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Abstract: Reliable forecasting of wind farm power generation is essential for ensuring seamless grid integration and 
optimizing energy management strategies. This paper presents an integrated framework combining a first-
principles simulation model of wind turbines as a data source for machine learning techniques to forecast 
wind farm power output. The simulation model accounts for wind speed, direction, temperature, and other 
climate variables, and is computationally intensive due to the need to account for the dynamics of each turbine 
operation, the wake effects, etc. To diminish the computational cost, this work introduces a surrogate Gaussian 
Processes (GPs) model that approximates the complex simulation model to provide predictions of both the 
mean and variance of power generation. To forecast future climate conditions, we employ a NARX (Nonlinear 
Autoregressive with Exogenous Inputs) neural network trained on historical data to account for wind speed, 
direction, and atmospheric conditions for the next two hours. The NARX model forecasts and the GPs 
predictions enable fast and accurate real-time forecasting of power generation for the entire wind farm. This 
approach significantly reduces computational times from hours to seconds while maintaining high accuracy, 
offering a scalable and efficient solution for real-time wind farm power prediction and online optimization. 

1 INTRODUCTION 

Wind energy has become a pillar of renewable energy 
systems and has played an integral part in 
international efforts to decrease carbon emissions and 
attain sustainable energy objectives (Ali & Meo, 
2024). The integration of wind farms into grids is not 
an easy task due to the intrinsic variability of wind 
and its effect on output. Predicting the output of wind 
farms accurately and in a timely manner is crucial for 
optimal grid management, scheduling energy, and 
operational optimization (Landberg, 1999). The 
conventional first-principles simulation models that 
capture the intricate nature of wind turbine operations 
and environmental interactions are highly accurate 
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but have high computational expense and take hours 
for a single simulation of a single instance (Douvi & 
Douvi, 2023). Their use for real-time prediction and 
online optimization is therefore unfeasible due to high 
computational times. New developments in machine 
learning have provided an opportunity for solving this 
issue by creating surrogate models that are 
approximations of expensive simulations but with a 
minute fraction of the computational demand.  

In this article, an original framework is presented 
that couples a control oriented first-principles 
simulation model with machine learning methods for 
rapid and accurate prediction of wind farm power 
output.  

This paper employs modular, first-principles- 
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based models in EcosimPro (EA International, 2024), 
balancing accuracy and simplicity. These models 
simulate turbine power output with minimal 
parameters, omitting detailed aerodynamic or 
electrical submodels. Integrated controls manage 
turbine startup, shutdown, rotor orientation, and 
power output, with wind farms modeled to include 
wake interactions but not energy transport. Compared 
to tools like OpenFAST or SOWFA, EcosimPro 
models are suited for control-oriented and system-
level simulations. 

The simulator’s key advantage is generating high-
quality synthetic data for data-driven algorithms. 
Real-world data is often limited by privacy, 
proprietary restrictions, or sensor issues (Li et al., 
2020). The simulator explores all input combinations 
(wind speed, direction, control modes), creating 
comprehensive datasets that prevent poor 
generalization or hallucinations in neural networks, 
supporting robust AI model development for wind 
farm control and optimization. 

We employ a Gaussian Process (GP) surrogate 
model to approximate the computationally intensive 
simulation model, predicting mean and variance of 
wind farm power output based on environmental 
variables like wind speed, direction, and air pressure. 
For climate forecasts, a Nonlinear Autoregressive 
with Exogenous Inputs (NARX) neural network 
estimates wind and atmospheric conditions for the 
next two hours, offering advantages over public 
forecast products due to better adaptation to site-
specific characteristics and lower latency. Integrating 
NARX forecasts with the GP model enables fast, 
accurate power predictions in seconds, as detailed in 
the methodology. 

The main aim of the proposed approach is the 
establishment of an efficient and scalable framework 
for real-time prediction of wind farm power. Through 
a combination of a GP surrogate model and a NARX 
neural network, we can achieve high accuracy by 
utilizing data generated from first-principles 
simulations while minimizing computational costs by 
orders of magnitude. This makes it applicable in real-
time grid integration, energy management, and online 
optimization problems, and provides a robust solution 
for improving wind farm operating efficiency. 

2 METHODOLOGY 

This study employs a two-stage, offline/online 
approach to achieve efficient and accurate wind farm 
power prediction as it is shown in Figure 1. During 
the offline stage, a first-principles simulation model 

is used to generate power output data for a wind farm 
under varying climate and wind conditions, 
accounting for turbine dynamics and wake effects. 
These simulations provide the foundational dataset 
for training a Gaussian Processes (GPs) surrogate 
model, which approximates the computationally 
intensive simulation model while delivering rapid 
predictions with uncertainty quantification.  

 
Figure 1: Methodological approach. 

During the online stage, as real-time data is 
acquired, a Nonlinear Autoregressive with 
Exogenous Inputs (NARX) neural network is trained 
on historical meteorological data to forecast wind 
speed, direction, and atmospheric variables over short 
time horizons. The integration of the NARX-based 
forecasts with the GP model allows for fast, reliable 
power output estimations, bridging the gap between 
accuracy and computational efficiency. Within this 
methodology, synthetic data can be substituted with 
real historical data. 

2.1 First-Principles Simulator 

The simulator used as a data source for this work has 
been developed as a modular library of dynamic 
models in the EcosimPro platform. The simulator is 
designed to bridge the gap between highly detailed 
tools such as OpenFAST (OpenFAST, 2024) and 
low-complexity solutions like the WindPowerPlants 
Modelica library (Eberhart, 2015), offering a balance 
between modeling accuracy and computational 
efficiency. Its main purpose is to support control 
design and operational optimization of wind farms, 
enabling fast execution on standard computing 
systems. The structure can be observed in Figure 2. 

The wind turbine model is based on a two-mass 
mechanical representation, capturing the torsional 

ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics

418



dynamics between the rotor and the generator through 
a flexible shaft. The model includes local control 
systems for rotor speed and generated power, 
implemented with Proportional-Integral (PI) 
controllers. Turbines are assumed to be of the doubly-
fed induction generator (DFIG) type, and the control 
logic accommodates both pitch regulation and rotor 
speed tracking to implement maximum power point 
tracking (MPPT) strategies. Besides power 
generation control, the overall control system 
implemented includes turbine startup and shutdown 
and rotor orientation to current wind direction. 
 

 
Figure 2: Structure of the EcosimPro Platform. 

In addition to individual turbine dynamics, the 
simulator accounts for wake effects using the multiple 
shadow Jensen/Katic model. This approach estimates 
the wind speed reduction at each turbine due to 
upstream turbines, considering thrust coefficients, 
and supporting the modeling of partial wake overlap. 
This enables a realistic prediction of power losses due 
to turbine interaction within the farm. 

At the wind farm level, the simulator implements 
several centralized control strategies compatible with 
the local control systems, with built-in mechanisms 
for safe mode switching and fault handling.  

2.2 Gaussian Process 

Gaussian Processes (GPs) (Rasmussen & Williams, 
2019) are machine learning models used for 
regression tasks that provide predictions and 
confidence intervals. One of their advantages is the 
ability to model complex interactions between 
variables without explicit parameterization. Thanks 
to this flexibility, GPs can adapt to different types of 
data. Equation 1 shows the general form of a GP. 𝑓(𝑥) ∼ 𝐺𝑃 (𝑚(𝑥), 𝑘(𝑥, 𝑥′))                   (1) 

where the mean function is 𝑚(𝑥) (usually set to 
0), and 𝑘(𝑥, 𝑥′) is the covariance function or kernel 
between each pair of elements. In this work, each 
element is a vector comprising two variables at each 
point in time: wind speed and temperature. These 
variables were selected over others due to their higher 
correlation with wind power generation, as it was 
determined from historical data analysis (see Section 
4.2). Moreover, the GP is a multivariate GP, as two 
variables are considered. 

The kernel is used to define the similarity between 
two elements 𝑥 and 𝑥′. In this work, the GP is a sum 
of two kernels. The first is a Matérn kernel 
(Pedregosa et al., 2011) with two hyperparameters: 
the length scale 𝑙, which is set to 5, and an additional 
parameter 𝜈 that controls the smoothness of the 
resulting function, which is set to 1.5. The second is 
a constant kernel that allows for incorporating the 
mean value of the measurements. The kernel and 
hyperparameters values were selected after 
conducting a hyperparameter optimization. 

2.3 NARX Neural Network 

Nonlinear Autoregressive Network with Exogenous 
Inputs (NARX) (Siegelmann et al., 1997) is a type of 
recurrent neural network designed to model dynamic 
systems whose evolution depends on both their past 
values and external inputs. This architecture is 
particularly suitable for tasks such as time series 
prediction and modelling of non-linear dynamic 
systems. The main advantage of NARX networks lies 
in their ability to capture complex temporal 
relationships with a trainable and efficient 
architecture. These networks are widely used in 
modelling and prediction in areas such as renewable 
energy, economics, control engineering and fault 
diagnosis (Hansda & Murmu, 2023). 

Mathematically, a NARX network models the 
output y(t) as a function of a series of past values of 
the output itself and one or more external inputs x(t), 
according to the following structure: 𝑦(𝑡) = 𝐹(𝑦(𝑡 − 1), . . , 𝑦(𝑡 − 𝑑𝑦); 

(2)𝑥(𝑡 − 1), . . , 𝑥(𝑡 − 𝑑𝑥)) 
where y(t) is the system output at time t, x(t) is the 

exogenous input to the system, dy, dx are the output 
and input delays, respectively, and F is the nonlinear 
function approximated by the network. 

There are two main modes of operation in NARX 
neural networks (Rahman et al., 2022). Open-loop 
mode: during training, past actual values of the output 
are used as feedback. Closed-loop mode: during 
simulation or future prediction, the network is fed 
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with its own estimated outputs, allowing long-term 
behavior to be predicted without relying on actual 
future data. 

2.3.1 Neural Network Structure 

The dataset is provided by a nearby weather station in 
table format and includes columns representing 
meteorological variables temperature and wind 
components for which data are taken every 30 
minutes. It is chosen to work with the perpendicular 
wind components instead of wind direction and 
modulus (wind speed) to avoid problems of 
continuity in angles and training errors. For example: 
an angle of 0º and 350º are numerically distant but 
physically not. To fit the data to a NARX neural 
network, all values are normalized between 0 and 1. 
This normalization is performed using the minimum 
and maximum values per column, previously 
extracted from the network configuration. 

A NARX type neural network is created using the 
narxnet function available in Matlab software 
(Matlab, n/d). The network is set in open-loop 
training mode, which allows using the real data 
passed as feedback during the training phase.  

The network structure has component values to be 
defined. Input layer: receives the past values of both 
the output variable and the exogenous variables. A 
delay of 4 time steps is used, so that the inputs at 
instant t correspond to the values at t-1, t-2, t-3 and t-
4. Hidden layer: Composed of 10 neurons, each of 
which employs the sigmoidal tangent transfer 
function (tansig). This non-linear function allows the 
network to model complex, non-linear relationships 
between input and output variables. Output layer: It 
uses a linear transfer function (purelin) that allows 
predictions to cover the entire real range of values, 
which is indispensable for continuous physical 
variables such as wind speed. The network was 
trained using the Levenberg-Marquardt 
backpropagation algorithm, which is particularly 
effective for problems with a relatively small number 
of parameters and well-conditioned inputs, which 
matches the characteristics of our experimental setup. 
InputDelays = 1:4: uses the previous 4 values of the 
inputs as the temporal context, in this case the two 
wind components. FeedbackDelays = 1:4: uses the 4 
previous values of the output as feedback. 

2.3.2 Training, Prediction and Evaluation 

The data are divided into the exogenous input time 
series and output (target) which corresponds to the 
endogenous feedback variables. The network is 
trained (Figure 3) on the ‘W’ weights and ‘b’ biases 

of both layers in open loop mode using the 
normalized data. After training, the network is 
converted to the closed-loop mode as shown in Figure 
3, allowing it to predict autonomously, using its own 
outputs as feedback. The prediction of future values 
is then performed with this closed-loop network using 
its own forecast data as input.  
 

   
Figure 3: Changing the network from open to closed loop. 

3 TEST CASE 

As a case study, a mathematical model has been 
developed for a fictitious park using the topology and 
location of a real wind farm (El Valle-Valdenavarro) 
in Navarra, Spain. Specifically, at geographical 
coordinates: Latitude: 41°55’18.9’’ Longitude: -
1°25’46.9’’. The wind farm consists of 14 turbines 
assumed to be of the NREL 5MW type and 
parameterized according to the values available in 
(Jonkman, J, et al 2009). The relative wind turbine 
locations are shown in Figure 4. 

One of the key aspects when simulating the 
dynamic behavior of wind farms is the availability of 
wind data at the specific locations where these farms 
are situated. In this work, mesoscale data from the 
New European Wind Atlas (NEWA, 2022) has been 
used. This website provides meteorological data 
every 30 minutes across the European Union for the 
period from 2005 to 2018, obtained using the Weather 
Research & Forecasting Model (WRF) (Witha et al., 
2019). 
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Figure 4: Layout of the turbines for the case study farm. 

4 ANALYSIS OF RESULTS 

4.1 Running on the Simulator 

To generate the synthetic data needed to train the GP 
model, the generation plant described in the previous 
section was simulated over a three-month period, 
with data recorded every 30 seconds. The wind farm 
setpoint was set to 75 MW, exceeding the nominal 
capacity of the wind farm (70 MW). As a result, the 
turbines operated at their maximum possible output, 
determined solely by wind conditions, effectively 
running without curtailment and extracting the 
maximum available power. 

Some results of the simulation that are fed to the 
GP model are presented next. Figure 5 and Figure 6 
shows the undisturbed wind speed (v_raw) and the 
effective wind speed at each turbine, estimated using 
wake effect calculations, for a selected simulation 
period. It can be observed that, depending on the wind 
direction, the effective wind speed incident on each 
turbine varies according to the wind farm layout. 

 

 
Figure 5: Upper graph, wind speed data for each turbine. 
Lower graph, wind direction data. 

 
Figure 6: Upper graph, power generated by each turbine. 
Lower graph, total power generated by the wind farm. 

4.2 Gaussian Process Model Training 

To train the GP, a number of variables are considered 
as explanations for the total power generation of the 
wind farm. The variables studied encompass: (a) 
Total power generation, (b) Time of the day, (c) Air 
density, (d) Temperature, (e) Atmospheric pressure, 
(f) Wind speed, and (g) Wind direction. The predicted 
variable is (a) Total power generation, while the 
others are the possible predicting variables. 

Figure 7 presents the correlation analysis between 
variables. Based on the analysis, (f) Wind Speed and 
(d) Temperature were selected as explanatory 
variables due to their respective correlations of 0.95 
and -0.33 with the target variable (a). Variable (c) Air 
Density was excluded due to its high correlation with 
(d) Temperature (-0.93), which was already included 
as a predictor. Wind direction was not addressed in 
this first trained model in order to simplify the 
analysis and focus on the methodological aspects. 

A multivariate GP model was developed to 
predict wind farm power output using temperature 
and wind speed as input features. The scope of this 
study is limited to short-term (intraday) forecasting. 
Wider temporal generalization may be crucial in 
training over annual cycles and seasonal strategies. 
Thus, the model is trained on data collected over a 
period of three months, with measurements taken 
every 30 minutes. Only two and a half months are 
used as training data, resulting in a total of 3,600 
training samples, while the remaining 15 days are 
used for testing. The training took approximately 4 
minutes. The R2 score obtained by the GP is 0.9986. 
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Figure 7: Correlation between variables. 

Figure 8 provides a projected view of the fitted 
GP, enabling comparison of the total power output 
under different wind speed conditions. Temperature 
is depicted using a color gradient, effectively 
highlighting its impact on power generation. This 
curve serves as a reliable foundation for modeling the 
aggregate behavior of the wind farm. 
 

 
Figure 8: Wind farm power under wind speed conditions. 

Figure 9 presents the validation results over a 15-
day horizon, with predictions made at 60-second 
intervals, resulting in 21,600 data points. The total 
computation time for the forecast was 17 seconds.  

 

 
Figure 9: GP validation results over a 15-day horizon. 

 

4.3 Forecasting with NARX Networks 

In order to evaluate the trained NARX network and 
its forecasts, different points in time are taken within 
the data series where the wind parameters in the wind 
farm change substantially. The whole training 
process is repeated for each new time selected. 

Data is taken every 30 minutes using the last 100 
measurements to train the network in each case. 
Temperature is used as the exogenous input, and the 
north-south and east-west wind components serve as 
the endogenous outputs with feedback. The network 
is trained in an open loop with the normalized time 
series data and uses the 4 previous time values of the 
inputs as historical context. The network is 
configured as discussed in the methodology section 
2.3.1 and 2.3.2. Figure 10 shows the open-loop 
network fitted after training with 100 data of the 
series for a particular time of the dataset.  During 
open-loop training, the mean square error (MSE) is 
used, and a decrease in MSE is observed in the 
training, validation, and test sets. This procedure is 
repeated at different times during the training series. 
The best validation performance is achieved in epoch 
5. This value represents the optimal point of 
generalization, thus avoiding overfitting. The training 
time is approximately 8 seconds. 

 

 
Figure 10: Open-loop model fitting. 

The network model is switched from open-loop to 
closed-loop to make the prediction for the next two 
hours. The predictions of both wind components are 
obtained denormalized as shown in Figure 11, where 
both components (blue) are plotted with their 
predictions (red) for the next 30, 60, 90 and 120 
minutes. Using these data and predictions we can 
obtain Figure 12 where the modulus and direction of 
the velocity is represented, it can be observed how the 
main variable that introduces error to the model is the 
wind modulus (wind speed). 
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The normalized Root Mean Square Error (RMSE) 
prediction error for the two-hour forecast is estimated 
to average 11.19%. 
 

 
Figure 11: Comparison of real data and prediction for the 
perpendicular wind components for the next 2 hours. 

 
Figure 12: Comparison of real data and predictions in wind 
modulus (speed) and direction for the next 2 hours. 

4.4 Power Forecasting 

The two wind component predictions generated by 
the NARX model are condensed into a velocity 
module and used, like temperature, as input to the GP-
based surrogate model to estimate wind farm power 
generation. This allows power forecasts to be made 
two hours in advance, maintaining high fidelity with 
respect to the original physical model. 

The power predictions obtained through this 
integration agree well with the actual data, as shown 
in Figure 13. The normalized RMSE is 14.88% for 
the two-hour period, and the maximum normalized 
error at 30 minutes is 16.13%. This indicates a 
relatively low prediction error and showcases the 
model's effectiveness while allowing for quick and 
reliable estimates, making it suitable for operational 
decision-making in wind energy systems. 

 
Figure 13: Comparison of power predictions between 
actual, real-time data and forecasts. 

In Figure 14, the GP model (orange dashed line) 
closely matches the observed wind data, whereas the 
fit is poorer when using wind speed forecasts (green 
dashed line). This reflects that the biggest error of the 
power forecast is introduced by the NARX wind 
forecast model, comparing forecasted and real wind 
speed. This is a point to be improved in the future. 
 

 
Figure 14: Comparison of GP model forecasts with respect 
to actual and predicted wind values. 

5 CONCLUDING REMARKS 

This research presents a framework for wind farm 
power prediction using a first-principles simulation 
model to generate synthetic data from a wind farm 
with 14 NREL 5MW turbines, including turbine and 
farm-level controls and wake effects. A Gaussian 
Process surrogate model approximates the simulation 
for fast, accurate power predictions, enhanced by a 
NARX neural network for short-term climate 
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forecasts. This reduces computation time from hours 
to seconds, enabling real-time grid integration and 
energy management while maintaining accuracy, thus 
improving wind farm efficiency and renewable 
energy adoption. 

6 FUTURE WORK 

Future work will extend the framework by adding 
wind direction to the GP surrogate model to improve 
power prediction accuracy. Efforts will also focus on 
enhancing wind speed forecast accuracy beyond one 
hour using advanced models or geographically 
distributed meteorological data. Additionally, 
applying the framework to diverse wind farm 
configurations and environmental variables will 
increase prediction robustness. 
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