Vision-Based Autonomous Landing for the MPC Controlled Fixed Wing UAV

Sevinç Günsel¹ ¹ ¹ ¹ ¹ Seref Naci Engin¹ ¹ and Mustafa Doğan² ¹ Department of Control and Automation Engineering, Yildiz Technical University, Istanbul, Turkey

¹Department of Control and Automation Engineering, Yildiz Technical University, Istanbul, Turkey ²Department of Control and Automation Engineering, Istanbul Technical University, Istanbul, Turkey

Keywords: Image Segmentation, Kalman Filters, vSLAM, MPC, UAV.

Abstract: This work introduces a novel vision-based autonomous landing system for fixed-wing UAVs optimized for

GPS-denied environments. We combine vSLAM with the linear MPC strategy. A key innovation is to use an SVD-based Kalman filter in vSLAM, which significantly improves map point update accuracy and efficiency by reducing noise. The system precisely defines the landing area using image segmentation and Watershed Transform for real-time vSLAM data, then draws a rotated bounding box. This visual data feeds the linearized MPC, which computes the optimal control inputs which are longitudinal acceleration, yaw rate, vertical velocity to guide the UAV along the landing trajectory. Simulation results confirm the robust and effective performance of our integrated vSLAM-MPC architecture in precisely guiding the UAV to the landing zone.

1 INTRODUCTION

In the last decades, the popularity of unmanned aerial vehicles is growing. UAVs have been using in many different fields such as mapping or monitoring areas, searching and rescuing of people, farming and military applications (Patruno, 2018). These vehicles can be in different size, configuration and characteristics. The most common types are known as fixed-wing, quadrotor and helicopter. A runway may be required for take-off and landing for some types of fixed-wing UAV (Gautam, 2014). Detecting a runway or a ground target for landing is quietly challenging part of an autonomous system (Rabah, 2018).

Computer vision techniques are applied to detect and recognize a runway also positioning the vehicle. Positioning system depends on GPS sensor. However, GPS signals may be defective or denied for environment (Vidal, 2017; Garcia, 2017). Therefore, computer vision techniques play main role to obtain environmental and vehicle position informations (Campoy, 2020). There have been many research on vision based autonomous landing UAVs. In (Kong, 2014), research and developments on visual based

landing system for both rotor and fixed-wing UAVs have been examined. Image process with low-resolution cameras, providing stability of attitude control, calculation accurate descent rate and ensure constant orientation and alignment of along runway axis are challenging points of entire landing process.

Quadrotors are mostly preferred aerial vehicles in terms of flexible movement capability. As in research (Liu et al., 2021), at any GPS denied environment, the quadrotor has been landed on an ArUco pattern that detected by segmentation and threshold techniques. The position of the quadrotor has been estimated using EKF and PID used for movement control. ArUco markers are more advantageous for vision algorithms than helipad (Bahera, 2020). Another study proposed a vision system which estimates altitude, lateral position and forward speed of the UAV. Also, visual information has been used to construct a hierarchical control system (Rondon et al., 2010). Nevertheless, in case of (Urbanski, 2018) position of a UAV has been specified using the Haar-Like classifier so that the classifier become a source of the vehicle position data for controller. ID and PD controllers have been proposed (Urbanski, 2018).

alp https://orcid.org/0000-0001-5970-3235

b https://orcid.org/0000-0003-2514-9250

^c https://orcid.org/0000-0001-5215-8887

GPS-based systems appear to be simpler and more reliable, but their accuracy is limited. For this reason, vision-based landing techniques are more precise (Gautam, 2014). Research (Campoy, 2020) reveals that there are basically two main types of algorithms which are feature tracking and appearance-based tracking. The filtered outputs of image processing algorithms are used to control the position and orientation of the UAV. Visual SLAM algorithms are critical for three-dimensional mapping especially in uncertain positioning, outdoor environments, i.e. without position information. However, the performance of these algorithms can vary depending on environmental factors such as varying light, vibration and speed.

Visual SLAM algorithms are used in mobile robots mostly (Riccardo, 2016). Also, these algorithms can be used in a wide range of applications like underwater or on air. Currently there is no single approach that can be applied to use in any case (Kazerouni et al., 2022). If we look studies (Zhang, 2018; Andert, 2022; Kalay, 2009; Lemaire, 2007), landmark positions are mostly estimated with EKF. In this study, unlike other studies, a visual SLAM algorithm for a fixed-wing UAV is presented in which map points are updated with an SVD-based Kalman filter and the runway to be landed is determined with the obtained map points. In addition, the linear MPC controller is designed to track the desired trajectory on the runway.

2 VISUAL SIMULTANEOUS LOCALIZATION AND MAPPING

Visual-based navigation is getting significant interest due to its strong noise resistance, high accuracy, and economic advantages. In the context of autonomous landing for UAVs systems equipped with cameras. Thus, the target and environmental data can be obtained in real time via on board computers. It offers position and orientation information for decisionmaking and control mechanisms. This enables UAVs to land autonomously in both fixed and moving environments, even an area is complex or unknown. Therefore, visual-based autonomous landing has been a significant research topic and used in both military and civilian applications (Xin et al., 2022). Some of the methods used for image-based landing include image segmentation, image moments, monocular vision, and stereo vision (Gautam, 2014). Among these methods, one of the most commonly used algorithms for monocular vision is Visual Simultaneous Localization and Mapping (VSLAM). In this study, the map points obtained with the vSLAM algorithm were improved using a singular value decomposition-based Kalman filter.

vSLAM refers to algorithms that enable robots or aerial vehicles to simultaneously determine their own position and map their surroundings while moving through unknown environments. These algorithms operate by using images obtained from the vehicle's image sensors. vSLAM primarily consists of two main steps: localization and mapping. In the localization phase, the positions of objects in the environment are determined, and the vehicle's own position is calculated by tracking its movement. In the mapping phase, the vehicle creates a map of its surroundings by recording the paths it has traversed and the objects it has observed. Visual odometry algorithms, which form the basis of the vSLAM algorithm, estimate the moving vehicle's position using video frames acquired from a camera (Amasyali et al., 2010). These algorithms are capable of not only determining the vehicle's position but also creating a detailed map of the surroundings. Especially for aerial vehicles flying at high altitudes and high speeds, combining SLAM algorithms with visual odometry allows for more accurate and reliable results. This combination enables the aerial vehicle to determine its own position more precisely and navigate more effectively in complex environments (Boij,2022). In SLAM algorithms, accurately determining the position of vehicles and their surroundings critically depends on calculating unknown parameters. The two most fundamental filters for these calculations are the Kalman and Bayes filters. The Kalman filter is well-suited for use in linear systems. However, since most real-world systems are nonlinear, the Extended Kalman Filter (EKF) is preferred in such cases. The EKF enables the application of the Kalman filter to nonlinear systems by linearizing them using a Taylor series expansion. This allows for reliable vehicle positioning and mapping operations even in complex and nonlinear environments (Kazerouni et al., 2022).

2.1 vSLAM Algorithm Overview

We've examined the "Monocular Visual Simultaneous Localization and Mapping" example from MATLAB's built-in sample projects. This particular example was chosen because it's easily modifiable, offering a flexible code base for experimentation. The image dataset used in this study

was sourced from the California Naval Postgraduate School's website (Purdue University, 2021).

2.1.1 Map Initialization

The process begins with map initialization, where the VSLAM system establishes its initial understanding of the 3D environment and the camera's starting pose. Since a monocular vision cannot inherently determine depth, initialization typically requires movement between at least two frames. The system analyses the initial images, often using the vehicle's starting position as a coordinate reference. Feature points (ORB features), are extracted from the first two frames and then matched. Geometric relationships are computed to estimate the relative camera motion. This relative pose is then used to triangulate the first set of 3D map points, forming the foundational point cloud of the environment. A crucial step often following this is an initial bundle adjustment, which refines the camera poses and 3D map points by minimizing re-projection errors, thereby improving the overall accuracy and consistency of the initial map (MathWorks, n.d).

2.1.2 Key Frames and Map Points

Key frames are a strategic subset of camera images, chosen to efficiently represent the camera's path and environment without processing every single frame, which would be too computationally demanding. They are selected when the camera moves significantly, observes new areas, or if tracking quality degrades. Each key frame stores its estimated pose and the features observed within it. Map points are the 3D points that represent the environment. They are typically created by combining observations from multiple key frames. Each map point holds its 3D coordinates and information about which key frames observe it, along with the corresponding 2D in those frames. This structured representation of key frames and map points forms the backbone of the VSLAM map, enabling efficient data storage, optimization, and re-localization. (MathWorks, n.d).

2.1.3 Place Recognition

Place recognition, also known as loop detection or loop closure detection, is the process by which a vSLAM system recognizes that it has returned to a previously visited location. This is critical for preventing drift the accumulation of small errors in pose estimation that can cause the map to become inconsistent over time. Standard methods often

involve building a database of visual features from previously visited key frames. When a new key frame is added, its features are queried against this database. If a strong match is found with a historical key frame, it signifies a potential loop closure. This detection then triggers a global optimization process to correct the accumulated drift across the entire trajectory and map (matlab).

2.1.4 Tracking

Tracking is the process of estimating the camera's current position and orientation as it moves through an environment. For every new image, the system tries to match its detected features with existing 3D map points, often by projecting these 3D points onto the 2D image to find correspondences. A pose estimation algorithm then calculates the camera's 3D pose based on these matches. This operation occurs frequently, for every incoming frame, and must be highly efficient to maintain real-time performance. If tracking fails, the system may attempt to re-localize itself or cease operation. (MathWorks, n.d).

Our design includes a tracking loop with some distinct additions from the original algorithm. Our algorithm reads images and extracts ORB features within this loop. A significant difference from typical vSLAM examples is explicit use of an SVD-based Kalman filter for point update. In standard vSLAM, state estimation and refinement are primarily handled by bundle adjustment. The SVD-based Kalman filter performs point updates, suggests a more continuous, real-time state estimation approach for map points. The claim that dimensionality reduction has been performed thanks to the SVD-based Kalman filter, thus calculation errors are reduced, numerical stability and efficiency are improved. This method provides smoother point trajectories and potentially more robust tracking in noisy environments. The key frame control is also part of this tracking loop, determining when a new key frame should be added based on specific criteria.

The integration of the SVD-based Kalman filter is the most unique aspect, suggesting a hybrid approach combining feature-based geometric methods with probabilistic filtering for state estimation.

2.1.5 Local Mapping

Local mapping is the process of building and refining the 3D map in the area around the camera's current position. This operation is more computationally demanding than tracking and is performed less frequently. When a new key frame is added, local mapping triangulates new 3D map points from features seen in the new and nearby key frames, merges redundant map points to keep the map compact, and conducts a local bundle adjustment. This local optimization specifically refines a subset of the map, correcting errors from tracking and improving the local map's accuracy without re-optimizing the entire map, thus keeping the computation manageable (MathWorks, n.d).

2.1.6 Loop Closure

Loop closure is the final and often most complex stage of a VSLAM system. Its main purpose is to correct drift by detecting when the camera revisits a previously visited location and then performing a global map correction. After a loop is found, the system verifies its robustness and determines the precise relative transformation between the current and past poses. This leads to a global optimization, often through pose graph optimization or bundle adjustment. The resulting loop constraint powerfully distributes accumulated errors across the entire estimated trajectory and map, creating a globally consistent and drift-free map. This computationally intensive process is performed infrequently. (MathWorks, n.d).

Our design has a loop closure check section. It performs a loop closure check after a certain number of key frames have been created. If a loop closure candidate is found, it adds loop connections and performs the loop closure. This indicates that the algorithm integrates the critical components of loop closure. The success of this stage relies heavily on the robustness of the place recognition and the underlying optimization method used to correct the map once a loop is identified.

2.2 SVD-Based Kalman Filters

The Kalman filter is a method for estimating the state variables of a linear stochastic dynamic system that minimizes the covariance of the prediction error. When calculating the instantaneous estimate of a state variable, the predicted value from the previous state and the measured value are used. Subsequently, the error value in the new estimate is calculated (Unal, 2021). Singular Value Decomposition (SVD) is a mathematical method used to factorize a matrix into three matrices. Mathematically, it can be expressed as:

$$A = U\Lambda V^{T}, \qquad \qquad \Lambda = \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix}$$
 (1)

A is an $m \times n$ matrix, U is an $m \times m$ orthogonal matrix, and V is an $n \times n$ orthogonal matrix. Σ is a matrix containing the eigenvalues of A. According to Singular Value Decomposition, the matrix A can also be expressed as:

$$A = USU^{T} = UD^{2}U^{T}$$
 (2)

The matrix D is a diagonal matrix. When adapted to the Kalman filter formula, the resulting P matrix is shown in the equation below.

$$P(k) = U(k)D(k)^2U(k)^T$$
(3)

The SVD-based Kalman Filter is not affected by such errors, offering a robust method for numerical computations. Particularly when dealing with ill-conditioned matrices, SVD-based approaches produce more reliable results (Hang et al., 2018). This is highly important for computing covariance matrices in Kalman Filter updates and helps reduce noise originating from both the model and measurements. SVD-based algorithms are powerful to discriminate the signal and noise subspaces, compared to EKF and provide better convergence (Wang, 1992). Given these advantages, an SVD-based Kalman filter was preferred in this study to achieve faster and more accurate results to obtain more accurate map points in vSLAM.

3 IMAGE PROCESSING AND SEGMENTATION

Image segmentation is a fundamental and complex area of digital image processing, using computer algorithms to divide a digital image into distinct and meaningful regions. Its primary goal is to simplify the image's representation for easier analysis by grouping pixels with similar characteristics. This technique has wide-ranging applications, including content-based image retrieval, medical imaging, object detection, traffic control systems, and video surveillance. Image segmentation methods are broadly categorized as either local, focusing on isolating specific regions, or global, which processes the entire image. These approaches can also be classified based on the inherent properties of the images themselves. (Kaur, 2014). Many methods have been developed to effectively segment images. Among these. edge-based, thresholding-based, region-based, gradient-based, and classification-based approaches are widely recognized as the most common (Sun, 2017).

In this study, Watershed Transform is used for image segmentation. The process starts by preparing the image: converting it to grayscale and reducing noise. Then, it highlights edges by calculating the image's gradient. Crucially, foreground markers are generated from both bright areas and location points from vSLAM. These markers guide the Watershed Transform to divide the image into distinct regions. Finally, the algorithm finds the center of each segment and draws a rotated bounding box around it.

4 LINEAR MPC IMPLEMENTATION FOR FIXED WING UAV LANDING

Model Predictive Control (MPC) operates by calculating an optimized series of control actions at each sampling interval. This process relies on a predictive model to forecast the system's future behaviour. However, these predictions aren't always perfect due to the real-world imperfections like model inaccuracies and external disturbances. As opposed to this, MPC employs a closed-loop approach only the initial control signals from the calculated sequence are applied, and then the optimization problem is resolved at the each time step to generate a new optimal input sequence. Consequently, MPC necessitates solving an optimization problem in every control cycle (Gavilan et al., 2015).

4.1 Mathematical Model of the UAV

In this work, discrete-time model is proposed for the fixed-wing UAV. The state and control input vectors are given as following:

$$x = [P_x \ P_y \ P_z \ \psi \ V]^T \tag{4}$$

$$u = [\alpha_v \ \omega \ \dot{Z}]^T \tag{5}$$

where P_x , P_y , P_z are presented as coordinates on the world, ψ is the yaw angle and V is the velocity. In control signal our inputs are longitudinal acceleration α_v , yaw rate ω which is the angular velocity around the z-axis and longitudinal velocity \dot{Z} . Therefore, the kinematic equations are given in the form of discrete-time state-space model as follow:

$$x(k+1) = A(k)x(k) + B(k)u(k)$$
 (6)

The system and input matrices can be expressed as given below:

$$A = \begin{bmatrix} 1 & 0 & 0 & -V\sin(\psi)T_s\cos(\psi)T_s \\ 0 & 1 & 0 & V\cos(\psi)T_s\sin(\psi)T_s \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 (7)

$$B = \begin{bmatrix} \cos(\psi)T_s & 0 & 0\\ \sin(\psi)T_s & 0 & 0\\ 0 & 0 & T_s\\ 0 & T_s & 0\\ T_s & 0 & 0 \end{bmatrix}$$
(8)

A and B matrices are time-varying and linearized around current state x(k) and updated for each iteration step. The sampling time is denoted as T_s and is 0.05 seconds. Our motivation for this study inspired by (Gavilan & Vazquez & Estaban, 2015) and (Gavilan et al., 2015). The main differences are kinematic model and control inputs. In both studies, airspeed, flight path angle, and bank angle were used as input as in guidance law. Also, heading angle was controlled directly by the guidance system. In our study, the longitudinal dynamics of the UAV is specifically investigated and trajectory tracking application is applied by using MPC.

4.2 Model Predictive Control Algorithm for Reference Tracking

The algorithm starts by converting 2D image coordinates into 3D world coordinates. Then, initial and final points are determined from the current location data to track the landing path. The prediction horizon (N) defines the number of future time steps for which the system's behavior is forecast. The control horizon (M) indicates the number of future time steps over which the control inputs are optimized; this number must always be less than or equal to the prediction horizon. (Camacho et al., 1999).

Cost Function: The MPC objective is to minimize a quadratic cost function that penalizes state deviations from the reference trajectory and control effort. This is formulates as a Quadratic Program (MathWorks, n.d). Minimizing the cost function formula is given as follows:

$$J = \frac{1}{2} u_{opt}^T H u_{opt} + f^T u_{opt}$$
 (9)

where H and f are the components derived from augmented prediction matrices and cost weights. Weight matrices are represented as $Q = diag(Q_{P_X}, Q_{P_Y}, Q_{P_Z}, Q_{\psi})$ and $R = diag(R_{\alpha v}, R_{\omega}, R_{\dot{Z}})$ While Q penalizes deviation in reference states, R penalizes control effort. These

weight matrices should be expanded for all horizons. Then, the matrices become:

$$Q_{har} = I_N \otimes Q \tag{9}$$

$$R_{bar} = I_M \otimes R \tag{10}$$

The predicted states during the horizon is:

$$x_{pred} = \Phi x(k) + \Gamma u_{opt} \tag{11}$$

where $\Phi_i = A^i$ and $\Gamma_{ij} = A^{i-j}B$ for $j \le i \le N$ and $j \le M$, otherwise $\Gamma_{ij} = 0$ Quadratic program matrices are given (MathWorks, n.d):

$$H = \Gamma^T Q_{bar} \Gamma + R_{bar} \tag{12}$$

$$f = \Gamma^T Q_{bar}(\Phi x(k) - r \tag{13}$$

where r is a stacked vector of desired states. Constraints are needed to design a good MPC and for the control input it is formulated as:

$$u_{min} \le u_j \le u_{max} \tag{14}$$

Reference Trajectory: The reference trajectory r for the prediction horizon is dynamically generated based on the current UAV position and the predefined landing path segment. The current segment vector is:

$$v_{path} = P_{end} - P_{start} \tag{15}$$

The progress parameter s which is from 0 to 1 is calculated along the segment.

$$s_{curr} = dot(P_{curr} - P_{start}, v_{path}) / ||v_{path}||^2$$
 (16)

Future reference points are calculated by expanding this progression according to the desired path speed and forecast time.

Quadratic Program Solver and State Update: The Matlab quadprog function solves the QP problem to obtain the optimal control sequence (MathWorks, n.d). The next state of the UAV is simulated using a simple numerical integration of the linearized dynamics (Euler method).

$$P(x|k+1) = P(x|k) + V\cos(\psi)T_s$$
 (17)

$$P(y|k+1) = P(y|k) + V\sin(\psi)T_s$$
 (18)

$$P(z|k+1) = P(z|k) + \dot{Z}T_s$$
 (19)

$$\psi(k+1) = \psi + \omega T_{\rm s} \tag{20}$$

$$V(k+1) = V + \alpha_{\nu} T_{s} \tag{21}$$

This process is repeated by updating the state, relinearizing the model, creating a new reference, solving the QP and applying control until the UAV reaches the landing target.

5 SIMULATION RESULTS

Map points marked on the image were obtained as vSLAM output from the MATLAB simulation. Subsequently, segmentation was applied to the last read image, dividing it into regions. Utilizing the segmented regions and current position information, a bounding box was drawn around the designated landing area. The outputs obtained are provided below.

Figure 1: The original image.

The landmarks are printed on all the images, but the final frame is the interested one at all. Because the landing area is appeared thoroughly in the last frame.

Figure 2: The land marked image.

Here, the image is segmented into regions by Watershed method. Each region is shown in a different colour to discriminate the landing zone easily.

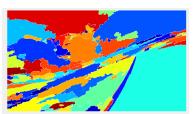


Figure 3: The segmented image

After the image was segmented into regions, the landing zone was determined. Then, to define the landing zone, a bounding box is drawn to cover this zone properly. The landmarks within the bounding box boundaries were detected to help to controller to track a reference trajectory.

Figure 4: Bounding box representation.

Finally, according to the reference trajectory over the landing zone, a start and end point are determined. Then, the movement of the UAV on this trajectory is controlled with MPC algorithm.

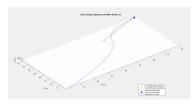


Figure 5: Trajectory tracking result of MPC.

6 CONCLUSION

This paper successfully demonstrates a robust visionbased autonomous landing system for a fixed-wing UAV that integrates a Linear Model Predictive Control (MPC) strategy with Visual Simultaneous Localization and Mapping (vSLAM). By leveraging an SVD-based Kalman filter in the vSLAM framework, we achieve improved accuracy and numerical stability in map point updates and reduce common issues such as noise accumulation and computational errors. The image processing and segmentation module using Watershed Transform and incorporating real-time vSLAM location data effectively identifies and defines the target landing area, enabling precise placement of a bounding box. This visual information is then seamlessly fed to the linearized MPC controller, which dynamically tracks a predefined landing trajectory. Simulation results clearly demonstrate the system's ability to accurately follow the desired path over the designated landing zone and validate the effectiveness of our combined vSLAM-MPC architecture for safe and autonomous fixed-wing UAV landings.

REFERENCES

Amasyalı, M. F., Münük, A., & Salı, M. (2010). Kamera görüntülerinden gidilen yolun kestirimi [Estimation of the path traveled from camera images]. *Dicle*

- Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 1(1), 5–11.
- Andert, Franz, and Luis Mejias. "Improving Monocular SLAM with Altimeter Hints for Fixed-Wing Aircraft Navigation and Emergency Landing." 2022 International Conference on Unmanned Aircraft Systems (ICUAS), 1 June 2015,
- Behera, L., Kamath, A. K., & Tripathi, V. K. (2020). Vision-based autonomous control schemes for quadrotor unmanned aerial vehicle.
- Boij, J. N. (2022). Localization of Combat Aircraft at High Altitude using Visual Odometry.
- Camacho, Eduardo F, and Carlos Bordons. *Model Predictive Control. Advanced Textbooks in Control and Signal Processing*, 1 Jan. 1999.
- Campoy, Pascual, et al. "Computer Vision Onboard UAVs for Civilian Tasks." *Journal of Intelligent and Robotic Systems*, vol. 54, no. 1-3,7Aug.2008,pp.105–135, https://doi.org/10.1007/s10846-008-9256-z.
- García-Pulido, J.A., et al. "Recognition of a Landing Platform for Unmanned Aerial Vehicles by Using Computer Vision-Based Techniques." *Expert Systems with Applications*, vol. 76, June 2017, pp. 152–165, https://doi.org/10.1016/j.eswa.2017.01.017.
- Gautam, A., Sujit, P., & Saripalli, S. (2014). A survey of autonomous landing techniques for UAVs. 2022 International Conference on Unmanned Aircraft Systems(ICUAS), 1210–1218. https://doi.org/10.1109/icuas.2014.6842377
- Gavilan, F., Vazquez, R., & Esteban, S. (2015). Trajectory tracking for fixed-wing UAV using model predictive control and adaptive backstepping. *IFAC-PapersOnLine*, 48(9),132–137.
- Gavilan, Francisco, et al. "An Iterative Model Predictive Control Algorithm for UAV Guidance." *IEEE Transactions on Aerospace and Electronic Systems*, vol. 51, no. 3, July 2015,pp.2406–2419,
- Hang, Y., Zhang, T., & Huang, S. (2018, May).

 Comparison of EKF based SLAM and optimization based SLAM algorithms. Paper presented at the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China. IEEE. https://doi.org/10.1109/iciea.2018.8397911.
- Kalay, Adnan, and İlkay Ulusoy. "Görüntü Tabanlı Eş Zamanlı Lokalizasyon ve Harita Çıkarma: Stereo ve Mono SLAM." *IEEE Sinyal İşleme ve İletişim Uygulamaları Kurultayı*, Kocaeli University, 2009.
- Kaur, Dilpreet, and Yadwinder Kaur. "Various Image SegmentationTechniques:AReview." *International Journal of Computer Science and Mobile Computing*, vol.3, no.5,2014, pp.809–814.
- Kazerouni, I. A., Fitzgerald, L., Dooly, G., & Toal, D. (2022).
 A survey of state-of-the-art on visual SLAM. Expert Systems With Applications, 205, 117734. https://doi.org/10.1016/j.eswa.2022.117734
- Kong, W., Zhou, D., Zhang, D., & Zhang, J. (2014, October). Vision-based autonomous landing system for unmanned aerial vehicle: A survey. Paper presented at the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent

- Systems (MFI),Beijing,China,IEEE. https://doi.org/10. 1109/MFI.2014.6997750
- Lemaire, Thomas, et al. "Vision-Based SLAM: Stereo and Monocular Approaches." *International Journal of Computer Vision*, vol. 74, no. 3, 9 Feb. 2007, pp.343–364.
- Liu, et al. "An Onboard Vision-Based System for Autonomous Landing of a Low-Cost Quadrotor on a Novel Landing Pad." *Sensors*, vol. 19, no. 21, 29 Oct. 2019, p.4703, https://doi.org/10.3390/s19214703.
- MathWorks. (n.d.). *Optimization Problem*. MATLAB & Simulink, from https://www.mathworks.com/help/mpc/ug/optimization-problem.html
- MathWorks. (n.d.). What Is Model Predictive Control from https://www.mathworks.com/help/mpc/gs/what-is-mpc.html
- MathWorks. (n.d.).*Monocular Visual Simultaneous Localization and Mapping*. MATLAB & Simulink. https://www.mathworks.com/help/vision/ug/mo nocular-visual-simultaneous-localization-and-mapping.html
- Patruno, C., Nitti, M., Petitti, A., Stella, E., & D'Orazio, T. (2018). A Vision-Based approach for unmanned aerial vehicle landing. *Journal of Intelligent & RoboticSystems*,95(2),645–664. https://doi.org/10.1007/s10846-018-0933-2
- Purdue University. (2021). *UAV_Dataset home page*. https://engineering.purdue.edu/~bouman/UAV_Dataset/
- Rabah, M., Rohan, A., Talha, M., Nam, K., & Kim, S. H. (2018). Autonomous vision-based target detection and safe landing for UAV. *International Journal of Control Automation and Systems*, 16(6), 3013–3025. https://doi.org/10.1007/s12555-018-0017-x
- Riccardo Giubilato, et al. *A Comparison of Monocular and Stereo Visual FastSLAM Implementations*. 1 June 2016,pp.227–232, https://doi.org/10.1109/metroaerospace.2016.75 73217..
- Rondon, Eduardo, et al. "Vision-Based Altitude, Position and Speed Regulation of a Quadrotor Rotorcraft." 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1Oct.2010,pp.628–633, https://doi.org/10.1109/iros.2010.5652745.
- Sun, Da-Wen. Computer Vision Technology for Food Quality Evaluation. Boston, Ma, Elsevier, 2017.
- Unal, G. (2021). Visual target detection and tracking based on Kalman filter. *Journal of Aeronautics and Space Technologies*, 14(2), 251–259.
- Urbanski, Konrad. "Control of the Quadcopter Position Using Visual Feedback." *International Conference on Mechatronics Mechatronika*, 1 Dec. 2018.
- Vidal, V. F., Honório, L. M., Santos, M. F., Silva, M. F., Cerqueira, A. S., & Oliveira, E. J. (2017, May 1). UAV vision aided positioning system for location and landing. IEEEXplore. https://doi.org/10.1109/CarpathianCC.2017. 797 0402
- Wang, L., Libert, G., & Manneback, P. (1992, December). Kalman filter algorithm based on singular value decomposition. Paper presented at the 31st IEEE

- Conference on Decision and Control, Tucson, AZ,USA.IEEE.
- Xin, L., Tang, Z., Gai, W., & Liu, H. (2022). Vision-Based Autonomous Landing for the UAV: A Review. *Aerospace*, 9(11), 634.
- Zhang, Yanhao, et al. "Comparison of EKF Based SLAM and Optimization Based SLAM Algorithms." *OPUS Open Publications of UTS Scholars (University of Technology Sydney)*, 1May2018.