starting at a point ax must approach infinity, where the
values of V are lower. It follows that it is impossible
that V takes on negative values if the origin is asymp-
totically stable. Further, the third possibility, i.e. that
V (x)≥ 0 for all x ∈ Rn and there is an y ∈ Rn differ-
ent to the origin such that V (y) = 0, is impossible; see
Theorem 1.

Hence, dividing the algorithm into two steps is
not only computationally more efficient, but asymp-
totic stability of the origin will be asserted if it is
asymptotically stable, and as an added bonus, insta-
bility can be asserted for instable systems. The main
contribution of this paper is the presentation of a new
algorithm to verify the positivity of CPQ Lyapunov
function candidates parameterized with the method
from (Palacios Roman et al., 2024; Andersen et al.,
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2024) or by LMIs. We prove in Theorem 11 that this
new method is non-conservative. Note that our new
algorithm is computationally more efficient than the
LMI approach from (Johansson, 1999), discussed in
Section 2.4, which additionally introduces some con-
servatism; see e.g. (Scherer, 2006) for various LMI
relaxation methods used in control theory. Further,
our approach can be used to verify positivity for more
general functions than piecewise quadratic. Compar-
ison with more recent LMI approaches presented in
(Kruszewski et al., 2009; Sala and Arino, 2007; Gon-
zaleza et al., 2017), which are sufficient and asymp-
totically necessary, will be the subject of a subsequent
publication.

2 CPQ LYAPUNOV FUNCTIONS

In this paper we consider switched, cone-wise linear
systems and CPQ Lyapunov functions that are posi-
tively homogeneous of order two. For this it is ad-
vantageous to first consider triangulations of a neigh-
borhood of the origin of a specific type and then ex-
tend these triangulations to a conical subdivision of
the whole state-space Rn. Hence, we first define trian-
gulations suitable for our application, before we dis-
cuss conical subdivisions, our class of systems, and
CPQ Lyapunov functions.

2.1 Triangulations

A triangulation T of a set DT ⊂ Rn is a set of
n-simplices T := {Sν : ν ∈ I}, such that DT =⋃

ν∈I Sν; I is an index set. Recall that an n-simplex
Sν is defined as
Sν :=co{xν

0,x
ν
1, . . . ,x

ν
n}

=

{
x ∈ Rn : x =

n

∑
i=0

λixν
i ,λi ≥ 0,

n

∑
i=0

λi = 1

}
,

where the vectors xν
i ∈ Rn are called the vertices

of Sν and are assumed to be affinely independent,
i.e. the vectors xν

i − xν
0, i = 1,2, . . . ,n are linearly in-

dependent. For our purposes, we additionally require
that the triangulation T is shape-regular, i.e., every
two different simplices Sν,Sµ ∈ T either intersect in
a common lower-dimensional face or do not intersect
at all. This means that if Sν∩Sµ ̸= /0, then Sν∩Sµ is
a k-simplex, 0≤ k < n, whose vertices are the vertices
common to Sν and Sµ.

For our specific application we further demand
that xν

0 = 000 for all Sν ∈ T and that DT is a neigh-
borhood of the origin 000 ∈ Rn.

An efficient implementation of a triangulation
that satisfies these requirements is the triangular fan

T std
K,fan, K ∈ N := {1,2, . . .}, discussed in (Hafstein,

2019) where a formula for the vertices xν
i is given.

In the following we write TK for T std
K,fan. The vertex

set of the triangulation TK , i.e. the set of all vertices
of all simplices, is

{000}∪{z ∈ Zn : ∥z∥
∞
= K} ,

where the scaling parameter K ∈ N determines the
fineness of the triangulation around zero. The num-
ber of simplices in the triangulation TK is given by
the formula 2n ·Kn−1 ·n!.

For computations it is usually better to map the
vertices TK with the mapping F : Rn → Rn, F(000) = 000
and F(x) = ∥x∥∞

∥x∥2
x. The resulting triangulation is de-

noted T F
K and the set DT F

K
is approximately spheri-

cally symmetric, see Figures 1 and 2.
For proving theorems, it is often convenient to

scale down all the vertices of TK by the factor K−1.
The resulting triangulation is denoted K−1TK and all
its non-zero vertices are at the boundary of the unit
hypercube [−1,1]n and for any two different non-
zero vertices x,y of a simplex Sν ∈ K−1TK we have
∥x−y∥∞ = K−1.

For a fixed K ∈ N, all the triangulations TK , T F
K ,

and K−1TK give the same conical subdivision of the
state-space Rn discussed in the next section.

2.2 Conical Subdivision of the
State-Space

Given a triangulation T as in the last section, one
can define a corresponding conical subdivision of the
state-space through

Cν := {x ∈ Rn : cx ∈Sν for some c > 0}

for every Sν ∈ T . Since Sν = co{xν
0,x

ν
1, . . . ,x

ν
n} it is

easy to see that

Cν = cone{xν
1,x

ν
2, . . . ,x

ν
n} :=

{
n

∑
i=1

λixν
i : λi ≥ 0

}
.

Hence, every x ∈ Cν has a unique set of numbers
λ1,λ2, . . . ,λn ≥ 0 such that x = ∑

n
i=1 λixν

i because the
xν

i are linearly independent; recall that xν
0 = 000. Since

T is a triangulation of a neighborhood of the origin
DT , the set-theoretic union of all Cν is equal to Rn.

2.3 Switched Linear Systems and CPQ
Lyapunov Functions

We consider systems of the form

ẋ(t) = As(t)x(t), A j ∈ Rn×n for j ∈ {1,2, . . . ,M},
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Figure 1: The triangulation T F
K in two dimensions and with

K = 5.

Figure 2: The triangulation T F
K in three dimensions and

with K = 4. Note that every simplex in T F
K is a tetrahedron

with zero as a vertex, together with three other vertexes at
the boundary of a sphere centered at the origin and with ra-
dius K.

where s : [0,∞) → {1,2, . . . ,M}, M ∈ N, is a
right-continuous, piecewise constant function, called
switching signal, with a only a finite number of dis-
continuity points, called switching times, on any fi-
nite time interval. The switching signal can either
be arbitrary, in which case the systems is said to be
arbitrary switched, or one can introduce restrictions
in the form σ(t) = j only if x(t) ∈ F j, where the
F1,F2, . . . ,FM ⊂ Rn are closed simplicial cones with
the apex at the origin, similar to the Cνs above, ful-
filling that the

⋃M
j=1 F j = Rn and the intersection of

the interiors F ◦
j and F ◦

k of two different cones F j and
Fk is empty. In the latter case the system is said to
have state-dependent switching; see (Palacios Roman
et al., 2024) for more details.

The solutions to arbitrary switched systems
are understood in the sense of Carathéodory, see
e.g. (Walter, 1998), and the solutions to systems with
state-dependent switching are understood in the sense

of Filippov, see (Filippov, 1988) or e.g. (Camlibel and
Pang, 2006) for cone-wise linear systems, which takes
care of sliding modes. For both arbitrary switched
systems and systems with state-dependent switching,
the origin is said to be globally uniformly exponen-
tially stable (GUES) if there exist constants c ≥ 1,
λ > 0 such that all solutions fulfill

∥x(t)∥2 ≤ ce−λt∥x(0)∥2 for all t ≥ 0.

In both cases the GUES of the origin can be as-
serted with the existence of a CPQ Lyapunov function
fulfilling: Let {Cν}ν∈I be a conical subdivision of the
state-space as in Section 2.2 and assume V : Rn → R
is a continuous function such that for, w.l.o.g. sym-
metric, matrices Pν ∈ Rn×n we have

V (x) = xT Pνx if x ∈ Cν. (1)

Assume that the matrices Pν ∈ Rn×n fulfill for
some constants c1,c2,c3 > 0, that for all ν ∈ I and
all j ∈ {1,2, . . . ,M} we have

c1∥x∥2
2 ≤ xT Pνx ≤ c2∥x∥2

2, ∀x ∈ Cν, (2)

xT (AT
j Pν +PνA j)x ≤−c2∥x∥2

2, ∀x ∈ Cν ∩F j, (3)

where in (3) we set F j := Rn for all j in the case of
arbitrary switched systems.

We emphasize: if the conditions (2) and (3) are
fulfilled for the arbitrary switched system or the sys-
tem with state-dependent switching, the function V is
called a CPQ Lyapunov function for the system and
the origin is GUES; see e.g. Theorems 3 and 5 in
(Palacios Roman et al., 2024).

2.4 Computing CPQ Lyapunov
Functions

Both the LMI method from (Johansson and Rantzer,
1998; Johansson, 1999) and the LP method from
(Palacios Roman et al., 2024; Andersen et al., 2024)
parameterize a CPQ Lyapunov function candidate of
the form (1) fulfilling the conditions (3). The condi-
tions (2) are then verified a posteriori for the candidate
using the LMI:

For every ν∈ I find a symmetric matrix Uν ∈Rn×n

with entries [Uν]i j ≥ 0 such that

Pν − (X−1
ν )TUνX−1

ν ⪰ 0, (4)

where ⪰ 0 means that the matrix on the left-hand-side
is symmetric and positive definite and

Xν :=
[
xν

1 xν
2 . . . xν

n
]
∈ Rn×n

has the non-zero vertices of Sν as its columns.
Since for every x ∈ Cν there are unique λλλ =
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(λ1,λ2, . . . ,λn)
T , λi ≥ 0, such that x = ∑

n
i=1 λixν

i , the
condition (4) implies for every such x ∈ Cν that

0 ≤ xT (Pν − (X−1
ν )TUνX−1

ν )x (5)

= xT Pνx−λλλ
TUλλλ

≤ xT Pνx.

The fact that V fulfills the constraints 2 now easily fol-
lows from the fact that V is continuous, homogeneous
of order two, and that V (x) = 0 for x ̸= 000 is impossi-
ble if V (x)≥ 0 for all x ∈Rn by the next theorem; see
also Section 3.2.

Theorem 1. Assume V is of the form (1) and fulfills
the conditions (3). If V (x) ≥ 0 for all x ̸= 000, then
V (x)> 0 for all x ̸= 000.

Proof. Let V fulfill the assumptions of the theorem
and assume V (ξξξ) = 0, ξξξ ̸= 000, and consider a solu-
tion x(t) starting at x(0) = ξξξ for an arbitrary switched
system. Let h > 0 be so small that x(t) ̸= 000 for all
0 ≤ t ≤ h, which is possible because x(t) is con-
tinuous, and so small that no switching occurs on
the interval [0,h]. Then for appropriate ν ∈ I and
j ∈ {1,2, . . . ,M} we have

V (x(h)) =V (x(h))−V (x(0)) =
∫ h

0

d
dt

V (x(t))dt

=
∫ h

0
x(t)T (AT

j Pν +PνA j)x(t)dt

≤−c3

∫ h

0
∥x(t)∥2

2dt < 0 (6)

which contradicts V (x)≥ 0 for all x ̸= 000.
For systems with state-dependent switching this

follows similarly, but by the Fundamental Theorem of
Calculus for Lebesgue Integrals, see e.g. Chapter III,
Section 10 in (Walter, 1998). For Filippov solutions
we have

ẋ(t) =
M

∑
j=1

λ j(t)A jx(t),
M

∑
j=1

λ j(t) = 1, a.e.,

for some non-negative functions λ j and since a.e.

d
dt

V (x(t)) = ẋ(t)Pνx(t)+x(t)T Pνẋ(t)

=
M

∑
j=1

λ j(t)x(t)T (AT
j Pν +PνA j)x(t)

≤−c3∥x(t)∥2
2

we can conclude, similarly as in (6), that V (x(t))< 0
for small enough t > 0, in contradiction to V (x) ≥ 0
for all x ̸= 000.

Although the LMIs conditions (4) are sufficient to
assert the conditions (2) for a CPQ Lyapunov func-
tion, they are not necessary. In the following section
we propose a different method that is both sufficient
and necessary, and, as an added bonus, computation-
ally less demanding.
Remark 2. Note that the condition xT Pνx ≥ 0 for all
x ∈ Cν in (5) is nothing else than the condition of
copositivity of the matrix XT

ν PνXν, i.e.

λλλ
T XT

ν PνXνλλλ ≥ 0 for all λλλ ∈ Rn
+ := [0,∞)n.

This problem of deciding whether a matrix is coposi-
tive is known to be co-NP-complete; for more details
on copositive matrices see e.g. (Ikramov and Savel-
eva, 2000).

3 VERIFICATION OF
POSITIVITY

We start by discussing in general how the positivity of
a function defined on a simplex can be verified. The
following lemma, proved as Lemma 4.16 in (Marinós-
son, 2002) using Taylor-expansions, is fundamental
for our approach:

Lemma 3. On an m-simplex S :=
co{x0,x1, . . . ,xm} ⊂ Rn, m ≤ n, we have for a
function g ∈ C2(U), U ⊂ Rn open neighbor-
hood of S, and every x = ∑

m
i=0 λixi ∈ S and any

d ∈ {0,1, . . . ,n}, that∣∣∣∣∣g( m

∑
i=0

λixi)−
m

∑
i=0

λig(xi)

∣∣∣∣∣≤ m

∑
i=0

λiEi, (7)

where

Ei ≥
n

∑
r,s=1

Brs

2
|[xi −xd ]r|(|[x−xd ]s|+ |[xi −xd ]s|),(8)

[y]i is the ith component of the vector y and

Brs := max
x∈S

∣∣∣∣ ∂2g
∂xr∂xs

(x)
∣∣∣∣ . □

This lemma can be used to rigorously verify com-
putationally whether g(x)≥ 0 on an m-simplex S :=
co{x0,x1, . . . ,xm} ⊂ Rn, m ≤ n.

Test for Positivity 4. The test consist of the three fol-
lowing steps:

1. If g(xi)< 0 for some i ∈ {0,1, . . . ,m} then clearly
g(x)≥ 0 for every x ∈S does not hold true.

2. If
g(xi)−Ei ≥ 0 for i = 0,1, . . . ,m, (9)
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then, because

g(x) = g(x)−
m

∑
i=0

λig(xi)+
m

∑
i=0

λig(xi)

≥
m

∑
i=0

λig(xi)−|g(x)−
m

∑
i=0

λig(xi)|

≥
m

∑
i=0

λi(g(xi)−Ei)≥ 0,

we have g(x)≥ 0 for every x ∈S.
3. If neither of the criteria above hold true, i.e. if

g(xi)≥ 0 for all i = 0,1, . . . ,m but there is an i ∈
{0,1, . . . ,m} such that g(xi)−Ei < 0, then the test
is inconclusive.
In the inconclusive case one can subdivide the

simplex S into smaller m-simplices and verify
whether g(x) ≥ 0 on these smaller simplices or not
with the same method. If we can guaranty that the
bounds Eis approach zero as the simplices get smaller
and smaller, this will indeed give us an algorithm that
asserts computationally that g(x) ≥ 0 for all x ∈ S
if minx∈S g(x) > 0. Further, if the vertices of the
ever further subdivided simplices build a dense set in
S, the method will also deliver a point x ∈ S with
g(x) < 0 if minx∈S g(x) < 0. Both these conditions
are easy to guaranty if the diameter of the simplices
converges to zero as we keep on subdividing the sim-
plices; we prove this in Corollary 8 and Lemma 10.

3.1 Some Notes on the Bounds Ei

For the term |[x − xd ]s| in (8) we can use
max j∈{0,1,...,m} |[x j − xd ]s| as an upper bound, which
is independent of x, because x = ∑

m
j=0 λ jx j and∣∣∣∣∣

[
m

∑
j=0

λ jx j −xd

]
s

∣∣∣∣∣=
∣∣∣∣∣ m

∑
j=0

λ j [x j −xd ]s

∣∣∣∣∣ (10)

≤
m

∑
j=0

λ j
∣∣[x j −xd ]s

∣∣
≤ max

j∈{0,1,...,m}
|[x j −xd ]s|.

Hence, max j∈{0,1,...,m} |[x j − xd ]s| can be substi-
tuted for |[x− xd ]s| in the formula on the right-hand-
side of (8).

A less conservative bound for right-hand-side of
(8), shown analogously, is given by

n

∑
r,s=1

Brs

2
|[xi −xd ]r|(|[x−xd ]s|+ |[xi −xd ]s|) (11)

≤ max
j∈{0,1,...,m}

n

∑
r,s=1

Brs

2
|[xi −xd ]r|×

(|[x j −xd ]s|+ |[xi −xd ]s|).

However, using these tighter bound is computa-
tionally somewhat more involved.

Further, one can choose the d ∈ {0,1, . . . ,m} in
formula (8) freely, or try different ones and select the
best according to some criteria, but note that one must
use the same d for all the Eis for (7) to hold true.
A rather straight-forward a priori choice is to select
d such that

g(xd)≤ g(xi) for i = 0,1, . . . ,m,

because we can set Ed = 0 and this automatically de-
livers that (9) holds true for i = d if g(xd)≥ 0.

3.2 Positivity of CPQ Functions

For a CPQ Lyapunov functions candidate V as in
(1), that fulfills the conditions (3), we want to assert
whether the conditions (2) hold true or not. The con-
ditions (2) hold true, if for every ν ∈ I we have that
V (x) = xT Pνx > 0 for every x ∈ Cν \ {000}; just note
that since V is continuous and positively homogenous
of order two, i.e. V (sx) = s2V (x) for every s > 0, we
have with

0 < c1 := min
∥x∥2=1

V (x) and c2 := max
∥x∥2=1

V (x)

that
c1∥x∥2

2 ≤V (x)≤ c2∥x∥2
2.

To verify that V (x) > 0 for all x ∈ Cν \ {000}, it
suffices to verify that V (x) ≥ 0 for all x ∈ S∗

ν :=
co{xν

1,x
ν
2, . . . ,x

ν
n}, as for every x ∈ Cν there is a

unique set of numbers λi ≥ 0 such that x = ∑
n
i=1 λixν

i
and for x ̸= 000 we have λ := ∑

n
i=1 λi > 0. Hence,

x := x/λ∈S∗
ν and V (x) = λ

2
V (x)≥ 0; by Theorem 1

this implies that indeed V (x)> 0. Note that S∗
ν is the

face of Sν obtained by removing the vertex xν
0 = 000.

One might be tempted to think that to verify the
positivity of V on Cν \ {000} it might be enough to
check the positivity at the non-zero vertices of Sν,
or maybe all vertices and all midpoints between ver-
tices (xν

i +xν
j )/2, i, j = 0,1, . . . ,n, because the values

of V (x) = xT Pνx at these points completely determine
V , see e.g. Theorem 2.8 in (Giesl et al., 2025). How-
ever, as the next remark shows, this is not the case.
Remark 5. Consider the quadratic function

P(x,y) =
(

y− 3
4

x
)2

− 1
128

xy

on the triangle/simplex co{(0,0)T ,(1,0)T ,(1,1)T}.
At the vertices we have P(0,0) = 0, P(0,1) = 9/16 >
0, and P(1,1) = 7/128 > 0 and at the midpoints be-
tween the vertices we have P(1/2,0) = 9/64 > 0,
P(1/2,1/2) = 7/512 > 0, and P(1,1/2) = 15/256 >
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0. However, by construction P(x,3x/4)=−3x/512<
0 for all 0 < x ≤ 1.

Similarly, one can also check that on the
triangle/simplex co{(1/2,0)T ,(1,0)T ,(1,1)T}
the function P is strictly larger than zero
at all vertices and all midpoints between
vertices, as P(3/4,0) = 81/256 > 0 and
P(3/4,1/2) = 1/1024 > 0, although P is not
positive over the triangle/simplex.

□

We will use Lemma 3 to verify the positivity of V
on S∗

ν. The constants Brs in the Eis are easy to get:

Brs =

∣∣∣∣ ∂2

∂xr∂xs
xT Pνx

∣∣∣∣= 2|[Pν]rs|.

For the rest of the terms in Ei we could, for exam-
ple, use (10) or (11).

Another strategy could be use less tight bounds
and use formulas for the Ei that can be computed
more quickly. For example, with the triangulation
K−1TK of [−1,1]n from Section 2.1, we have for ev-
ery simplex Sν and the face S∗

ν at the boundary of
[−1,1]n that ∥xν

i ∥∞ = 1 and ∥xν
i −xν

d∥∞ ≤ 1/K for all
i = 1,2, . . . ,n, and ∥x−xd∥∞ ≤ 1/K and we can set

Ei =
2

K2

n

∑
r,s=1

|[Pν]rs|.

Hence, if

(xν
i )

T Pνxν
i −

2
K2

n

∑
r,s=1

|[Pν]rs| (12)

=
n

∑
r,s=1

(
[xν

i ]r[x
ν
i ]s[Pν]rs −

2
K2 |[Pν]rs|

)
≥ 0

for i = 1,2, . . . ,n, then V (x) = xT Pνx > 0 for all x ∈
Cν \ {000}. Note that we can actually skip one i in the
test (12), as we can choose our d with Ed = 0 freely.
Hence, for xν

d such that 0 < V (xν

d) ≤ V (xν
i ) for all

i= 1,2, . . . ,n we don’t need (12) to hold true for i= d.
As we discussed before, if the test is inconclusive,

i.e.

V (xν
i )> 0 for all i = 1,2, . . . ,n but,

V (xν
j )−E j < 0 for some j ∈ {1,2, . . . ,n} ,

then we can subdivide the simplex S∗
ν :=

co{xν
1,x

ν
2, . . . ,x

ν
n} into smaller simplices, such

that the Eis are smaller, and try again. This can
then be repeated for those sub-simplices where the
test is inconclusive. Before we prove that such an
algorithm always succeeds in Theorem 11, be discuss
the subdivision of simplices in the next section.

4 SUBDIVISION OF SIMPLICES

To describe the subdivision we use, it is advanta-
geous to use a little different notations. For a per-
mutation σ ∈ Sm, i.e. a one-to-one σ : {1,2, . . . ,m}→
{1,2, . . . ,m}, and a number a > 0, define the m-
simplex

Sa
σ := a · co{xσ

0 ,x
σ
1 , . . . ,x

σ
m} ⊂ Rm,

where, for i = 0,1, . . . ,m,

xσ
i :=

i

∑
j=1

eσ( j).

Here ei denotes the standard ith unit vector in
Rm and recall that the empty sum is defined as zero,
i.e. ∑

0
j=1 eσ( j) = 000 ∈ Rm

Note that for a vector x ∈Sa
σ we have

x = a
m

∑
i=0

λixσ
i = a

m

∑
i=0

λi

i

∑
j=1

eσ( j)

= a
m

∑
i=1

(
m

∑
j=i

λ j

)
eσ(i)

and because λ j ≥ 0 for all j this means that the com-
ponents of x= (x1,x2, . . . ,xm)

T , xσ(i) =∑
m
j=i λ j, fulfill

a ≥ xσ(1) ≥ xσ(2) ≥ . . .≥ xσ(m) ≥ 0. (13)

Indeed, it is not difficult to see that

λm :=
1
a

xσ(m),

λm−1 :=
1
a

(
xσ(m−1)− xσ(m)

)
λm−2 :=

1
a

(
xσ(m−2)− xσ(m−1)

)
...

λ1 :=
1
a

(
xσ(1)− xσ(2)

)
λ0 =

1
a

(
a− xσ(1)

)
and that the simplex Sa

σ is the set of those vectors
x ∈ Rm that fulfill (13).

Now consider the simplex S1
σ for a permutation

σ ∈ Sm and a vector y = (y1,y2, . . . ,ym)
T with yi ∈

{0,1} for i = 1,2, . . . ,m. We want to find a permuta-
tion α ∈ Sm such that

y+S1
σ ⊂S2

α. (14)

To this end consider the matrix[
σ(1) σ(2) · · · σ(m)
yσ(1) yσ(2) · yσ(m)

]
(15)
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and let

A1 := {i ∈ {1,2, . . . ,m} : yi = 1}= {i1, i2, . . . , ik},
A0 := {i ∈ {1,2, . . . ,m} : yi = 0}= {ik+1, ik+2, . . . , im},

where i1 < i2 < .. . < ik and ik+1 < ik+2 < .. . < im.
Now rearrange the columns in the matrix in (15)

such that[
σ(i1) · · · σ(ik) σ(ik+1) · · · σ(im)
yσ(i1) · yσ(ik) yσ(ik+1) · · · yσ(im)

]
=

[
σ(i1) · · · σ(ik) σ(ik+1) · · · σ(im)

1 · · · 1 0 · · · 0

]
Now define α ∈ Sm through

α( j) = σ(i j), j = 1,2, . . . ,m. (16)

Since α is the composition of the two permuta-
tions σ and j 7→ i j in Sm, it is clear that α ∈ Sm. For
z ∈ y+S1

σ we will show that

2 ≥ zα(1) ≥ zα(2) ≥ . . .≥ zα(m) ≥ 0,

i.e. that z ∈S2
α.

Now for z = y+x, x ∈S1
σ, we have

zα(1) = yα(1)+ xα(1) = yσ(i1)+ xσ(i1)

≥ yσ(i2)+ xσ(i2) = zα(2),

because if k = 1, i.e. |A1| = 1, we have yσ(i1) = 1,
yσ(i2) = 0, and xσ(i1),xσ(i2) ∈ [0,1], so

yσ(i1)+ xσ(i1) ≥ 1 ≥ yσ(i2)+ xσ(i2),

and if k > 1, then yσ(i1) = yσ(i2) = 1 and xσ(i1) ≥ xσ(i2)
and again

yσ(i1)+ xσ(i1) ≥ yσ(i2)+ xσ(i2).

This argument can be repeated to show that

zα( j) = yα( j)+ xα( j) = yσ(i j)+ xσ(i j) (17)

≥ yσ(i j+1)+ xσ(i j+1) = zα( j+1)

for j = 1,2, . . . ,k. For j = k+ 1,k+ 2, . . . ,m the in-
equality (17) is equally clear by the construction of α,
because yσ(i j) = yσ(i j+1) = 0 and xσ(i j) ≥ xσ(i j+1).

This gives an algorithm to subdivide the simplices
in S2

α ⊂ [0,2]m, α ∈ Sm, into 2m simplices each, that
are congruent to simplices in S1

σ ⊂ [0,1]m, σ ∈ Sm.
However, every simplex Sa

σ can be mapped one-to-
one to a general m-simplex

S := co{y0,y1, . . . ,ym} ⊂ Rn, n ≥ m,

i.e. the vectors y0,y1, . . . ,ym ∈ Rn are affinely inde-
pendent, with the mapping

S(x) = Fx+y0, (18)

where the matrix F ∈ Rn×m is defined by fixing its
σ(i)th column as Fσ(i) =

1
a [yi − yi−1], i = 1,2, . . . ,m,

to see this just note that

S (axσ
i ) = aF

i

∑
j=1

eσ( j)+y0 =
i

∑
j=1

Fσ( j)+y0

=
i

∑
j=1

[y j −y j−1]+y0 = yi,

from which

S

(
a

m

∑
i=0

λixσ
i

)
=

m

∑
i=0

λi (aFxσ
i +y0) =

m

∑
i=0

λiyi

for ∑
m
i=0 λi = 1 follows.

Hence, to subdivide S into 2m simplices, we can
just subdivide

S2
id := {x ∈ Rm : 2 ≥ x1 ≥ x2 ≥ . . .≥ xm ≥ 0}

using the results above and then map the subdivision.
This is indeed very simple. From (16) with α= id it is
clear that a necessary and sufficient condition is that
σ(i j) = j for j = 1,2, . . . ,m. Further, y ∈ Rm in (14)
is given by y = ∑

k
j=1 eσ(i j) = ∑

k
j=1 e j =: 1k.

This gives us a simple algorithm. For every z ∈
{0,1}m do the following: Let i1 < i2 < .. . < ik be
the indices of z such that zi j = 1 and ik+1 < ik+2 <

.. . < im be the indices where zi j = 0. Set σ(i j) = j
for j = 1,2, . . . ,m, then 1k +S1

σ ⊂ S2
id. Since this

gives us 2m different simplices 1k +S1
σ, these are ex-

actly the simplices that subdivide S2
id. For a graphical

presentation of this approach see Figures 3 and 4

5 THE ALGORITHM

Using the results we have developed in the last sec-
tion, we can now state an algorithm that combines
Test for Positivity 4 with subdivision of simplices.

Test for Positivity 6. Assume the function g : S→R,
S := co{x0,x1, . . . ,xm} ⊂ Rn an m-simplex, m ≤ n,
fulfills the assumptions of Lemma 3. Then execute:

1. Perform Test for Positivity 4 on S.
2. If the test is inconclusive, then subdivide S into

2m sub-simplices,

Sk := co{xk
0,x

k
1, . . . ,x

k
m}, k = 1,2,3, . . . ,2m,

as described in Section 4 and go back to Step 1
with S=Sk for k = 1,2,3, . . . ,2m.

3. If Step 2 finishes without having found a vertex
y ∈Rn such that g(y)< 0 in Step 1, then g(x)≥ 0
for all x in the original simplex S.
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Figure 3: A triangle (2-simplex) in 3 dimensions subdivided
into 22 = 4 triangles, of which one is further subdivided into
22 = 4 triangles.

Figure 4: A tetrahedron (3-simplex) in 3 dimensions subdi-
vided into 23 = 8 tetrahedra.

Note that Test for Positivity 6 might end up in
an infinite loop if g is non-negative but zero at some
points in S. However, we will show that it always
gives a definite answer for CPQ Lyapunov function
candidates in the rest of this section.

Define the diameter of a simplex S =
co{x0,x1, . . . ,xm} ⊂ Rn as

diam(S) := max
i, j=0,1,...,m

∥xi −x j∥2.

Lemma 7. Let S := co{x0,x1, . . . ,xm} ⊂ Rn be an
m-simplex and Sk, k = 1,2,3, . . . ,2m, be the simplices
S is subdivided into using the algorithm from Section
4. Let S(x) = Fx+x0 be the mapping (18) that maps

the vertices of S2
id ⊂ Rm to the vertices of S. Then

diam(Sk)≤ 1
2

max
y,z∈{0,2}m

∥F(y− z)∥2 (19)

for k = 1,2,3, . . . ,2m.

Proof. First note that all vertices of all simplices in
Sa

σ, σ ∈ Sm, are vectors in the set {0,a}m. Since
S(y)− S(z) = F(y − z) and S = F(S2

id) is subdi-
vided into simplices of the form F(1k +S1

σ), σ ∈ Sm,
which are congruent to the simplices in F(S1

σ), σ ∈
Sm, which in turn are congruent to the simplices in
F(S2

σ), σ ∈ Sm, scaled down by a factor 1/2, the es-
timate (19) follows.

This lemma has an obvious corollary; just set A :=
maxy,z∈{0,2}m ∥F(y− z)∥2.

Corollary 8. Let S := co{x0,x1, . . . ,xm} ⊂Rn be an
m-simplex. Then there is a constant A > 0 such that
if S is K times iteratively subdivided into simplices
using the algorithm from Section 4, i.e. subdivided,
then the simplices in the subdivision are subdivided,
etc., then

diam(Sk
K)≤

A
2K

for every simplex Sk
K , k = 1,2,3, . . . ,2mK , in the Kth

iteration. In particular

|[x−y]r| ≤
A
2K

for every two vectors in Sk
K and r = 1,2, . . . ,n.

Another obvious corollary, and useful for our pur-
poses, is the following.

Corollary 9. If g in Lemma 3 fulfills g(x)> 0 for all
x ∈ S and if the Eis from Lemma 3 are scaled down
in the obvious way in the iterations (jump from Step
2 to Step 1) in Test for Positivity 6, then the test will
deliver the results g(x) ≥ 0 for all x ∈ S in a finite
number of steps.

Proof. This is indeed obvious from what we have
shown. The only problem in the formulation is the
inequality (8), as one could successively chose more
and more conservative bounds Ei in the iterations.
However, since the upper bounds Brs cannot become
larger when we go to smaller simplices, and the terms
|[xi − x j]r| can be scaled down by a factor of 1/2
in each iteration, this is unnecessary and makes no
sense. Hence, we can let the Ei converge to zero
uniformly over the iterations and then, at the latest
in the iteration when all Eis are less than or equal
to minx∈S g(x) > 0, Test for Positivity 4 in Step 1
of Test for Positivity 6 delivers that g(x) ≥ 0 for all
x ∈S.
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Not only will Test for Positivity 6 deliver an affir-
mative answer if g(x) > 0 for all x ∈ S, but if there
is a y ∈ S such that g(y) < 0, then the test will also
deliver the results that g(x)≥ 0 for all x ∈S is false,
in a finite number of steps.

Lemma 10. If for g in Lemma 3 there is a y ∈S such
that g(y) < 0, then Test for Positivity 6 will deliver a
point y∗ ∈S such that g(y∗)< 0 in a finite number of
steps.

Proof. Since g is continuous there is an open neigh-
borhood U ⊂S of y such that g(x)< 0 for all x ∈U ,
and since S from (18) is continuous the set S−1(U) is
open in S2

id ⊂ Rm and there is an open ball B ⊂ S2
id

where g ◦ S is negative. Now consider that the ver-
tices of S2

id are the set {0,2}m ∩S2
id, the set of all

vertices of all the simplices in the first subdivision of
S2

id is {0,1,2}m ∩S2
id, the set of all vertices of all

the simplices in the second iterative subdivision of
S2

id is {0,1/2,1,3/2,2}m ∩S2
id, etc. Now, for a large

enough K ∈ N, there must exist an

x∗ ∈
{

0,
1

2K ,
2

2K , . . . ,
2 ·2K −1

2K ,2
}m

∩B

and with y∗ = S(x∗) we have 0 > (g◦S)(x∗) = g(y∗).

Assume V is a CPQ Lyapunov function candidate,
i.e. is of the form (1) and fulfills the conditions (3). In
Theorem 1 we showed that if V (x) ≥ 0 for all x ̸= 000,
then V (x) > 0 for all x ̸= 000. Hence, for every ν ∈ I,
either V (x) > 0 for all x ∈ Cν \ {000} or there exists a
y ∈ Cν such that V (y) < 0. Combining Corollary 9
and Lemma 10 with these results delivers:

Theorem 11. For a CPQ Lyapunov function candi-
date V of the form (1) that fulfills the conditions (3),
the Test for Positivity 6 is non-conservative when ver-
ifying the conditions (2) for a CPQ Lyapunov func-
tions. That is, the test will give an affirmative answer
in a finite number of steps, whether (2) holds true or
not.

6 CONCLUSIONS

For switched, cone-wise linear systems, either arbi-
trary switched or with state-dependent switching, we
presented an algorithm to verify the positive definite
conditions for CPQ Lyapunov function candidates pa-
rameterized using LMIs or LP. Further, we proved in
Theorem 11 that the algorithm is non-conservative,
in comparison to earlier approaches that do introduce
some conservatism. In a subsequent publication we

will describe an efficient implementation of our algo-
rithm for n-dimensional system and demonstrate its
applicability. Further, we will compare its numeri-
cal efficiency with the LMI approaches presented in
(Kruszewski et al., 2009; Sala and Arino, 2007; Gon-
zaleza et al., 2017), which are sufficient and asymp-
totically necessary.
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