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Abstract: The Isolation Forest (IF) algorithm is effective in detecting anomalies in critical infrastructure, but its 
performance depends on the proper setting of five hyperparameters: sample size, number of trees, maximum 
tree depth, maximum number of features and detection threshold. Static tuning of these parameters is 
inefficient and poorly adaptable to dynamic environments. This paper proposes a multivariate autotuning 
method that automatically optimises these hyperparameters by: (1) adaptive adjustment of the sample size 
based on the standard deviation of the anomaly scores, (2) selection of the number of trees according to F1-
score stabilisation, (3) control of the maximum depth based on the average isolation rate, (4) adjustment of 
the maximum number of features according to the variance of the data, and (5) optimisation of the detection 
threshold by minimisation of a cost function. The auto-tuning procedure has been validated in the detection 
of anomalies in drinking water networks, showing an F1-score improvement of 7.5% and a reduction of the 
execution time by 22.55% compared to static configurations, demonstrating its feasibility for real-time 
systems.  

1 INTRODUCTION 

Critical infrastructures such as water, energy and 
transport distribution networks rely on real-time 
monitoring systems to ensure their safety and 
efficiency. These systems generate large volumes of 
sensor data, where early detection of anomalies, such 
as leaks or outages, is crucial to optimise resources 
and prevent damage and losses. The Isolation Forest 
(IF) algorithm (Liu et al., 2008) has established itself 
as an efficient technique to identify anomalies in 
complex datasets by randomly partitioning the data 
space. Its simplicity and low computational cost make 
it ideal for real-time applications. However, its 
performance depends on the proper setting of the five 
hyperparameters that define it: sample size (S), 
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number of trees (T), maximum number of features 
(F), maximum depth of trees (D) and detection 
threshold (Th). The static adjustment of these 
parameters leads to a lack of adaptability of the 
algorithm to the evolution of the information sources, 
which can cause instability to changes in the data, 
false positives (unnecessary alarms) or false 
negatives (undetected anomalies), compromising the 
efficiency and reliability of the model. 

This paper proposes a method for multivariate 
dynamic self-adjustment of the IF hyperparameters 
without human intervention, improving their 
accuracy, adaptability and robustness. The approach 
integrates: (1) adaptive adjustment of S based on the 
standard deviation of the anomaly scores, (2) 
optimisation of T by F1-score stabilisation, (3) 
selection of F according to the variance of the 
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features, (4) control of D based on the average 
isolation rate and (5) adjustment of Th by 
minimisation of a cost function. To validate this 
proposal, the method has been tested on real drinking 
water infrastructures, on which the IF algorithm is 
evaluated after the dynamic self-adjustment 
processes. The results have shown an improvement of 
the F1-score by 7.50% (from 0.80 to 0.86) and a 
reduction of the execution time of the IF algorithm by 
22.55% (from 5.10s to 3.95s) as it optimises the size 
of the datasets to the minimum necessary to maximise 
accuracy, demonstrating its potential for dynamic 
environments. 

The paper is organised in five sections: section 2 
reviews the state of the art of the IF algorithm and its 
variants, section 3 develops the proposed 
methodology, section 4 presents the experimental 
results and section 5 presents the conclusions and 
future research lines. 

2 STATE OF THE ART 

Isolation Forest (Liu et al., 2008) is a technique for 
anomaly detection that uses random partitions of the 
data space by means of decision trees. Its 
computational efficiency and simplicity have made it 
a popular tool for identifying anomalies in complex 
datasets. However, its performance depends on the 
proper configuration of its multiple hyperparameters 
and the deviations generated in high dimensionality 
datasets have motivated the development of variants 
to improve its accuracy and adaptability.  

Extended Isolation Forest (EIF) (Hariri et al., 
2019) replaces axis-parallel splits with random 
hyperplanes, reducing geometric deviations and 
improving detection in non-aligned distributions. 
However, EIF does not address dynamic 
hyperparameter optimisation, leaving this task to 
humans. Cluster-Based Improved Isolation Forest 
(CIIF) (Karczmarek et al., 2020) integrates 'k-Means' 
clustering to adapt partitions to spatio-temporal data, 
but introduces a new hyperparameter that makes 
automatic adjustment difficult, the number of 
clusters. SCiForest (Liu et al., 2010) optimises 
partitions using information gain criteria, speeding up 
anomaly isolation in multivariate systems, although it 
still relies on manual settings for parameters such as 
maximum depth or number of features. 

Other more recent approaches such as the 
Bilateral-Weighted Online Adaptive Isolation Forest 
(Hannák et al., 2023) adjusts the weights on tree paths 
according to dynamic patterns and improves 
detection in data streams but also does not 

automatically optimise its parameters. The Deep 
Isolation Forest (Xu et al., 2023) incorporates neural 
networks to combine scores from different trees, 
increasing robustness in complex datasets, although 
at the cost of higher computational complexity and 
without an approach for multivariate adjustment. 
Finally, other hybrid methods, such as Hybrid 
Isolation Forest (Nalini et al., 2024), combine IF with 
clustering techniques, but their effectiveness still 
depends on static manual configuration. Some 
variants adjust parameters such as the number of trees 
or the detection threshold by means of rules of thumb, 
but these rules again generate a truly static 
configuration.  

There is no comprehensive solution to the 
algorithm's hyperparameter tuning problem as some 
proposals optimise certain parameters while leaving 
others untuned (Bischl et al., 2024). The parameter 
tuning problem generates such a high impact on 
model accuracy that approaches can now be found 
that address the issue by combining techniques that 
make up for the tuning shortcoming, such as (Priyanto 
and Purnomo, 2021) where IF is combined with Long 
Short-Term Memory so as not to require continuous 
fine-grained hyperparameter tuning. Although the 
proposal manages to generate an adequate fit, low 
ROC curve values are still observed because the 
anomaly detection method can only detect anomalous 
samples with a huge False Positive and False 
Negative value. In (Dhouib et al., 2023), a method for 
generalisation of the score function motivated by 
information theory is proposed and used to aggregate 
the scores of tree estimators so that the anomaly 
detection threshold can be optimised, although no 
systematic improvement was achieved and even in 
some datasets poor performance was generated. On 
the other hand, in (Lee et al., 2020) a sequential 
model-based optimisation (SMBO) method is used, 
which includes Bayesian optimisation and tree-
structured parameter estimators (TPE), the problem it 
has is that it uses a random search so that areas of the 
search space may be left unexplored, falling into local 
optima. 

In this work we propose a multivariable 
autotuning system that automatically optimises its 
hyperparameters. By obtaining a procedure that can 
be executed autonomously, when necessary, IF can 
dynamically self-configure optimising its efficiency 
and validity in real-time environments. When data 
evolves, e.g. changes between day/night, 
holiday/work, the autotuning process can be run to 
optimise IF and restore its accuracy. 
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3 METHODOLOGY 

Table 1 summarises the techniques used in each 
hyperparameter (HP) for automatic tuning together 
with the initial default value.  

Table 1: Auto-tuning process and default values of the HP. 

HP Process Adjustment Defalt 
S Standard deviation (σ). 256 
T Metric stabilisation (F1-score). 100 
F Variance (σ2) .  1.0 
D Average isolation rate (R). Log(2) (S) 
Th Cost function (FP, FN) 1.0 

 
During the tuning process, default values shall be 
used for those hyperparameters that have not been 
calculated. When the appropriate value of a 
hyperparameter is set, the optimal value shall be used 
for the calculation of the next hyperparameter.  

3.1 Sample Size Adjustment 

The sample size (S), which defaults to 256, defines 
the subset of data used to construct each tree, directly 
affecting the stability of the anomaly scores. A too 
small S can generate unrepresentative trees, while an 
excessive S increases the computational cost without 
significant improvement, especially in datasets with 
high variability. To optimise S automatically, we 
propose a method based on the variability of the 
anomaly scores, measuring their standard deviation 
(σ). This approach adjusts S according to its 
dispersion, ensuring a trade-off between accuracy and 
efficiency. First, the standard deviation σo of the 
original set Dat is calculated. The adjustment process 
will start from S=256 and search for a minimum S 
sufficient to achieve a minimum set standard 
deviation σmin similar to the original set standard 
deviation with a maximum error eσ, formally defined: 

 minሺ𝑆ሻ →  𝜎௠௜௡ ≤ 𝜎௢ ± 𝑒ఙ                                 (1) 
 

Input: Dat (original dataset), S=S_initial = 256, eσ=0.05, IncDat= 
0.1 
Output: Adjusted S 
 
σo =  standard_deviation(Dat) 
σmin =  standard_deviation(Dat(S)) 
While S <  card(Dat) AND σmin> σo± eσ 
    S =  S*(1+IncDat) 
    σmin =  standard_deviation (Dat(S)) 
EndWhile 
Return S 

Pseudocode 1: Adaptive adjustment of the sample size (S). 

The use of standard deviation (σ) is due to its 
sensitivity to dispersion and its low computational 
cost (O(n)), compared to alternatives such as entropy 
or interquartile range. This process will be iterative, 
showed in Pseudocode 1, incrementing S by a 
percentage Inc(Dat) (e.g. 10%) until the condition is 
met or S=card(Dat). 

3.2 Number of Trees Adjustment 

In the IF algorithm, the number of trees (T), set by 
default to 100, determines the number of random 
partitions used to compute the anomaly scores, and 
influences the robustness and computational cost of 
the algorithm. An insufficient T generates inaccurate 
results, while an excessive T increases the execution 
time without significant improvements in accuracy. 

To adjust T we propose a method based on the 
stabilisation of the F1-score performance metric. The 
process will use values of T_val=[5,100] with step 
jumps of step=5, starting from value 5 until reaching 
the appropriate level, and maximum 100. To evaluate 
the performance, we generate an artificially 
contaminated subset of the original dataset (Dat), 
using the previously calculated S, introducing 1% of 
anomalies by a random increase of 50% in a randomly 
selected feature, simulating a peak value. The 
artificial 1% contamination ensures that the 
anomalies are rare but detectable. The procedure, 
Pseudocode 2, iterates by running IF with values in T 
of T_val, identify as anomalies the 1% of the data 
with the highest anomaly scores and calculate the F1-
score by comparing these identified anomalies with 
those actually contaminated.  
 
Input: T_val = [5,100], step=5, N = 3, F1sta= 0.01, S=calculated 
in section 3.1, T=0, Dat'(S) = Contaminate 1% of Dat(S) 
Output: Adjusted T 
 
F1-score-list = [] // List to store F1-scores, empty  
While  
    T =T + step 
    Run IF with T trees on Dat'(S) -> scores 
    Calculate F1-score (scores)  
    F1-score-list.stack(F1-score) 
    If (len(F1-score-list)<N) Continue 
    meet=0 
    For i= len(F1-score-list) - N to len(F1-score-list) 
      If F1-score-list[i]≤ F1sta meet=+1 
    If meet=N Return T 
Endwhile 

Pseudocode 2: Calculation of the number of trees (T). 
 
F1-score will be considered stable when in N 
iterations F1-score ≤ F1sta is obtained, accepting as 
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the value of T that of the last iteration. In our proposal 
N=3 to avoid local stabilisations and F1sta=0.01 to 
require high accuracy. If F1-score does not stabilise 
T=100. 

3.3 Maximum Features Adjustment 

The maximum number of features (F) defines the 
proportion of features used in each random partition. 
An F that is too high may incorporate noise, while an 
F that is too low reduces the ability to detect 
anomalies in features that are not being considered. 
To optimise F we use the variance (σ²) of the features. 

The process, Pseudocode 3, starts with all features 
F=1.0 of the original dataset (Dat(S)). The first step 
is to normalise the values of Dat by scaling the values 
of each feature to a common range, e.g. [0,1]. 
Subsequently, the variance of a subset of features is 
calculated according to the ratio F and the average 
variance (V_prom) is obtained by averaging the 
variances of each feature. The boundaries of quartile 
1 (BQ1F) and quartile 4 (BQ4F) of the set of variances 
generated by: 

 𝐵ொଵி = ୫ୟ୶ _௩௔௟௨௘(ொଵ)ା୫୧୬ _௩௔௟௨௘(ொଶ)ଶ           (2) 𝐵ொସி = ୫ୟ୶ _௩௔௟௨௘(ொଷ)ା୫୧୬ _௩௔௟௨௘(ொସ)ଶ          (3) 
 
Input: Dat (original dataset), F=F_initial = 1.0, α_reduction = 
0.5, α_increase = 1.5, F_min = 1/num_feat(Dat), F_max = 1.0 
Output: F adjusted 
 
Normalise Dat by scaling each characteristic to [0,1]. 
num_features =  num_feat(Dat) 
While true: 
    selected_features =  SelectRandom(F * num_features, Dat). 
    σ²=  CalculateVariance(selected_features) 
    V_prom=  Average(σ²) 
    Q1, Q2, Q3, Q4=  CalculateQuartiles(σ²) 
    BQ1F= (max_value(Q1) + min_value(Q2)) / 2 
    BQ4F= (max_value(Q3) + min_value(Q4)) / 2 
    If V_prom> B(Q4F): 
        If F * α_reduction<  F_min: 
            Return F 
        F=  F * α_reduction 
    Else If V_prom < B(Q1F): 
        If F * α_increase >  F_max: 
            Return F 
        F =  F * α_increase 
    Else: 
        Return F 
    UpdateModelIF(F) 
EndWhile 
Return F 

Pseudocode 3: Setting the maximum number of features (F). 
 

If V_prom exceeds BQ4F, it indicates high dispersion 
and possible noise so we would want to decrease the 
value of F as long as it allows to select at least 1 
feature. If V_prom is less than BQ1F, it indicates loss 
of information, so we would seek to increase F, 
selecting more features as long as F≤ 1. 

The value of increasing or decreasing F is done by 
multiplying F by a constant α. The values of F are 
restricted to the range [F_min=1/num_feat(Dat), 
F_max=1.0]. After each adjustment, the variance is 
recalculated with the new F and the IF model is 
updated with the new F value. 

3.4 Setting the Maximum Depth 

The maximum depth (D), usually defined in IF as 
log(2) (S), limits the growth of trees. Too low a D 
prevents complex anomalies from being detected, 
while too much D can generate unnecessarily deep 
trees, increasing the computational cost. To optimise 
D, Pseudocode 4, we propose a method based on the 
average isolation rate (R), defined as the average 
depth at which anomalies are isolated. 

 
Input: Dat (original dataset), R_75, R_25, D_min = 1, D=D_max 
=  log(2) (S), β = 0.2 
Output: D appropriate 
 
Contaminate 5% of Dat to 50% identify anomalous records 
While 
    Execute IF with D on Dat 
    Identify top 5% of points with highest score   
    Create anomaly set    
    Calculate R as the average of the elements of CR 
    If R <  R_75 AND D >  D_min: 
        D =  max(D*(1-β), D_min) // Reduce D  
    Else if R >  R_25 AND D <  D_max: 
        D= min(D*(1+β), D_max) // Increase D  
     Else: 
        Return D 
EndWhile 
Return D 

Pseudocode 4: Setting the maximum depth (D). 
 
The process starts by contaminating 5% of the dataset 
(Dat(S)) by incrementing a random feature by 50% to 
identify anomalous records. We initialise D as 
D_max= log2(S) and D_min=1 (minimum height of 1 
node), where S is the sample size. We run the IF 
algorithm on Dat(S), create a set CRwith the isolation 
depths of the anomalies and calculate R as the average 
of the elements of CR. We compare R with the 
thresholds R_25 (quartile Q1) and R_75 (quartile Q3) 
of the isolation depths. If R is less than R_75 and 
D>D_min, it indicates slow isolation and possible 
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overfitting, so we reduce D by D=max(D×(1-
β),D_min). If R is below R_25 and D<D_max, it 
indicates that anomalies require more partitions, so 
we increase D by D=min(D×(1+β), D_max). If R is 
between R_25 and R_75, D is returned. We restrict D 
to the range [D_min=1, D_max= log(2) (S)] to balance 
accuracy and efficiency, and β will be a value less 
than 1 and greater than 0, whose size will depend on 
the willingness with which we wish to make the 
adjustment, empirically we use β=0.2.  

This fitting is done iteratively, updating the IF 
model with the new D at each iteration to adapt to 
changes in the complexity of the data. 

This method is based on the fact that anomalies 
tend to be isolated in fewer partitions than normal 
points, a principle of the IF algorithm. The adjustment 
rate β=0.2 produces gradual changes, avoiding large 
oscillations. The thresholds R_25 (quartile Q1) and 
R_75 (quartile Q4) are calculated from the isolation 
depths of the contaminated anomalies, representing 
the expected distribution of the isolation rate in the 
dataset. The R_25 and R_75 thresholds are obtained 
in an initial analysis by running IF with D=log(2)(S) 
on a contaminated dataset (5% anomalies), 
calculating the isolation depths of the anomalies and 
determining the 25 and 75 quartiles of these depths, 
reflecting the expected distribution of the isolation 
rate. This approach ensures that the adjustment of D 
is sensitive to the complexity of the anomalies, 
optimising detection without unnecessary 
computational costs. 

3.5 Detection Threshold Adjustment 

The detection threshold (Th) determines at what score 
an element is classified as anomalous. This threshold 
is crucial to control the false positive (FP) and false 
negative (FN) rate. A too low Th may generate 
unnecessary alarms by marking records as anomalies 
when they are not, while a too high Th may not detect 
critical anomalies. 

To optimise Th we propose a method based on the 
minimisation of a cost function that weights the 
classification errors according to their impact on the 
application context, Pseudocode 5. The cost function 
FC(Th) assigns a weight to errors due to false 
positives and false negatives, so that it can give more 
importance to one type of failure or the other.  
 

FC(Th) = δ - FP(Th) + (1- δ) - FN(Th) (4)
 
Where FP and FN represent the false positive and 
false negative rates, and δ is a weight reflecting the 
relative importance of each type of error. If δ=0.5, 

both errors have the same weight. This value is 
selected empirically after a preliminary analysis of 
the impact of the errors. 

Before evaluating FC(Th), we generate a dataset 
from the original dataset of size S, Dat(S), 
contaminating it with 5% anomalies, increasing by 
50% a random feature in the selected records to 
simulate anomalous events and identify exactly the 
contaminated records. Next, we apply a binary search 
on the range of Th between Th_min=0 and 
Th_max=1.0, initialising Th=0.5. The binary search 
evaluates the cost function FC at the intermediate 
points (Th+Th_min)/2 and (Th_max+Th)/2. If 
FC((Th+Th_min)/2) is less than FC((Th_max+ 
Th)/2), Th_max=Th and Th=(Th+Th_min)/2 are 
updated; otherwise, Th_min=Th and Th=(Th_max+ 
Th)/2 are updated. This process continues as long as 
Th_max-Th_min≥grad with grad=0.01, ensuring 
accuracy with low computational cost. 
 
Input: Dat (original dataset), δ =  0.2, Th_min = 0, Th_max = 1.0, grad = 
0.01, Th = 0.5, FC (cost function: FC(Th)=δ-FP(Th)+ (1-δ) -FN(Th)) 
Output: Th appropriate 
 
Contaminate 5% of Dat (increase 50% of a characteristic) 
While Th_max - Th_min ≥  grad: 
    mid1 = (Th +  Th_min)/2 
    mid2 = (Th_max +  Th)/2 
    If FC(mid1) < FC(mid2): 
        Th_max =  Th 
        Th =  mid1 
    Else: 
        Th_min =  Th 
        Th =  mid2 
EndWhile 
Return Th 

Pseudocode 5: Setting the detection threshold (Th). 
 
The binary search is selected for its efficiency (O(log 
n)). The 5% contamination level reflects a realistic 
estimation of anomalies in critical systems, and 
allows to accurately identify anomalous records to 
calculate FP and FN in the cost function. The initial 
value of Th=0.5 is selected as the midpoint of the 
range [0, 1.0] for the binary search. The weight δ= 
value can be adjusted according to the domain, in this 
case δ=0.2 is empirically selected to prioritise false 
negatives (FN), relevant in critical systems where 
anomaly detection is a priority. For example, in 
contexts where FNs are more critical, values such as 
δ=0.6 could be used. The grad=0.01 ensures accurate 
Th by limiting the difference between Th_max and 
Th_min, avoiding unnecessary iterations.  
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4 EXPERIMENTATION 

In this section we will compare the auto-tuned model 
with static configurations, evaluating its adaptability, 
accuracy and computational efficiency. The 
implementation was done in Python 3.10 using the 
'scikit-learn' library (version 1.6). The experiments 
were run on a computer with an Intel Core i9-13900H 
(2.50 GHz) processor, 32 GB of RAM, an NVIDIA 
GTX 4060 GPU and the Windows 11 operating 
system in its 24H2 version. We repeated each test 
three times and averaged the results to reduce 
variability and ensure statistical stability. 

We use a real dataset from the year 2024, from a 
drinking water distribution network in a city in 
southeastern Spain. It contains 33096 anonymised 
records with measurements every 15 minutes of 10 
features, including the following data: water level, 
flow (inflow and outflow), discharge and pressure in 
4 geographical zones (Z1, Z2, Z3, Z4). A realistic 
scenario with heterogeneous data is presented, whose 
units of measurement and accuracy are detailed in 
Table 2.  

Table 2: Identifiers, accuracy and units of the dataset. 

Characteristics ID Accuracy Units 
Date F 1 day 
Time H 15 minutes 
Level Z4  N Z4 0.01 m height 
Level Z1 N Z1 0.01 height 
Inlet flow Z4 F-E Z4 0.01 m3/h 
Output flow Z4 F-S Z4 0.01 m3/h 
Flow UII Z3 F-UII Z3 0.01 m3/h 
Discharge UII Z3 I-UII Z3 0.01 m3/h 
Discharge Z2 I Z2 0.01 m3/h 
Discharge UII Z1 I-UII Z1 0.01 m3/h 
Pressure UII Z3 P-UII Z3 0.01 mca 
Pressure Z2 P Z2 0.01 mca 

4.1 Sample Size (S) 

Following the process described in section 3.1, we 
start with S=256 and adjust S iteratively, increasing it 
by 10% (S=S×(1+IncDat), with IncDat=0.1) if σmin 
exceeds the threshold σo±eσ, where σo is the standard 
deviation of the original set Dat and eσ=0.03 is the 
maximum allowed error. A small error has been 
adjusted as a large similarity in deviation is sought. 
The adjustment stops when σmin≤σ(o)±eσ or 
S≥card(Dat). 

Table 3: Evaluation of sample size (S). 

Iteration S σmin 
Start 256 0.56 
Autotuned It. 1 282 0.56 
Self-adjusted It. 2 310 0.56 
Self-adjusted It. 3... 341 0.55 
Self-adjusted It. 34 6540 0.48 

In Table 3, the behaviour of the method is presented, 
showing how S adapts to the variability of the data 
compared to a static setting of S=256. The data set 
shows a σo=0.45, so we will look for an omin that 
meets the given constraint. The autotuning method 
manages to stabilise σmin, bringing it close to σo with 
an error within the allowed range (±0.03) at iteration 
34, where S is set to 6540. This demonstrates that the 
adaptive adjustment of S achieves an effective trade-
off between accuracy and computational efficiency. 
The working dataset will consist of 19% of the 
original. 

4.2 Number of Trees (T) 

Following the process described in section 3.2, an 
artificially contaminated subset (1% anomalies) is 
created, using the calculated value of S (S=6540). The 
fit iterates T in the range [5, 100] with steps of 5, 
stopping when the F1-score variance is less than 0.01 
for N=3 consecutive iterations, with a maximum of 
T_max=100.  

Table 4 shows the F1-score value with the 
different values of T and how with T=40 a value 
similar to the static default value of 100 is obtained.  

Table 4: Evaluation of the number of trees (T). 

Iteration T F1-score 
Static 100 0.82 
Auto-tuned It. 1 5 0.84 
Self-adjusted It. 2 10 0.86 
Self-adjusted It. 3... 15 0.87 
Self-adjusted It. 8 40 0.86 

 
This T saves up to 60% of the computation time 
regarding the number of trees.  

4.3 Number of Features (F) 

In Section 3.3, a method was proposed that adapts F 
according to the average variance (V_prom) of the 
features, reducing F to F×0.5 if V_prom exceeds BQ4F 
(75th quartile), or increasing it to F×1.5 if it falls 
below BQ1F (25th quartile), within the range 
[F_min=0.1, F_max= 1.0]. The process uses S=6540 
and T=40, calculated previously.  
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Table 5 shows how F adjusts to the variability of 
the data and its impact on the F1-score. The 
autotuning method adjusts F to a value of 0.84, 
reducing the average variance (V_prom) so that it 
remains between the thresholds BQ1F and BQ4F. 

Table 5: Evaluation of the maximum number of features (F). 

Iteration F BQ1F BQ4F V_prom 
Static 1.0 0.14 0.23 0.33 
Autotuned It. 1 0.5 0.16 0.23 0.12 
Self-adjusted It. 2 0.75 0.16 0.23 0.28 
Self-adjusted It. 3 0.38 0.16 0.23 0.12 
Autotuned It. 4 0.56 0.16 0.23 0.15 
Autotuned It. 5 0.84 0.16 0.23 0.18 

4.4 Maximum Depth (D) 

In Section 3.4, a method was proposed that adapts D 
according to the average isolation rate (R), increasing 
D by 20% (D=min(D×(1+β), D_max)) if R exceeds 
R_75 (75 quartile), or reducing it by 20% (D= 
max(D×(1-β), D_min)) if it falls below R_25 (25 
quartile), with β=0.2, within the range [D_min=1, 
D_max=log(2)(283)=8.15]. The R_25 and R_75 
thresholds were initially calculated by running IF 
with D= log2(6540) on a 5% contaminated dataset, 
determining the 25th and 75th quartiles of the 
anomaly isolation depths. The process uses S=6540, 
T=40, and F=0.84, calculated previously. Table 6 
shows how D fits the complexity of the data, compared 
to a static configuration with D=log2(6540) =12.31.  

Table 6: Evaluation of the maximum depth (D). 
Iteration D R 

Static 12.31 6.5 
Autotuned It. 1 9.84 6.4 
Self-adjusted It. 2 7.87 6.3 
Self-adjusted It. 3 6.30 6.3 

 
The autotuning method adapts D to an average value 
of 6, adjusting to the isolation rate (R=6.3). The 
adjustments based on R_25 and R_75 avoid over-
fitting and optimise the detection of subtle anomalies, 
while maintaining computational efficiency. 

4.5 Threshold (Th)  

Following section 3.5, Th is optimised by minimising 
the cost function FC(Th)=δ-FP(Th)+(1-δ)-FN(Th), 
with δ=0.2, using binary search on a contaminated 
subset (5% of anomalies) within the range 
[Th_min=0, Th_max=1], with a gradient of 0.10. The 
value of δ=0.2 was selected to prioritise false 
negative (FN) detection, crucial for identifying 
critical anomalies. The process uses S=6540 and  
 

T=40, F=0.84 and D=6, calculated previously. 
Table 7 shows how Th converges and its effect on 

false positive (FP), false negative (FN) and cost (FC) 
rates, compared to the fixed static setting of Th=1.0.  

The autotuning method optimises Th to an 
average value of 0.88, with an average FC of 0.07. 
The prioritisation of FN (1-δ=0.8) ensures high 
sensitivity in anomaly detection, 

Table 7: Evaluation of the detection threshold (Th). 
Iteration Th FP FN FC 

Static 1.0 0.15 0.9 0.30 
Autotuned It. 1 0.50 0.45 0.08 0.37 
Self-adjusted It. 2 0.75 0.32 0.12 0.28 
Self-adjusted It. 3 0.88 0.08 0.06 0.07 

4.6 Comparison and Limitations 

The auto-tuning method dynamically optimises the 
five hyperparameters of the IF algorithm (S, T, F, D, 
Th) for real-time anomaly detection. The performance 
of the auto-tuned model, based on the values obtained 
in sections 4.1 to 4.5 (S= 6540, T=40, F=0.84, D=6, 
Th=0.88), is then compared with the usual static 
configuration (S=33096, T=100, F=1.0, 
D=log2(33096)= 15.01, Th= to be determined), using 
the water dataset of a drinking water distribution 
network. The auto-fit model was evaluated on the 
basis of F1-score and runtime. Table 8 presents the 
comparative results. 

Table 8: Comparative analysis static vs auto-tuned. 

Configuration S T F D Th F1-score Time (s) 
Static 33096100 1.0 15 0.89 0.80 5.10 
Autotuned 6540 40 0.84 6 0.88 0.86 3.95 

 
For this example, after several tests it was determined 
that in the static model, a Th=0.89 provided 
acceptable detection. The auto-tuned model improves 
the F1-score by 7.50% (from 0.80 to 0.86) and 
reduces the run time by 22.55% (from 5.10s to 3.95s) 
versus the static configuration. These gains reflect the 
method's ability to adapt to the heterogeneity of the 
water dataset, optimising the detection of anomalies 
such as leaks with greater sensitivity and efficiency. 
The elimination of manual intervention ensures 
adaptability in dynamic environments, overcoming 
the limitations of static configurations as the model 
can self-configure when accuracy drops.  

However, the proposed method has some 
limitations. The quality of the thresholds BQ1F, BQ4F, 
R_25 and R_75 depends on an initial analysis, which 
could be problematic in incomplete or noisy datasets. 
Furthermore, the method assumes that anomalies are 
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rare and detectable by significant increments, which 
may not apply to datasets with subtle anomalies or 
highly skewed distributions. 

5 CONCLUSIONS 

This paper presents a multivariate autotuning method 
that dynamically optimises the five hyperparameters 
of the IF algorithm (S, T, F, D, Th), validated on a real 
dataset of a water distribution network in 2024. The 
proposed procedure allows the model to self-adjust 
and also to do so obtaining better F1-score results and 
processing time than using the default values that are 
traditionally configured. 

As an automatic procedure, it can be launched 
periodically, ensuring that the IF model will be 
adjusted to the data conditions at that instant. The 
method provides a robust, adaptive and scalable 
solution for real-time systems. Above all, it allows 
independence from the skill and knowledge of the 
expert fitting the model, providing a completely 
independent and objective methodology. Compared 
to approaches such as Extended IF or Deep IF, it 
stands out for its simplicity and simultaneous 
optimisation of all hyperparameters. It does not 
require the introduction of new parameters such as 
CIIF, which make the process more complex, nor 
does it add high computational complexity such as 
LSTM, since self-adjustment can be performed while 
IF performs detection. Finally, the proposed method 
allows the hyperparameters to be adjusted 
continuously, unlike HIF or SCiForest, which 
ensures that the algorithm will maximize its accuracy. 

In the short term, future research will address the 
sensitivity of the method to noisy or incomplete data, 
incorporating advanced data quality assurance 
techniques. In addition, we will also validate this 
procedure using other critical infrastructure datasets, 
such as power grids, to extend its applicability. The 
objective is to study whether there is similarity in the 
behaviour of the hyperparameters. In the medium 
term, the aim is to incorporate techniques that detect 
the ideal moment to recalculate the hyperparameters, 
for example by detecting a degradation in accuracy 
due to changes in data trends. 
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