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Abstract: This work introduces a novel vision-based autonomous landing system for fixed-wing UAVs optimized for 
GPS-denied environments. We combine vSLAM with the linear MPC strategy. A key innovation is to use an 
SVD-based Kalman filter in vSLAM, which significantly improves map point update accuracy and efficiency 
by reducing noise. The system precisely defines the landing area using image segmentation and Watershed 
Transform for real-time vSLAM data, then draws a rotated bounding box. This visual data feeds the linearized 
MPC, which computes the optimal control inputs which are longitudinal acceleration, yaw rate, vertical 
velocity to guide the UAV along the landing trajectory. Simulation results confirm the robust and effective 
performance of our integrated vSLAM-MPC architecture in precisely guiding the UAV to the landing zone. 

1 INTRODUCTION 

In the last decades, the popularity of unmanned aerial 
vehicles is growing. UAVs have been using in many 
different fields such as mapping or monitoring areas, 
searching and rescuing of people, farming and 
military applications (Patruno, 2018). These vehicles 
can be in different size, configuration and 
characteristics. The most common types are known as 
fixed-wing, quadrotor and helicopter. A runway may 
be required for take-off and landing for some types of 
fixed-wing UAV (Gautam, 2014). Detecting a 
runway or a ground target for landing is quietly 
challenging part of an autonomous system (Rabah, 
2018).  

Computer vision techniques are applied to detect 
and recognize a runway also positioning the vehicle. 
Positioning system depends on GPS sensor. However, 
GPS signals may be defective or denied for 
environment (Vidal, 2017;Garcia, 2017). Therefore, 
computer vision techniques play main role to obtain 
environmental and vehicle position informations 
(Campoy, 2020). There have been many research on 
vision based autonomous landing UAVs. In (Kong, 
2014), research and developments on visual based 

 
a  https://orcid.org/0000-0001-5970-3235 
b  https://orcid.org/0000-0003-2514-9250 
c  https://orcid.org/0000-0001-5215-8887 

landing system for both rotor and fixed-wing UAVs 
have been examined. Image process with low-
resolution cameras, providing stability of attitude 
control, calculation accurate descent rate and ensure 
constant orientation and alignment of along runway 
axis are challenging points of entire landing process. 

Quadrotors are mostly preferred aerial vehicles in 
terms of flexible movement capability. As in research 
(Liu et al., 2021), at any GPS denied environment, the 
quadrotor has been landed on an ArUco pattern that 
detected by segmentation and threshold techniques. 
The position of the quadrotor has been estimated 
using EKF and PID used for movement control. 
ArUco markers are more advantageous for vision 
algorithms than helipad (Bahera, 2020). Another 
study proposed a vision system which estimates 
altitude, lateral position and forward speed of the 
UAV. Also, visual information has been used to 
construct a hierarchical control system (Rondon et al., 
2010). Nevertheless, in case of (Urbanski, 2018) 
position of a UAV has been specified using the Haar-
Like classifier so that the classifier become a source 
of the vehicle position data for controller. ID and PD 
controllers have been proposed (Urbanski, 2018). 
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GPS-based systems appear to be simpler and more 
reliable, but their accuracy is limited. For this reason, 
vision-based landing techniques are more precise 
(Gautam, 2014). Research (Campoy, 2020) reveals 
that there are basically two main types of algorithms 
which are feature tracking and appearance-based 
tracking. The filtered outputs of image processing 
algorithms are used to control the position and 
orientation of the UAV. Visual SLAM algorithms are 
critical for three-dimensional mapping and 
positioning, especially in uncertain outdoor 
environments, i.e. without position information. 
However, the performance of these algorithms can 
vary depending on environmental factors such as 
varying light, vibration and speed. 

Visual SLAM algorithms are used in mobile 
robots mostly (Riccardo, 2016). Also, these 
algorithms can be used in a wide range of applications 
like underwater or on air. Currently there is no single 
approach that can be applied to use in any case 
(Kazerouni et al., 2022). If we look studies (Zhang, 
2018; Andert, 2022; Kalay, 2009; Lemaire, 2007), 
landmark positions are mostly estimated with EKF. 
In this study, unlike other studies, a visual SLAM 
algorithm for a fixed-wing UAV is presented in 
which map points are updated with an SVD-based 
Kalman filter and the runway to be landed is 
determined with the obtained map points. In addition, 
the linear MPC controller is designed to track the 
desired trajectory on the runway. 

2 VISUAL SIMULTANEOUS 
LOCALIZATION AND 
MAPPING 

Visual-based navigation is getting significant interest 
due to its strong noise resistance, high accuracy, and 
economic advantages. In the context of autonomous 
landing for UAVs systems equipped with cameras. 
Thus, the target and environmental data can be 
obtained in real time via on board computers. It offers 
position and orientation information for decision-
making and control mechanisms. This enables UAVs 
to land autonomously in both fixed and moving 
environments, even an area is complex or unknown. 
Therefore, visual-based autonomous landing has been 
a significant research topic and used in both military 
and civilian applications (Xin et al., 2022). Some of 
the methods used for image-based landing include 
image segmentation, image moments, monocular 
vision, and stereo vision (Gautam, 2014). Among 
these methods, one of the most commonly used 

algorithms for monocular vision is Visual 
Simultaneous Localization and Mapping (VSLAM). 
In this study, the map points obtained with the 
vSLAM algorithm were improved using a singular 
value decomposition-based Kalman filter. 

vSLAM refers to algorithms that enable robots or 
aerial vehicles to simultaneously determine their own 
position and map their surroundings while moving 
through unknown environments. These algorithms 
operate by using images obtained from the vehicle's 
image sensors. vSLAM primarily consists of two 
main steps: localization and mapping. In the 
localization phase, the positions of objects in the 
environment are determined, and the vehicle's own 
position is calculated by tracking its movement. In the 
mapping phase, the vehicle creates a map of its 
surroundings by recording the paths it has traversed 
and the objects it has observed. Visual odometry 
algorithms, which form the basis of the vSLAM 
algorithm, estimate the moving vehicle's position 
using video frames acquired from a camera 
(Amasyali et al., 2010). These algorithms are capable 
of not only determining the vehicle's position but also 
creating a detailed map of the surroundings. 
Especially for aerial vehicles flying at high altitudes 
and high speeds, combining SLAM algorithms with 
visual odometry allows for more accurate and reliable 
results. This combination enables the aerial vehicle to 
determine its own position more precisely and 
navigate more effectively in complex environments 
(Boij,2022). In SLAM algorithms, accurately 
determining the position of vehicles and their 
surroundings critically depends on calculating 
unknown parameters. The two most fundamental 
filters for these calculations are the Kalman and 
Bayes filters. The Kalman filter is well-suited for use 
in linear systems. However, since most real-world 
systems are nonlinear, the Extended Kalman Filter 
(EKF) is preferred in such cases. The EKF enables the 
application of the Kalman filter to nonlinear systems 
by linearizing them using a Taylor series expansion. 
This allows for reliable vehicle positioning and 
mapping operations even in complex and nonlinear 
environments (Kazerouni et al., 2022). 

2.1 vSLAM Algorithm Overview 

We've examined the "Monocular Visual 
Simultaneous Localization and Mapping" example 
from MATLAB's built-in sample projects. This 
particular example was chosen because it's easily 
modifiable, offering a flexible code base for 
experimentation. The image dataset used in this study 
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was sourced from the California Naval Postgraduate 
School's website (Purdue University, 2021).  

2.1.1 Map Initialization 

The process begins with map initialization, where the 
VSLAM system establishes its initial understanding 
of the 3D environment and the camera's starting pose. 
Since a monocular vision cannot inherently determine 
depth, initialization typically requires movement 
between at least two frames. The system analyses the 
initial images, often using the vehicle's starting 
position as a coordinate reference. Feature points 
(ORB features), are extracted from the first two 
frames and then matched. Geometric relationships are 
computed to estimate the relative camera motion. 
This relative pose is then used to triangulate the first 
set of 3D map points, forming the foundational point 
cloud of the environment. A crucial step often 
following this is an initial bundle adjustment, which 
refines the camera poses and 3D map points by 
minimizing re-projection errors, thereby improving 
the overall accuracy and consistency of the initial 
map (MathWorks, n.d). 

2.1.2 Key Frames and Map Points 

Key frames are a strategic subset of camera images, 
chosen to efficiently represent the camera's path and 
environment without processing every single frame, 
which would be too computationally demanding. 
They are selected when the camera moves 
significantly, observes new areas, or if tracking 
quality degrades. Each key frame stores its estimated 
pose and the features observed within it. Map points 
are the 3D points that represent the environment. 
They are typically created by combining observations 
from multiple key frames. Each map point holds its 
3D coordinates and information about which key 
frames observe it, along with the corresponding 2D 
features in those frames. This structured 
representation of key frames and map points forms 
the backbone of the VSLAM map, enabling efficient 
data storage, optimization, and re-localization. 
(MathWorks, n.d). 

2.1.3 Place Recognition 

Place recognition, also known as loop detection or 
loop closure detection, is the process by which a 
vSLAM system recognizes that it has returned to a 
previously visited location. This is critical for 
preventing drift the accumulation of small errors in 
pose estimation that can cause the map to become 
inconsistent over time. Standard methods often 

involve building a database of visual features from 
previously visited key frames. When a new key frame 
is added, its features are queried against this database. 
If a strong match is found with a historical key frame, 
it signifies a potential loop closure. This detection 
then triggers a global optimization process to correct 
the accumulated drift across the entire trajectory and 
map (matlab). 

2.1.4 Tracking 

Tracking is the process of estimating the camera's 
current position and orientation as it moves through 
an environment. For every new image, the system 
tries to match its detected features with existing 3D 
map points, often by projecting these 3D points onto 
the 2D image to find correspondences. A pose 
estimation algorithm then calculates the camera's 3D 
pose based on these matches. This operation occurs 
frequently, for every incoming frame, and must be 
highly efficient to maintain real-time performance. If 
tracking fails, the system may attempt to re-localize 
itself or cease operation. (MathWorks, n.d). 

Our design includes a tracking loop with some 
distinct additions from the original algorithm. Our 
algorithm reads images and extracts ORB features 
within this loop. A significant difference from typical 
vSLAM examples is explicit use of an SVD-based 
Kalman filter for point update. In standard vSLAM, 
state estimation and refinement are primarily handled 
by bundle adjustment. The SVD-based Kalman filter 
performs point updates, suggests a more continuous, 
real-time state estimation approach for map points. 
The claim that dimensionality reduction has been 
performed thanks to the SVD-based Kalman filter, 
thus calculation errors are reduced, numerical 
stability and efficiency are improved. This method 
provides smoother point trajectories and potentially 
more robust tracking in noisy environments. The key 
frame control is also part of this tracking loop, 
determining when a new key frame should be added 
based on specific criteria. 

The integration of the SVD-based Kalman filter is 
the most unique aspect, suggesting a hybrid approach 
combining feature-based geometric methods with 
probabilistic filtering for state estimation. 

2.1.5 Local Mapping 

Local mapping is the process of building and refining 
the 3D map in the area around the camera's current 
position. This operation is more computationally 
demanding than tracking and is performed less 
frequently. 
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When a new key frame is added, local mapping 
triangulates new 3D map points from features seen in 
the new and nearby key frames, merges redundant 
map points to keep the map compact, and conducts a 
local bundle adjustment. This local optimization 
specifically refines a subset of the map, correcting 
errors from tracking and improving the local map's 
accuracy without re-optimizing the entire map, thus 
keeping the computation manageable (MathWorks, 
n.d). 

2.1.6 Loop Closure 

Loop closure is the final and often most complex 
stage of a VSLAM system. Its main purpose is to 
correct drift by detecting when the camera revisits a 
previously visited location and then performing a 
global map correction. After a loop is found, the 
system verifies its robustness and determines the 
precise relative transformation between the current 
and past poses. This leads to a global optimization, 
often through pose graph optimization or bundle 
adjustment. The resulting loop constraint powerfully 
distributes accumulated errors across the entire 
estimated trajectory and map, creating a globally 
consistent and drift-free map. This computationally 
intensive process is performed infrequently. 
(MathWorks, n.d). 

Our design has a loop closure check section. It 
performs a loop closure check after a certain number 
of key frames have been created. If a loop closure 
candidate is found, it adds loop connections and 
performs the loop closure. This indicates that the 
algorithm integrates the critical components of loop 
closure. The success of this stage relies heavily on the 
robustness of the place recognition and the underlying 
optimization method used to correct the map once a 
loop is identified. 

2.2 SVD-Based Kalman Filters 

The Kalman filter is a method for estimating the state 
variables of a linear stochastic dynamic system that 
minimizes the covariance of the prediction error. 
When calculating the instantaneous estimate of a state 
variable, the predicted value from the previous state 
and the measured value are used. Subsequently, the 
error value in the new estimate is calculated (Unal, 
2021). Singular Value Decomposition (SVD) is a 
mathematical method used to factorize a matrix into 
three matrices. Mathematically, it can be expressed 
as: A = UΛV୘,                 Λ = ቂS0 00ቃ (1)

A is an m×n matrix, U is an m×m orthogonal matrix, 
and V is an n×n orthogonal matrix. Σ is a matrix 
containing the eigenvalues of A. According to 
Singular Value Decomposition, the matrix A can also 
be expressed as: A = USU୘ = UDଶU୘ (2)

The matrix D is a diagonal matrix. When adapted to 
the Kalman filter formula, the resulting P matrix is 
shown in the equation below. 
 𝑃(𝑘) = 𝑈(𝑘)𝐷(𝑘)ଶ𝑈(𝑘)் (3)
 

The SVD-based Kalman Filter is not affected by such 
errors, offering a robust method for numerical 
computations. Particularly when dealing with ill-
conditioned matrices, SVD-based approaches 
produce more reliable results (Hang et al., 2018). This 
is highly important for computing covariance 
matrices in Kalman Filter updates and helps reduce 
noise originating from both the model and 
measurements. SVD-based algorithms are powerful 
to discriminate the signal and noise subspaces, 
compared to EKF and provide better convergence 
(Wang, 1992). Given these advantages, an SVD-
based Kalman filter was preferred in this study to 
achieve faster and more accurate results to obtain 
more accurate map points in vSLAM. 

3 IMAGE PROCESSING AND 
SEGMENTATION 

Image segmentation is a fundamental and complex 
area of digital image processing, using computer 
algorithms to divide a digital image into distinct and 
meaningful regions. Its primary goal is to simplify the 
image's representation for easier analysis by grouping 
pixels with similar characteristics. This technique has 
wide-ranging applications, including content-based 
image retrieval, medical imaging, object detection, 
traffic control systems, and video surveillance. Image 
segmentation methods are broadly categorized as 
either local, focusing on isolating specific regions, or 
global, which processes the entire image. These 
approaches can also be classified based on the 
inherent properties of the images themselves. (Kaur, 
2014). Many methods have been developed to 
effectively segment images. Among these, 
thresholding-based, edge-based, region-based, 
gradient-based, and classification-based approaches 
are widely recognized as the most common (Sun, 
2017). 
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In this study, Watershed Transform is used for 
image segmentation. The process starts by preparing 
the image: converting it to grayscale and reducing 
noise. Then, it highlights edges by calculating the 
image's gradient. Crucially, foreground markers are 
generated from both bright areas and location points 
from vSLAM. These markers guide the Watershed 
Transform to divide the image into distinct regions. 
Finally, the algorithm finds the center of each 
segment and draws a rotated bounding box around it. 

4 LINEAR MPC 
IMPLEMENTATION FOR 
FIXED WING UAV LANDING 

Model Predictive Control (MPC) operates by 
calculating an optimized series of control actions at 
each sampling interval. This process relies on a 
predictive model to forecast the system's future 
behaviour. However, these predictions aren't always 
perfect due to the real-world imperfections like model 
inaccuracies and external disturbances. As opposed to 
this, MPC employs a closed-loop approach only the 
initial control signals from the calculated sequence 
are applied, and then the optimization problem is re-
solved at the each time step to generate a new optimal 
input sequence. Consequently, MPC necessitates 
solving an optimization problem in every control 
cycle (Gavilan et al., 2015).  

4.1 Mathematical Model of the UAV  

In this work, discrete-time model is proposed for the 
fixed-wing UAV. The state and control input vectors 
are given as following: 
 𝑥 = [𝑃௫  𝑃௬  𝑃௭ 𝜓  𝑉]் (4)𝑢 = [𝛼௩  𝜔 𝑍ሶ]் (5)
 

where 𝑃௫, 𝑃௬, 𝑃௭ are presented as coordinates on the 
world,  𝜓 is the yaw angle and 𝑉 is the velocity. In 
control signal our inputs are longitudinal acceleration 𝛼௩, yaw rate 𝜔 which is the angular velocity around 
the z-axis and longitudinal velocity 𝑍ሶ . Therefore, the 
kinematic equations are given in the form of discrete-
time state-space model as follow: 𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘) (6)

The system and input matrices can be expressed as 
given below: 

𝐴 = ⎣⎢⎢
⎢⎡10000 01000 00100 −𝑉𝑠𝑖𝑛(𝜓)𝑇௦𝑉𝑐𝑜𝑠(𝜓)𝑇௦010  𝑐𝑜𝑠(𝜓)𝑇௦𝑠𝑖𝑛(𝜓)𝑇௦001 ⎦⎥⎥

⎥⎤ (7) 

𝐵 = ⎣⎢⎢
⎢⎡𝑐𝑜𝑠(𝜓)𝑇௦𝑠𝑖𝑛(𝜓)𝑇௦00𝑇௦

 000𝑇௦0  00𝑇௦00  ⎦⎥⎥
⎥⎤ (8) 

A and 𝐵 matrices are time-varying and linearized 
around current state 𝑥(𝑘)  and updated for each 
iteration step. The sampling time is denoted as Tୱ and 
is 0.05 seconds. Our motivation for this study inspired 
by (Gavilan & Vazquez & Estaban, 2015) and 
(Gavilan et al., 2015). The main differences are 
kinematic model and control inputs. In both studies, 
airspeed, flight path angle, and bank angle were used 
as input as in guidance law. Also, heading angle was 
controlled directly by the guidance system. In our 
study, the longitudinal dynamics of the UAV is 
specifically investigated and trajectory tracking 
application is applied by using MPC.  

4.2 Model Predictive Control 
Algorithm for Reference Tracking 

The algorithm starts by converting 2D image 
coordinates into 3D world coordinates. Then, initial 
and final points are determined from the current 
location data to track the landing path. The prediction 
horizon (N) defines the number of future time steps 
for which the system's behavior is forecast. The 
control horizon (M) indicates the number of future 
time steps over which the control inputs are 
optimized; this number must always be less than or 
equal to the prediction horizon. (Camacho et al., 
1999). 
Cost Function: The MPC objective is to minimize a 
quadratic cost function that penalizes state deviations 
from the reference trajectory and control effort. This 
is formulates as a Quadratic Program (MathWorks, 
n.d). Minimizing the cost function formula is given as 
follows: 𝐽 = 12 𝑢௢௣௧்𝐻𝑢௢௣௧ + 𝑓்𝑢௢௣௧ (9) 

where 𝐻  and 𝑓  are the components derived from 
augmented prediction matrices and cost weights. 
Weight matrices are represented as 𝑄 =𝑑𝑖𝑎𝑔(𝑄௉ೣ , 𝑄௉೤, 𝑄௉೥, 𝑄ట)  and 𝑅 =𝑑𝑖𝑎𝑔(𝑅ఈ௩, 𝑅ఠ, 𝑅௓ሶ )  While Q penalizes deviation in 
reference states, R penalizes control effort. These 
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weight matrices should be expanded for all horizons. 
Then, the matrices become: 𝑄௕௔௥ = 𝐼ே ⊗ 𝑄 (9)𝑅௕௔௥ = 𝐼ெ ⊗ 𝑅 (10)

The predicted states during the horizon is: 𝑥௣௥௘ௗ = 𝛷𝑥(𝑘) + 𝛤𝑢௢௣௧ (11)

where Φ௜ = 𝐴௜  and Γ௜௝ = 𝐴௜ି௝𝐵  for 𝑗 ൑ 𝑖 ൑ 𝑁  and 𝑗 ൑ 𝑀,  otherwise  Γ௜௝ = 0 Quadratic program 
matrices are given (MathWorks, n.d): 𝐻 = 𝛤்𝑄௕௔௥𝛤 + 𝑅௕௔௥ (12)𝑓 = 𝛤்𝑄௕௔௥(𝛷𝑥(𝑘) − 𝑟 (13)

where r is a stacked vector of desired states. 
Constraints are needed to design a good MPC and for 
the control input it is formulated as: 𝑢௠௜௡ ൑ 𝑢௝ ൑ 𝑢௠௔௫ (14)

Reference Trajectory: The reference trajectory 𝑟 for 
the prediction horizon is dynamically generated based 
on the current UAV position and the predefined 
landing path segment. The current segment vector is: 𝑣௣௔௧௛ = 𝑃௘௡ௗ − 𝑃௦௧௔௥௧ (15)

The progress parameter 𝑠  which is from 0 to 1 is 
calculated along the segment.  𝑠௖௨௥௥ = 𝑑𝑜𝑡(𝑃௖௨௥௥ − 𝑃௦௧௔௥௧, 𝑣௣௔௧௛)/ฮ𝑣௣௔௧௛ฮଶ  (16)

Future reference points are calculated by expanding 
this progression according to the desired path speed 
and forecast time. 

Quadratic Program Solver and State Update: The 
Matlab quadprog function solves the QP problem to 
obtain the optimal control sequence (MathWorks, 
n.d). The next state of the UAV is simulated using a 
simple numerical integration of the linearized 
dynamics (Euler method). 𝑃(𝑥|𝑘 + 1) = 𝑃(𝑥|𝑘) + 𝑉𝑐𝑜𝑠 (𝜓)𝑇௦ (17)𝑃(𝑦|𝑘 + 1) = 𝑃(𝑦|𝑘) + 𝑉𝑠𝑖𝑛 (𝜓)𝑇௦ (18)𝑃(𝑧|𝑘 + 1) = 𝑃(𝑧|𝑘) + 𝑍ሶ𝑇௦ (19)𝜓(𝑘 + 1) = 𝜓 + 𝜔𝑇௦ (20)𝑉(𝑘 + 1) = 𝑉 + 𝛼௩𝑇௦ (21)

This process is repeated by updating the state, re-
linearizing the model, creating a new reference, 
solving the QP and applying control until the UAV 
reaches the landing target. 

 

 

5 SIMULATION RESULTS 

Map points marked on the image were obtained as 
vSLAM output from the MATLAB simulation. 
Subsequently, segmentation was applied to the last 
read image, dividing it into regions. Utilizing the 
segmented regions and current position information, 
a bounding box was drawn around the designated 
landing area. The outputs obtained are provided 
below. 

 
Figure 1: The original image. 

The landmarks are printed on all the images, but 
the final frame is the interested one at all. Because the 
landing area is appeared thoroughly in the last frame. 

 
Figure 2: The land marked image. 

Here, the image is segmented into regions by 
Watershed method. Each region is shown in a 
different colour to discriminate the landing zone 
easily. 

 
Figure 3: The segmented image 

After the image was segmented into regions, the 
landing zone was determined. Then, to define the 
landing zone, a bounding box is drawn to cover this 
zone properly. The landmarks within the bounding 
box boundaries were detected to help to controller to 
track a reference trajectory. 
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Figure 4: Bounding box representation. 

Finally, according to the reference trajectory over 
the landing zone, a start and end point are determined. 
Then, the movement of the UAV on this trajectory is 
controlled with MPC algorithm. 

 
Figure 5: Trajectory tracking result of MPC. 

6 CONCLUSION 

This paper successfully demonstrates a robust vision-
based autonomous landing system for a fixed-wing 
UAV that integrates a Linear Model Predictive 
Control (MPC) strategy with Visual Simultaneous 
Localization and Mapping (vSLAM). By leveraging 
an SVD-based Kalman filter in the vSLAM 
framework, we achieve improved accuracy and 
numerical stability in map point updates and reduce 
common issues such as noise accumulation and 
computational errors. The image processing and 
segmentation module using Watershed Transform 
and incorporating real-time vSLAM location data 
effectively identifies and defines the target landing 
area, enabling precise placement of a bounding box. 
This visual information is then seamlessly fed to the 
linearized MPC controller, which dynamically tracks 
a predefined landing trajectory. Simulation results 
clearly demonstrate the system's ability to accurately 
follow the desired path over the designated landing 
zone and validate the effectiveness of our combined 
vSLAM-MPC architecture for safe and autonomous 
fixed-wing UAV landings. 
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